A set of tools for analysis of Hi-C data from normal and cancer genomes

Ferhat Ay, Ph.D.

Institute Leadership Assistant Professor of Computational Biology Iji.org/faculty-research/labs/ay

EN-TEx call 5/22/17

Assigning statistical confidence estimates to chromatin contact maps

Python: <u>http://noble.gs.washington.edu/proj/fit-hi-c</u> R: <u>https://bioconductor.org/packages/release/bioc/html/FitHiC.html</u> Ay, Bailey & Noble. Genome Research, 2014.

HiCnv, HiCtrans & AveSim

Identification of copy number variations and translocations in cancer cells from Hi-C data

Genomic position

Abhijit Chakraborty

https://github.com/ay-lab

Chakraborty & Ay. Under review.

mHiC

Leveraging multi-mapping reads in Hi-C data

<u>U. of Wisconsin - Madison</u> **Sunduz Keles** Ye Zheng

mHiC: a beta version is available from Ye Zheng <u>yezheng@stat.wisc.edu</u>

Fit-Hi-C

Assigning statistical confidence estimates to chromatin contact maps

Python: <u>http://noble.gs.washington.edu/proj/fit-hi-c</u> R: <u>https://bioconductor.org/packages/release/bioc/html/FitHiC.html</u> Ay, Bailey & Noble. Genome Research, 2014.

Statistical confidence estimation by Fit-Hi-C

Statistical confidence estimates for all mid-range locus pairs

Ay, Bailey & Noble. Genome Research, 2014.

Erez's high resolution data from Rao et al 2014

- Six human cell lines: GM12878, HMEC, HUVEC, IMR90, K562, NHEK
- In situ Hi-C with a 4-bp cutter
- All cell lines have 5kb data, GM12878 also has 1kb data
- KR normalized contact maps gathered from <u>GSE63525</u>
- *_HiCCUPS_looplist.txt.gz files were used for comparison of loop calls

Fit-Hi-C vs HiCCUPS loop calls

- ✓ HICCUPS does NOT perform loop calls at 1kb resolution
- ✓ Out of 9448 HICCUPS loops for GM12878, 3132 are at 10kb and 6316 are at 5kb
- ✓ At 1kb Fit-Hi-C calls 142,264 FDR 0.01 loops (5kb, 500kb] (>1.52B possible pairs)

Analysis of 5kb data within (20kb, 2Mb] for six cell lines (~240M possible pairs)

CellLine /	All	All	Intersection -	Intersection -	Percent
Loop calls	HICCUPS	Fit-Hi-C	HICCUPS	Fit-Hi-C	covered
GM12878	9,270	1,521,610	8,674	13,700	93.6%
IMR90	7,992	300,707	7,128	12,016	89.2%
K562	5 <i>,</i> 938	152,779	4,038	8,490	68.0%
HMEC	5,152	27,808	3,516	4,568	68.2%
NHEK	4,913	14,054	2,197	3,576	44.7%
HUVEC	3,846	25,740	2,392	4,483	62.2%

Visualization of Fit-Hi-C contacts in WashU Epigenome Browser

Ay & Noble. *Genome Biology* 2015

Fit-Hi-C's statistical model works for a variety of conformation capture assays

PLAC-seq (Bing Ren Lab) Fang et al. *Cell Research* 2016

Fit-Hi-C's statistical model works for a variety of conformation capture assays

HiChIP (Greenleaf & Chang) Mumbach et al. *Nature Methods* 2016

Fit-Hi-C result highlights

- ✓ Non-parametric spline fit flexible enough to work for any organism, any resolution and any sequencing depth
- ✓ Fast, robust and flexible statistical method for identifying loops from any genome-wide conformation capture data
- ✓ Fit-Hi-C can detect cell-type specific and validated contacts (3C, ChIA-PET)
- ✓ Significant interactions correlate with other functional genomics data
- ✓ Fit-Hi-C's statistical power depends on:
 - assay choice (traditional Hi-C vs ChIP-based methods),
 - sequencing depth,
 - resolution of contact maps,
 - genomic distance range of interest (multiple testing correction),
 - but not much on the amount of starting material.

HiCnv, HiCtrans & AveSim

Identification of copy number variations and translocations in cancer cells from Hi-C data

Genomic position

Abhijit Chakraborty

https://github.com/ay-lab

Chakraborty & Ay. Under review.

Chromosomal rearrangements are common in cancer

ENCODE-released Hi-C data from Job's lab

	HiC	HiCPro data summary				
Cell line	Raw pairs	Valid pairs	Percentage			
A549	251,891,733	135,674,989	53.86%			
CAKI2	323,731,060	168,096,814	51.92%			
G401	340,927,844	174,130,474	51.08%			
LNCaP	306,489,193	92,691,677	30.24%			
NCIH460	313,205,689	162,906,364	52.01%			
PANC1	288,978,052	160,552,758	55.56%			
RPMI7951	335,883,359	189,765,014	56.50%			
SJCRH30	152,235,75 0	6,432,592	4.23%			
SKMEL5	303,482,692	133,713,968	44.06%			
SKNDZ	291,853,821	59,307,125	20.32%			
SKNMC	313,811,254	149,394,332	47.61%			
T47D	247,702,528	133,681,534	53.97%			

HindIII digestion

150-350M 50bp paired-end

HiCPro is used for mapping

10/12 analyzed further

 Dave Gilbert generated RT data for 8 cell lines

- Feng Yue generated WGS for 6 and Irys for 8
 - http://biorxiv.org/content/early/ 2017/03/28/119651

Detecting chromosomal translocations from Hi-C data (HiCtrans)

- Perform binary segmentation on each row and each column
- Find boxes of contact enrichment
- Test box mean vs overall mean
- Correct for multiple testing
- Find maximum raw count to

determine translocation orientation

An example translocation identified by HiCtrans

Jesse Dixon, Jie Xu, Vishnu Dileep, Ye Zhan, Fan Song, Victoria T. Le, Galip Gurkan Yardimci, Abhijit Chakraborty, Darrin V. Bann, Yanli Wang, Royden Clark, Lijun Zhang, Hongbo Yang, Tingting Liu, Sriranga Iyyanki, Lin An, Christopher Pool, Takayo Sasaki, Juan Carlos Rivera Mulia, Hakan Ozadam, Bryan R. Lajoie, Rajinder Kaul, Michael Buckley, Kristen Lee, Morgan Diegel, Dubravka Pezic, Christina Ernst, Suzana Hadjur, Duncan T. Odom, John A. Stamatoyannopoulos, James R. Broach, Ross Hardison, Ferhat Ay, William Stafford Noble, Job Dekker, David M Gilbert, Feng Yue

doi: https://doi.org/10.1101/119651

Detecting CNVs from Hi-C data (HiCnv)

Assign each read (including singletons and non-valid pairs) to the nearest RE

- Smooth the data by either using kernel density estimation or moving window average.
- Combine the smoothed counts and the kernel weights to obtain the approximation to the density estimate.

An example amplification and deletion identified by HiCnv

Comparison of HiCnv, BeadChip and WGS calls

Each point denotes a segment from WGS (~30x – Dixon et al, under review)

BedLogR values from HAIBGenotype (CNV and SNP) by Illumina 1M Duo and circular binary segmentation from ENCODE/Hudson Alpha)

	BedLogR.Normal	HiCnv.Normal	BedLogR.Amp	HiCnv.Amp	BedLogR.Del	HiCnv.Del
Median	1.99	1.99	3.70	3.70	1.77	1.02
No. of data points	34258	37139	11219	13310	614	3333

22

T47D deletions

31 unique deletions in HAIB that are >= 10Kb in size.8 reported as deletions by HiCnv.

	BLogR.Del.HiCnv.N rm.WGS.score	BLogR.Del.HiCnv.A mp.WGS.score	BLogR.Del.HiCnv.D el.WGS.score
3rd quartile	1.99	2.39	1.17
Median	1.93	2.01	1.13
1st quartile	1.80	1.89	1.10

4]	0		
		0	
3 -	8		0
2 -			0
			0
1 -	00 00 0		8
0	°		0 88
	BLogR Del HiCny Nrm WGS score	BLogR.Del.HiCnv.Amp.WGS.score	BLogR.Del.HiCnv.Del.WGS.score
	BedLogR Deleted But	BedLogR Deleted But	BedLogR Deleted And
	BedLogR Deleted But HiCnv Normal	BedLogR Deleted But HiCnv Ampllified	BedLogR Deleted And HiCnv Deleted
3 7	BedLogR Deleted But HiCnv Normal	BedLogR Deleted But HiCnv Ampllified	BedLogR Deleted And HiCnv Deleted
3 7	BedLogR Deleted But HiCnv Normal	BedLogR Deleted But HiCnv Ampllified	BedLogR Deleted And HiCnv Deleted
3 - 2 - 1 -	BedLogR Deleted But HiCnv Normal	BedLogR Deleted But HiCnv Ampllified	BedLogR Deleted And HiCnv Deleted
3 - 2 - 1 - 0 -	BedLogR Deleted But HiCnv Normal	BedLogR Deleted But HiCnv Ampllified	BedLogR Deleted And HiCnv Deleted

BLogR.Del.HiCnv.Amp.HiCnv.score

BedLogR Deleted

But

HiCnv Ampllified

-2

BLogR.Del.HiCnv.Nrm.HiCnv.score

BedLogR Deleted

But

HiCnv Normal

	BLogR.Del.HiCnv.N rm.HiCnv.score	BLogR.Del.HiCnv.A mp.HiCnv.score	BLogR.Del.HiCnv.D el.HiCnv.score
3rd quartile	-0.42	1.80	-1.20
Median	-0.64	1.33	-1.35
1st quartile	-0.66	1.20	-1.47

BLogR.Del.HiCnv.Del.HiCnv.score

BedLogR Deleted

And

T47D amplifications

53 unique amplifications in HAIB that are >= 10Kb in size.34 reported as amplifications by HiCnv.

	BLogR.Amp.HiCnv.N rm.WGS.score	BLogR.Amp.HiCnv.A mp.WGS.score	BLogR.Amp.HiCnv.D el.WGS.score
3rd quartile	3.85	3.86	3.80
Median	3.66	3.67	3.62
1st quartile	3.51	3.52	3.54

BLogR.Amp.HiCnv.Nrm.WGS.score BLogR.Amp.HiCnv.Amp.WGS.score BLogR.Amp.HiCnv.Del.WGS.score

BedLogR Amplified BedLogR Amplified BedLogR Amplified But And But HiCnv Normal HiCnv Amplified HiCnv Deleted

ogR.Amp.HiCnv. vel.HiCnv.score	- ¹ COLG		
-1.63	×. 2	0	
-1.63	й О -1 -		
-1.63	н		
	-2 -2	Γ	1

2 7

BedLogR Amplified BedLogR Amplified BedLogR Amplified But And And HiCnv Normal HiCnv Amplified HiCnv Deleted

	BLogR.Amp.HiCnv. Nrm.HiCnv.score	BLogR.Amp.HiCnv. Amp.HiCnv.score	BLogR.Amp.HiCnv. Del.HiCnv.score
3rd quartile	0.88	1.28	-1.63
Median	0.45	1.17	-1.63
1st quartile	-0.63	1.13	-1.63

Example CNVs

Example CNVs

T47D Chromosome X

Simulating Hi-C matrices with CNVs

- Extracted the contact counts among all bin pairs with the same CNV label pair.
- Further categorize counts wrt genomic distance for each label pair.

- Fit distributions to predict expected counts given a bin distance and CNV label pair.
- Fitted the values up to 160 Mb of genomic distance (4000 bin) to both Poisson and Negative-Binomial distribution.
- For each bin distance, we selected either the negative binomial or the Poisson distribution as the best fit using Bayesian information criteria (BIC).

Two alternative ways to simulate matrices

Normal

Multiply the count with the

CNV ratio at that distance

Bin connection same as

that of original matrix

simulation of the full matrix

Deleted

t count

Simulating Hi-C matrices with translocations

Simulating different types of translocations

Simulating different types of translocations

Simulating Hi-C matrices with inversions

mHiC

Leveraging multi-mapping reads in Hi-C data

<u>U. of Wisconsin - Madison</u> **Sunduz Keles** Ye Zheng

mHiC: a beta version is available from Ye Zheng <u>yezheng@stat.wisc.edu</u>

A typical Hi-C read processing pipeline

Multi-mapper aware read mapping

Read processing to get valid read pairs

Partition genome into fixed-size or RE-based bins

Generate raw contact map

Normalize contact map

Identify significant contacts

	# of conditions	# of reps	Genome size
Human: IMR90 (Jin et al., <i>Nature</i> , 2013)	1	4	3,234.83 Mb
P. falciparum (Ay et al., <i>GR</i> , 2014)	3	-	22.9 Mb

mHiC makes these steps multi-read aware

mHiC overview

1. Prior construction

$$P(Z_{i,(j,k)} = 1 \mid Y_{i,(j',k')}, \forall j', k')$$

Threshold posterior probabilities to use resulting alignments with existing significant contact identification pipelines (e.g.. Fit-Hi-C).

Improvement in sequencing depth using mHiC

A. Sequencing Depth	\checkmark
B. Number of identified significant contacts	\checkmark
C. Contact recovery at higher FDR	\checkmark
D. Reproducibility across replicates	\checkmark
E. Biological impact: Novel promoter- enhancer interactions	\checkmark

- □ Improves sequencing depth by 20-25%
 - Only 5-8% are from EM modeling
- Substantial amount of gain from utilizing Hi-C read characteristics
 - Multi(modeling) Multi(unique bin pairs) Multi(unique valid read pairs) Uni

mHiC identifies novel promoter-enhancer interactions

Chr19

20.4% (2,249) more promoter-enhancer interactions which are reproducible for at least 2 replicates.

> Significant promoterenhancer contacts identified even when only unireads are used

Big thanks to all my collaborators & funding

La Jolla Institute P. Vijayanand Benjamin Schmiedel Greg Seumois Anjana Rao lab

<u>UC Riverside</u> Karine Le Roch lab

<u>UT Health - San Antonio</u> Evelien Bunnik

UW- Genome Sciences William Noble Kate Cook Wenxiu Ma Max Libbrecht Jay Shendure lab Maitreya Dunham Ivan Liachko

<u>Stanford – Medicine</u> Andrew R. Hoffman lab Ecole Des Mines, France Jean-Philippe Vert Nelle Varoquaux

<u>Tel Aviv University</u> Judith Berman lab

Florida State – Biology David M. Gilbert Vishnu Dileep Jiao Sima

<u>Northwestern University</u> Jhumku Kohtz lab Ramana Davuluri lab

<u>U. Wisc.-Madison</u> Sushmita Roy lab Sunduz Keles Ye Zheng

<u>U. Nevada - Reno</u> Timothy Bailey

ENCODE 3DN subgroup

Job Dekker Jesse Dixon Dave Gilbert Ross Hardison William Noble Feng Yue

<u>Funding</u>

- NSF Computing Innovation Fellows (CIF-1136996)
- LJI Institute Leadership

Lab Members

- Abhijit Chakraborty (Postdoc)
- Jianlin Shao (Postdoc)
- Bharat Panwar (Postdoc Ay & Vijay)
- Sourya B. (Postdoc Ay & Vijay)

www.lji.org/faculty-research/labs/ay ferhatay@lji.org

- Arya Kaul (UCSD)
- Rohan Paul (UCSD) \rightarrow Stanford
- Ruyu Tan (UCSD) \rightarrow U. of Colorado
- Lucas Patel (UCSD)
- Aarthi Venkat (UCSD)
- Jose Moreno (UCSD)

