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Less is more in the hunt for driver mutations

An analysis of 360 breast-cancer genomes has identified nine cancer-driving promotersmutations in nine non-coding DNA sequences called promoters that regulate gene expression, hinting at the prevalence of such drivers in cancer genomes.. See Article p.XXX [OK? to explain a bit more what promoters are]

Sushant Kumar & Mark Gerstein

A typical cancer genome contains thousands of mutations, the overwhelming majority of which are in non-protein-coding sequences. Classical models of tumour evolution posit that cancer progression is driven by only a few of these., which are under strong positive natural selection. But almost all known driver mutations are in coding sequences1,2, raising the question of how many drivers lurk in non-coding regions. In a paper online in Nature, Rheinbay et al.3 make a foray towards the answer.
 
Identification of non-coding drivers is challenging, owing to the vastness of the genome and the difficulty of characterizing the precise location of non-coding elements (egthat might contain drivers — for example, regulatory regions such as promoters and enhancers that modulate gene expression), which might contain drivers. Drivers in coding regions are easier to identify, because we have a better understanding of the boundaries of thesecoding regions and of the impact that mutations in them might have on the production and function of proteins. However, our better understanding potentially creates an ascertainment bias toward coding drivers, [I’m afraid we can’t include the “drunk-looking-under-the-lamppostlampost phenomenon in cancer genomics.” — if we were to include this we’d have to give it its proper name (which I understand is the streetlight effect) and then explain what it means, which seems a bit too much for this piece. OK to remove?]. Consequently, with the whole-genome analysis of cancers there has been interest in identifying non-coding drivers4drivers using whole-cancer-genome analyses4. Previous studies have provided a few examples5–7, but our understanding is far from complete.

Rheinbay et al. set out to identify coding and non-coding driver mutations in an unbiased fashion, using samples from a cohort of 360 people withwho had breast cancer. To find the non-coding drivers, theythe researchers identified non-coding elements harbouringthat harboured significantly more mutations than expected, or that contained clusters of mutations around transcription-factor binding sites (known locations for regulating, at which regulatory proteins to bind to). .

The authors identified putative driver mutationsdrivers in nine promoters, and showed that three of these significantly altered gene-expression levels (those associated with the FOXA1, RMRP and NEAT1 genes). Their analysis of mutational hotspots (recurrent mutations at a single site)that recur in many individuals [OK?]  indicated that those in promoters are as common as those in coding genes. Furthermore, they found that the per-base mutation rate of promoters withthat contained drivers was similar to that of coding regions with drivers. This suggests that that fewer drivers have been found in promoters than in coding regions simply because their "functional territory"functional territory (the number of nucleotides that confer their activity [OK? We should provide readers with a clear definition of a functional territory, to help them follow the rest of the discussion]) is smaller.

This work describes the state-of-the-art in identifyingidentification of non-coding drivers, but there is more to do. The authors’ power analysis — statistical calculations estimating the sample numbers needed to detect an effect of a given size — indicated that their sample of 360 drivers could be used to reliably identify drivers only identified if they occurred in at least 10% of the 360 samples studied, but only about 70% of drivers present in 5% of patients in the cohort.would be identified [Ok to add back in? To tie into your figure]. To understand the directions for improvement, it is worth considering how non-coding elements are defined, and how this plays into statistical power (Fig. 1).

Currently, many Many non-coding elements are annotated as being fairly large. [Please give a size range (for instance, could we say hundreds of base?). Physicists, for example won’t know whether 100bp, 1kb or 1mb is fairly large in this scenario]. However, this is partly because our techniques for determining the positions of these elements are imprecise, and — the real functional territory of a regulatory element is often considerably smaller than annotated. For instance, As an example, consider transcription-factor binding sites . These regions are often called as 1-kb "peaks" from a noisy cross-genome identified by isolating protein–DNA complexes and sequencing that DNA. Sequences longer than the binding signalsite are often isolated and, when in factthe experiment involves many cells, the result can be noisy. As such, regions of 1 kilobase can be annotated as binding sites when the actual "functional" site of factor binding might be only measure in tens of nucleotides. Thus, long [Many of our readers won’t be familiar with techniques such as ChIP and won’t know what peaks, calling or signals refer to in this context. I’ve had a go at simplifying this again; is this OK?]. Analysing recurrent mutations [OK? I’m not quite sure what aggregating mutational recurrence means] across over-sized regions instead of actual functional territories cancan thus dilute the true signal of positive selection and hinder driver identification.

 One approach to better define the precise functional territory of a non-coding elementterritories is identifyingto identify evolutionary conserved regions, which are likelyprobably more functionally important. than non-conserved regions. Moreover, non-coding elements, likesimilar to genes, often consist of discontinuous blocks of functional territories. The connections between these blocks are well understood for genes. That is, — coding exonsregions are joined up around sequences called splice junctions during processing of messenger RNA.after gene transcription. But the connections between non-coding elements and between these elements and the genes are less well understood, and potentially complex — genes. Genes can be connected to multiple promoters and enhancers, and one enhancer can affect multiple genes. [Please could you add a few words to spell out how understanding the connections between them improves annotation of functional territories?]

After defining the functional territory of a non-coding element, the next step involves testing is to test for mutational burden (the relative prevalence of mutations in a given region [OK? Or please replace with a simple definition]) over many elements. The more elements one tests the larger, the multiple-testing penalty higher the prevalence of a given driver will be on the resulting statistics.need to be to be considered statistically significant, owing to a statistical phenomenon called the multiple testing penalty [I’ve attempted to explain this for non-specialists — please replace with a more accurate explanation if needed]. Thus, one can increase the power throughof driver detection by making the element set as small and accurate as possible. This suggestsuggests that the best way to increase the power of driver detection infor non-coding elements is, perhaps non-intuitively, not to investigate every base in the genome. Rather, it is to analyse a compact and highly accurate annotation set containing as few elements as possible, in which each element corresponds as closely as possible to an underlying functional territory. , rather than to investigate every base in the genome

An additionalAnother difficulty with non-coding mutations is evaluating their functionalthe impact. Currently, it of non-coding mutations. It is unclear whether each potential substitution of a nucleotide in a regulatory region has an equal impact.
 In some circumstances, it is clear what effect a mutation will have can be predicted — if it breaks a transcription-factor binding site or creates a new one, for instance8. Nonetheless,But better metrics of functional impact are needed over the whole genome to find non-coding equivalents of the coding mutations known to alter protein production or behaviour. Finally, the power to detect drivers in non-coding regions depends on how uniform the underlying background mutation rate is. However, this is not the caseRates are irregular across wide expanses of the genome9, so theRheinbay and colleagues’ approach will require further refinement.

An exhaustive but effective approach to deal with some of these challenges is sequencing many patients.
 This approach is feasible only through large-scale collaborations. Such efforts will generate comprehensive catalogues of non-coding variants, which give us better statistics that can be leveraged to detect more driver mutations. However, these large-scale studies require the assembly of uniform cohorts, which canwill be challenginga challenge owing to the highly heterogeneous nature of cancer. An alternative approach is developingThe development of a more compact functional annotation of the non-coding genome by better and more precisely defining functional territories.represents a compelling alternative. Here, systematic annotation compendiums such as the ENCODE project10 have a vital role to play. Thus, inIf the innovative approach taken by Rheinbay and colleagues can be refined [OK to add? To end with an upbeat sentence explicitly about the pursuit of current study], more drivers we may be actuallycan be servedpursued by focussing on less of the genome.
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Figure 1| Improving discovery of cancer-driving mutations in the non-coding genome. The power to identify regulatory driver elements is closely dependent on the annotation of these elements on genome-level. An approximate representation of the graph from figure 4a of Rheinbay et. al. is show in green. Note that promoter size is fixed at 650 bp for over 20K promoters in this analysis. For 360 individuals in the study, this analysis suggests ~70 percent power to detect a driver mutations present in promoter elements, which are mutated in 5% of patients this cohort. If we use more promoters, for instance increasing to 100K, then this will increase the number of multiple burden testing and thus decrease the power (shown in red curve). Conversely, if we shrink the size of the promoter elements (restricting it to promoter of length 450), while keeping the same number of promoter elements, this will increase the power as shown in the blue curve. 
[Thanks for sending your revised figure. I like the simplified graph, but I suggest that we use just this — it will give readers enough to get to grips with, without having to also understand the depiction of non-coding elements and peak signals. Is this OK? Could we change power on the y axis to a percentage, to fit the description you’ve given in the caption?]
[I’ve made some more changes to your figure caption to reflect the need to explain all the technical terms again, and to try and outline a bit more about the power calculation used, so that readers can follow the graph easily. Please amend further as needed for accuracy]


Figure 1 | Improving discovery of cancer-driving mutations in the non-coding genome. Rheinbay et. al.3 analysed genomes from 360 patients who had breast cancer and identified cancer-driving mutations in nine non-coding sequences called promoters. They then performed a ‘power analysis’ to determine the percentage of the time (the power with which) a driver present in 5% of patients could be identified using varying sample numbers, given that the authors analysed 20,000 promoters defined as being 650 base pairs long. This analysis (green curve) reveals a power of about 0.7 to detect driver mutations in 360 samples, meaning that they probably identified 70% of the drivers present in 5% of patients. If 100,000 promoters were analysed, power would be decreased, owing to a statistical phenomenon called multiple burden testing (red curve). By contrast, analyzing 20,000 promoters 450 bases long would increase power (blue curve), pointing to a way to identify more non-coding drivers in the future. (The green curve is an approximate representation of the authors’ analysis taken from fig. 4a of the paper.)
 
