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Introduction 
 
 The base-pairing interactions of RNA molecules are essential to life, and 
particularly to the functions of noncoding RNAs, such as ribosomal RNAs and 
riboswitches. RNA secondary structure can also be important to the function and 
regulation of long noncoding RNAs and messenger RNAs, and determining these 
structures is an important step toward understanding the functional mechanisms 
of RNA. Chemical probing experiments can greatly improve the accuracy of RNA 
secondary structure prediction by providing information about which nucleotides 
are single- or double-stranded. In these experiments, RNA is treated with 
chemicals, e.g. dimethyl sulfate and selective 2’ hydroxyl acylating (SHAPE) 
reagents, that selectively modify RNA bases based on their structural context, 
usually with a bias toward single-stranded nucleotides. Modified nucleotides are 
then read out by reverse transcriptase (RT), which stops cDNA synthesis or 
inserts incorrect bases at chemical adducts (we refer to RT stops and mutations 
more generally as RT events). Comparing results of probing experiments to 
controls with no chemical treatment enables calculation of nucleotide reactivities, 
which are then converted into probabilistic constraints for RNA secondary 
structure prediction \cite{19109441, reviewed in Choudhary2017QuantitativeBiol}.	
 An underexplored area in the analysis of chemical probing data is how 
best to take advantage of replicate data. Most current methods to analyze 
chemical probing data address the results of a single replicate\cite{19109441, 
27819661, 24336214, etc}, or the pre-pooled results of multiple 
replicates\cite{Prober}. Ideally, if the conditions of experiments were exactly the 
same, such that every RNA molecule had the same probability of generating an 
RT event at a given nucleotide, then this would be well justified. Indeed, the 
Poisson distribution, which is often used to model chemical probing data\cite{	
21642536, 25332375, 26544910}, assumes that the underlying statistical 
process being modeled has a fixed probability. However, biological data of many 
types – ranging from gene expression (RNA-Seq)\cite{17728317, 19910308 } to 
mutation rates in cancer genomes \cite{	26304545 } – are often overdispersed 
relative to Poisson statistics, due to heterogeneity in biological conditions. If 
chemical probing data are also overdispersed relative to Poisson statistics, 
statistical modeling with a replicate sensitive tool could be critical to assessing 
confidence in inferred nucleotide reactivities, and estimating confidence might aid 
downstream structure prediction. One recent method, BUM-HMM (Beta-Uniform 
Mixture Hidden Markov Model) used the empirical variability in control chemical 



probing experiments to assess the significance of differences between treated 
and control experiments\cite{	27819660}. However, to our knowledge, no existing 
method uses variability in both treated and control experiments to model 
chemical probing data. 

Here, we present a new analysis tool, structSeq, that integrates 
information from replicate experiments to model chemical probing data 
statistically and to infer base pairing probabilities to be used for RNA secondary 
structure prediction. In structSeq, we first model chemical probing data using the 
negative-binomial distribution, which allows for heterogeneity in the probabilities 
that different RNAs within a population will produce an RT event at a given 
nucleotide. We use replicate data to infer distribution parameters by adapting a 
statistical tool from the RNA-Seq field (DESeq2) that is specially designed to infer 
levels of variability in experiments where many measurements are made in each 
replicate, but only a small number of replicate experiments are conducted. We 
employ this statistical model to identify nucleotides that are significantly modified 
in probing experiments. Finally, we create a framework to incorporate both 
observed nucleotide reactivities and inferred levels of variability into predictions 
of RNA secondary structure. 
 
Results 
 
RNA chemical probing data are overdispersed 
 
[[NOTE: I should introduce to some extent how we define RT event counts, 
trials/coverage, pseudocounts for use in Poisson-family distributions, etc. These 
concepts are/will be described completely in the methods, but I have not figured 
out how much to address them in the results.]] 
 

To motivate our development of a replicate-sensitive method to analyze 
chemical probing data, we first wanted to investigate the underlying statistical 
assumptions that dictate whether separation of replicate data is necessary. 
Specifically, if the underlying process being modeled – generation of RT stops or 
mutations (RT events) from a given nucleotide within an RNA molecule that 
undergoes chemical probing – is the same both throughout each population of 
RNA and between RNA populations of the same type (treated or untreated), then 
we would be well justified in adding results of replicates together. If this is the 
case, we would expect the counts of RT events we observe to follow the Poisson 
distribution, which models counts resulting from a statistical process with a fixed, 
small probability (of producing an RT event at the nucleotide of interest) and 
many total trials (many total RNA molecules). To test whether our data follow 
Poisson statistics, we used one replicate to define the \lambda parameter of the 
distribution, representing the mean expected counts, and computed p-values for 
observations from other replicates. If the Poisson distribution is a good model for 
chemical probing data, then the p-values should follow the uniform distribution. 

Michael Rutenberg S…, 4/6/2017 7:08 AM
Comment [1]: This	is	redundant	with	the	
second	paragraph	in	the	intro.	I	would	like	
to	make	this	version	more	succinct	and/or	
somewhat	distinct	in	the	points	it	makes.	



However, a quantile-quantile plot comparing observed Poisson p-values to their 
expected uniform distribution shows that RT stop counts in Xist DMS treated 
samples are highly overdispersed (Fig 1a, Kolmogorov Smirnov test p < 2.2*10-
16) We visualize this finding by showing the Poisson confidence intervals  
estimated from a sample region of one Xist DMS replicate and the fact that many 
points from a second replicate lie far outside these intervals (Fig 1b). This finding 
is also intuitively borne out by the fact that simulated replicates using Poisson 
statistics (Fig 1c) display much less variability than experimental replicates (Fig 
1d). Moreover, our finding that chemical probing data are overdispersed holds 
across many types of experiments, including counts of both RT stop and 
mutation counts, both in vitro and in vivo, and even untreated samples 
(supplemental figures). 
 
structSeq provides an improved model of chemical probing data using the 
negative binomial distribution and DESeq2 
 

Having established that chemical probing data are overdispersed relative 
to the Poisson distribution, we sought to model these data with a distribution with 
a flexible mean-variance relationship. This posed a challenge as like other 
genomics experiments, relatively few replicates are typically conducted because 
of cost constraints, making it hard to make accurate variance estimates for each 
data point (nucleotide) individually. This problem has been addressed in the 
RNA-Seq field by tools such as DESeq2, which take advantage of common 
information among the many measurements (of gene expression) made in 
parallel to aid inference of count distributions \cite{	25516281 }. DESeq2 employs 
the negative binomial distribution, which is closely relative to the Poisson 
distribution but contains a dispersion parameter, \alpha, which is zero when there 
is no overdispersion (Poisson) but takes higher values when data are 
overdispersed (see Methods). DESeq2 estimates the dispersion parameter by 
first making estimates for each nucleotide (or gene in RNA-Seq), then observing 
a trend between mean counts and dispersion values, and finally adjusting 
dispersion values toward the trend (Fig 1e).Applying DESeq2 to RT stop counts 
for DMS-treated Xist yielded a substantially better fit to chemical probing data, as 
shown in our quantile-quantile plot of DMS-treated Xist stop counts (Fig 1a, 
Kolmogorov Smirnov test p = 0.23), as well as by the fact that negative-binomial 
simulated replicates (Fig 1f) are more similar to observed replicates (Fig 1d) than 
are Poisson replicates (Fig 1c).  
 
[[NOTE: The negative binomial provides an excellent fit for the Xist data set 
(especially with moderate filtering to assure higher coverage). This isn’t true for 
all datasets, and I’m working to figure out why/to what extent this affects 
downstream results.]] 
 
 



Using p-values from structSeq for biochemical inference 
 

A more accurate statistical model of chemical probing data should aid 
biochemical inference from these datasets. Both SHAPE and DMS are expected 
to modify single-stranded nucleotides preferentially over double-stranded bases, 
while DMS is also selective for A and C bases. We performed statistical tests 
comparing treated and control RT event counts to identify bases that have 
significantly more RT events due to treatment. We then compared the distinctive 
ability of p-values from our negative binomial model to that of Poisson p-values, 
as well as the empirical p-values produced by recently published BUM-HMM 
method that uses empirical differences in untreated samples as the null 
distribution against which to test treatment-control comparisons. Precision-recall 
curves, which measure precision as increasing numbers of positive identifications 
are made, show that negative binomial p-values have greater distinctive ability 
than either of the other two statistical tests for distinction of AC vs. GU 
nucleotides for in vivo, targeted DMS probing of 3 RNAs: Xist, U2 snRNA, and 
7SK RNA (Fig 2a-c)    The negative binomial p-values also perform comparably 
to the other tests for distinction of single stranded vs. double stranded 
nucleotides from in vitro SHAPE probing of the 5S rRNA. We report performance 
for an expanded list of RNAs, using the area under both precision-recall and 
receiver operator curves as metrics, in Table 1. We note that we would not 
expect perfect performance from a statistical metric in any of these comparisons, 
because the in no case is the chemical probing reagent perfectly selective for the 
type of base. 
 
[[Note: In figure 2A-D, the BUM-HMM p-values and the Poisson exact test 
perform reasonably in some cases and terribly in others. It would be good to 
figure out why this is (and whether it has to do with conceptual deficiencies in 
these methods and/or technical errors on my part.]] 
 
structSeq enables replicate-aware RNA structure prediction 
 
[[Note: I had not realized until recently that the negative-binomial p-values are 
not obviously better than the other statistical tests for the one in vitro dataset that 
I have analyzed so far. The folding section should focus on in vivo data if our 
statistical model is not particularly important for in vitro data.]] 
 
 Statistical tests for differences between treated and control samples in 
chemical probing experiments are useful in themselves, but RNA structure 
prediction methods typically rely on levels of nucleotide reactivity, based on the 
observation that the degree of reactivity is more structurally meaningful than 
simply whether the reactivity is above zero \cite{Deigan2009PNAS}. Our negative 
binomial fits enable expansion of this concept to include confidence in estimates 
of reactivity. To illustrate this, we made violin plots, showing the inferred 
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distribution of a common measurement of reactivity for several RNAs –the 
increase in probability of stopping or mutation due to treatment (denoted ∆Pstop, 
∆Pmut, or more generally, ∆P; see Methods)– by simulating from our treated and 
control count distributions \cite{	26646615, primary citation for ∆P} (Fig 2e-h). 
RNA structure prediction methods typically perform one of a variety of 
normalization methods on ∆P or similar metrics of reactivity, and then define 
functions that convert these normalized reactivities into probabilities that each 
nucleotide is paired. These probabilities are converted to pseudoenergy terms 
that can be used to constrain free energy-based RNA secondary structure 
prediction algorithms \cite{	19109441, 24895857]. 
 To create a replicate-aware method to incorporate chemical probing data 
into RNA secondary structure prediction, we represent counts for treated and 
control experiments by the negative binomial distributions we fit using DESeq2. 
Similar to the violin plots for ∆P above, we simulated many replicates of our 
experimental data. We then calculated ∆P, used the so-called boxplot method 
(see Methods, \cite{	19109441 }) to create normalized reactivities. These 
reactivities were converted to probabilities using the method proposed by Deigan 
et al.: 
 

∆G = a*log(R+1) + b 
p(paired)/p(single-stranded) = exp(-∆G/RgasT) 

p(single-stranded) = 1/(1+exp(-∆G/RgasT)) 
 

Here, R represents normalized reactivity, Rgas is the gas constant, T is 
temperature, which is taken to be 37C (310.15 K). The final probability estimate 
was taken as the mean of the probabilities computed from sampling from treated 
and control count distributions. Of note is that there are two free parameters in 
the Deigan method that control the degree to which high reactivity indicates low 
pairing probability (a, above) and that no reactivity indicates higher pairing 
probability (b, above) (Figure 3b). The best values for a and b are typically 
determined based on optimization of prediction performance for RNAs of known 
structure.  

We implemented our replicate-sensitive method for converting raw 
chemical probing counts to structure prediction constraints using in vitro SHAPE 
data for the 5S ribosomal RNA, an RNA of known structure \cite{	25303992, 
22976082, maybe others}. Pairing probabilities from our method were input into 
the RNAstructure software package for structure prediction. To evaluate our 
predictions, we use two metrics: sensitivity, the proportion of correct base pairs 
that are predicted; and positive predictive value (PPV), the proportion of 
predicted base pairs that are correct. Our probabilistic method enables correct 
prediction of the 5S rRNA structure (sensitivity = 100%, PPV = 100%, Fig 3a), in 
contrast to an inaccurate prediction from an unconstrained structure (sensitivity = 
27.0%, PPV = 24.3%, Fig3b). We can also see that prediction accuracy is robust 
to parameters of the Deigan pseudoenergy function that control the degree to 
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which high reactivity indicates low pairing probability (a) and that no reactivity 
indicates higher pairing probability (b) (Figure 3c). This demonstrates the ability 
of our replicate-sensitive method to aid accurate prediction of RNA structure on a 
model RNA. 
 
[[Note: I do not yet mention the fact that folding with constraints but no statistical 
model is just as effective as folding with constraints and the statistical model.]] 
 
 
 
Figure legends: 
 
Figure 1. Overdispersion of chemical probing data and modeling using the 
negative-binomial distribtution and DESeq2. (Panels A-F go from left to right, 
then top to bottom) 
 

A. Quantile-quantile plot for stop counts from mouse Xist treated with DMS in 
vivo. P-values of observed data against assumed distributions are 
compared to the uniform distribution on log10 scale. From six replicates, 
one was chosen to fit the Poisson model and the other five were tested 
against this replicate. For the negative-binomial model, five replicates 
were used to fit the distribution using DESeq2 and one replicate was used 
to test the distribution fit. 

B. Comparison of two biological replicates of Xist DMS stop counts. 
C. Scatterplot of Poisson simulated replicates for Xist DMS stop counts. 
D. Observed biological replicates for Xist DMS stop counts. 
E. Relationship between mean counts and the negative binomial dispersion 

parameter (which controls overdispersion) while fitting Xist DMS stop 
counts using DESeq2. Dispersion parameters are initially fit separately to 
each nucleotide (black dots), then a trend is fit to these dispersion 
estimates (red line), and final estimates (blue dots) are made combining 
information from the individual estimates and the trend. 

F. Negative-binomial simulated replicates for Xist DMS stop counts. 
Distribution was fit using DESeq2. 

 
 
Figure 2. Evaluation of biochemical inferences made with negative binomial p-
values (from DESeq2) and comparison to other methods 
(Panels A-H go from top to bottom, then left to right) 
 

A. Precision recall plot for A and C bases for in vivo targeted DMS probing of 
the mouse 7SK RNA. Negative binomial p-values fit with DESeq2 are 
compared to those from BUM-HMM and the Poisson exact test. 
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B. Precision recall plot for A and C bases for in vivo targeted DMS probing of 
the mouse U2 snRNA. 

C. Precision recall plot for A and C bases for in vivo targeted DMS probing of 
the mouse Xist RNA. 

D. Precision recall plot for A and C bases for in vitro SHAPE probing of the E 
coli 5S rRNA. 

E. Violin plots showing distributions of ∆Pstop, a measure of nucleotide 
reactivity, inferred from 10,000 simulated replicates of treated and control 
counts for targeted in vivo DMS probing mouse of the mouse 7SK RNA. 

F. Violin plots showing distributions of ∆Pstop, a measure of nucleotide 
reactivity, inferred from 10,000 simulated replicates of treated and control 
counts for targeted in vivo DMS probing mouse of the mouse U2 snRNA. 

 
(Not currently mentioned in text) 

G. Violin plots showing distributions of ∆Pstop, a measure of nucleotide 
reactivity, inferred from 10,000 simulated replicates of treated and control 
counts for targeted in vivo DMS probing mouse of the mouse Xist RNA. 

H. Violin plots showing distributions of ∆Pstop, a measure of nucleotide 
reactivity, inferred from 10,000 simulated replicates of treated and control 
counts for in vitro SHAPE probing of the E coli 5S rRNA. 

 
Figure 3. Structure prediction with 5S rRNA 

A. 5S rRNA structure predicted using in vitro SHAPE constraints. Nucleotides 
are colored by the probabilities of pairing produced with probing data and 
our negative binomial models. This predicted structure is correct (100% 
sensitivity, 100% positive predictive value). 

B. 5S rRNA structure predicted without constraints. Nucleotides are colored 
by the probabilities of pairing produced with probing data and our negative 
binomial models. This  predicted structure has sensitivity = 27.05%, 
positive predictive value = 24.3%, 

C. Sensitivity of predicted 5S rRNA structures with SHAPE constraints, using 
different parameters of the Deigan pseudoenergy function. 

D. Positive predictive value of predicted 5S rRNA structures with SHAPE 
constraints, using different parameters of the Deigan pseudoenergy 
function. 

 
 
 
Non-exhaustive list of goals: 

• Figure out why relative performance of statistical models in Fig 2 is 
different for different RNAs/experiment types. 

• Fold more RNAs of known structure, evaluate ∆P only vs. sampling from 
count distributions. 



o Ideally train pseudoenergy function parameters on some RNAs, test 
on others. 

o Compare to BUM-HMM folding as well? 
• Do some testing of HMM/whether it is beneficial for folding. 
• Combine mutation and stop information, if possible. 

 
 


