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Enhancer

Promoter

Assigning statistical confidence estimates to chromatin 
contact maps 

Fit-Hi-C

Python: http://noble.gs.washington.edu/proj/fit-hi-c
R: https://bioconductor.org/packages/release/bioc/html/FitHiC.html
Ay, Bailey & Noble. Genome Research, 2014. 2

Presenter
Presentation Notes
Not just mid-range, works for genome-wide but we focused on mid-range in the paper

http://noble.gs.washington.edu/proj/fit-hi-c
https://bioconductor.org/packages/release/bioc/html/FitHiC.html


Identification of copy number variations and translocations 
in cancer cells from Hi-C data

HiCnv, HiCtrans & AveSim

https://github.com/ay-lab
Chakraborty & Ay. Under review. 3
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mHiC: a beta version is available from 
Ye Zheng yezheng@stat.wisc.edu

Leveraging multi-mapping reads in Hi-C data 

mHiC

mailto:yezheng@stat.wisc.edu
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Statistical confidence estimation by Fit-Hi-C 

We also incorporate 
biases learned from 
Hi-C data normalization
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7Ay, Bailey & Noble. Genome Research, 2014. 



Erez’s high resolution data from Rao et al 2014
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- Six human cell lines: GM12878, HMEC, HUVEC, IMR90, K562, NHEK  

- In situ Hi-C with a 4-bp cutter

- All cell lines have 5kb data, GM12878 also has 1kb data

- KR normalized contact maps gathered from GSE63525

- *_HiCCUPS_looplist.txt.gz files were used for comparison of loop calls

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525


Fit-Hi-C vs HiCCUPS loop calls
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 HICCUPS does NOT perform loop calls at 1kb resolution

 Out of 9448 HICCUPS loops for GM12878, 3132 are at 10kb and 6316 are at 5kb

 At 1kb Fit-Hi-C calls 142,264 FDR 0.01 loops (5kb, 500kb] (>1.52B possible pairs)

Fit-Hi-C 
p-val<10e-6

HICCUPS
loops

Analysis of 5kb data within (20kb, 2Mb] for six cell lines (~240M possible pairs)

CellLine / 
Loop calls

All 
HICCUPS

All       
Fit-Hi-C

Intersection - 
HICCUPS

Intersection - 
Fit-Hi-C

Percent 
covered

GM12878 9,270 1,521,610 8,674 13,700 93.6%
IMR90 7,992 300,707 7,128 12,016 89.2%
K562 5,938 152,779 4,038 8,490 68.0%
HMEC 5,152 27,808 3,516 4,568 68.2%
NHEK 4,913 14,054 2,197 3,576 44.7%
HUVEC 3,846 25,740 2,392 4,483 62.2%

* p-val<10e-6 is 
more stringent 
than FDR<0.01 
in general

Presenter
Presentation Notes
Numbers at FDR 1% are: Slightly higher for HMEC (29.3k), HUVEC (27.8k), GM (3.3M)Much higher IMR90 (600k), K562 (270k)Somewhat smaller NHEK (10k)For GM 1kb data: 142,264 at FDR 0.01 and 145897 at pval 10^e-6



Visualization of Fit-Hi-C contacts in WashU
Epigenome Browser

Ay & Noble. Genome Biology 201511



Fig 1C

Fit-Hi-C’s statistical model works for a 
variety of conformation capture assays

PLAC-seq (Bing Ren Lab)
Fang et al. Cell Research 2016 12



Fig 1C

Fit-Hi-C’s statistical model works for a 
variety of conformation capture assays

HiChIP (Greenleaf & Chang)
Mumbach et al. Nature Methods 2016

Fig 1(d)
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 Non-parametric spline fit flexible enough to work for any organism, any 
resolution and any sequencing depth

 Fast, robust and flexible statistical method for identifying loops from any 
genome-wide conformation capture data

 Fit-Hi-C can detect cell-type specific and validated contacts (3C, ChIA-PET) 

 Significant interactions correlate with other functional genomics data 

 Fit-Hi-C’s statistical power depends on:
 assay choice (traditional Hi-C vs ChIP-based methods), 
 sequencing depth,
 resolution of contact maps,
 genomic distance range of interest (multiple testing correction),
 but not much on the amount of starting material.

Fit-Hi-C result highlights

14



Identification of copy number variations and translocations 
in cancer cells from Hi-C data

HiCnv, HiCtrans & AveSim

https://github.com/ay-lab
Chakraborty & Ay. Under review. 15
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Chromosomal rearrangements are common in cancer
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ENCODE-released Hi-C data from Job’s lab
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Cell line

HiCPro data summary

Raw pairs Valid pairs Percentage

A549 251,891,733 135,674,989 53.86%

CAKI2 323,731,060 168,096,814 51.92%

G401 340,927,844 174,130,474 51.08%

LNCaP 306,489,193 92,691,677 30.24%

NCIH460 313,205,689 162,906,364 52.01%

PANC1 288,978,052 160,552,758 55.56%

RPMI7951 335,883,359 189,765,014 56.50%

SJCRH30 152,235,750 6,432,592 4.23%

SKMEL5 303,482,692 133,713,968 44.06%

SKNDZ 291,853,821 59,307,125 20.32%

SKNMC 313,811,254 149,394,332 47.61%

T47D 247,702,528 133,681,534 53.97%

https://www.encodeproject.org/search/?type=Experiment&assay_title=Hi-C&status=released

- HindIII digestion

- 150-350M 50bp paired-end

- HiCPro is used for mapping

- 10/12 analyzed further

- Dave Gilbert generated RT 

data for 8 cell lines

- Feng Yue generated WGS 

for 6 and Irys for 8 
- http://biorxiv.org/content/early/

2017/03/28/119651

https://www.encodeproject.org/search/?type=Experiment&assay_title=Hi-C&status=released
http://biorxiv.org/content/early/2017/03/28/119651


Detecting chromosomal translocations from 
Hi-C data (HiCtrans)
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• Perform binary segmentation on 

each row and each column

• Find boxes of contact enrichment

• Test box mean vs overall mean 

• Correct for multiple testing 

• Find maximum raw count to 

determine translocation orientation



An example translocation identified by 
HiCtrans
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Assign each read (including singletons and non-valid pairs) to the nearest RE

• Smooth the data by either using kernel density estimation or moving window average.

• Combine the smoothed counts and the kernel weights to obtain the approximation to the density
estimate.

Join the highest
points in the density
as the representative
read count.

Segmentation on
the representative
reads.

Reads

De
ns

ity

Cell line mean 
as reference 

Normal (Z-score ≥ -1 and ≤ 1)
Amplified (Z-score ≥ 1)
Deleted (Z-score ≤ -1)

Discard the segments that are
Z-score ≤ -1 in all combined
cancer genome segmentation
analysis.

(If all the cancer cells have lower
reads than it is possibly due to un-
mappability or low GC content but
not deletion)

Report Normal, Amplified and Deleted regions

Detecting CNVs from Hi-C data (HiCnv)



An example amplification and deletion 
identified by HiCnv
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Amplification

Deletion
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Respective T47D WGS region score of predicted regions

Comparison of HiCnv, BeadChip and WGS calls

BedLogR values from HAIBGenotype (CNV and SNP) by Illumina 1M Duo and circular binary 

segmentation from ENCODE/Hudson Alpha)

Each point denotes a segment from WGS (~30x – Dixon et al, under review)

BedLogR.Normal HiCnv.Normal BedLogR.Amp HiCnv.Amp BedLogR.Del HiCnv.Del

Median 1.99 1.99 3.70 3.70 1.77 1.02

No. of data 
points 34258 37139 11219 13310 614 3333
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31 unique deletions in HAIB that are >= 10Kb in size. 
8 reported as deletions by HiCnv.

BLogR.Del.HiCnv.N
rm.WGS.score

BLogR.Del.HiCnv.A
mp.WGS.score

BLogR.Del.HiCnv.D
el.WGS.score

3rd quartile 1.99 2.39 1.17

Median 1.93 2.01 1.13

1st quartile 1.80 1.89 1.10

BLogR.Del.HiCnv.N
rm.HiCnv.score

BLogR.Del.HiCnv.A
mp.HiCnv.score

BLogR.Del.HiCnv.D
el.HiCnv.score

3rd quartile -0.42 1.80 -1.20

Median -0.64 1.33 -1.35

1st quartile -0.66 1.20 -1.47

BedLogR Deleted
But 

HiCnv Normal

BedLogR Deleted
But 

HiCnv Ampllified

BedLogR Deleted
And 

HiCnv Deleted

BedLogR Deleted
But 

HiCnv Normal

BedLogR Deleted
But 

HiCnv Ampllified

BedLogR Deleted
And 

HiCnv Deleted

T47D deletions



T47D amplifications
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BLogR.Amp.HiCnv.N
rm.WGS.score

BLogR.Amp.HiCnv.A
mp.WGS.score

BLogR.Amp.HiCnv.D
el.WGS.score

3rd quartile 3.85 3.86 3.80

Median 3.66 3.67 3.62

1st quartile 3.51 3.52 3.54

BLogR.Amp.HiCnv.
Nrm.HiCnv.score

BLogR.Amp.HiCnv.
Amp.HiCnv.score

BLogR.Amp.HiCnv.
Del.HiCnv.score

3rd quartile 0.88 1.28 -1.63

Median 0.45 1.17 -1.63

1st quartile -0.63 1.13 -1.63

W
G
S
.
s
c
o
r
e

H
i
C
n
v
.
s
c
o
r
e

BedLogR Amplified
But 

HiCnv Normal

BedLogR Amplified
And

HiCnv Ampllified

BedLogR Amplified
But

HiCnv Deleted

BedLogR Amplified
But 

HiCnv Normal

BedLogR Amplified
And

HiCnv Ampllified

BedLogR Amplified
And 

HiCnv Deleted

53 unique amplifications in HAIB that are >= 10Kb in size. 
34 reported as amplifications by HiCnv.



Example CNVs
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T47D Chromosome 1
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Chr1 Chr16

2 copies of 
Chr1 q arm



Example CNVs
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T47D Chromosome X
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• Extracted the contact counts among all bin pairs with the same CNV label pair.

• Further categorize counts wrt genomic distance for each label pair.

• Fit distributions to predict expected counts given a bin distance and CNV label pair.

• Fitted the values up to 160 Mb of genomic distance (4000 bin) to both Poisson and
Negative-Binomial distribution.

• For each bin distance, we selected either the negative binomial or the Poisson
distribution as the best fit using Bayesian information criteria (BIC).

Simulating Hi-C matrices with CNVs



A B

A B

Assign the count randomly 
based on distance and CNV

Multiply the count with the 
CNV ratio at that distance

Two alternative ways to simulate matrices
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Chr19 Chr20

Simulating Hi-C matrices with translocations
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Simulating different types of translocations
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Translocation + inversion

Simulating different types of translocations



T47D Chromosome 7 

Real Inversion

R
aw

 contact count

R
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 contact count

Simulated 
Inversion

Simulating Hi-C matrices with inversions



34

U. of Wisconsin - Madison
Sunduz Keles
Ye Zheng

mHiC: a beta version is available from 
Ye Zheng yezheng@stat.wisc.edu

Leveraging multi-mapping reads in Hi-C data 
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A typical Hi-C read processing pipeline
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Multi-mapper aware read mapping

36

Read processing to get valid read pairs

Partition genome into fixed-size or RE-based bins

Generate raw contact map

Normalize contact map

Identify significant contacts

mHiC makes
these steps 
multi-read 
aware



mHiC overview
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Counts of local uni-read pairs

1. Prior construction 2. Fit by EM

3. Posterior probabilities

Threshold posterior probabilities
to use resulting alignments with 
existing significant contact
identification pipelines (e.g.. Fit-Hi-C). 



Improvement in sequencing depth using mHiC

38

A. Sequencing Depth ✔
B. Number of identified significant contacts ✔
C. Contact recovery at higher FDR ✔
D. Reproducibility across replicates ✔
E. Biological impact: Novel promoter-
enhancer interactions

✔

 Improves sequencing depth by 20-25%
 Only 5-8% are from EM modeling
 Substantial amount of gain from utilizing Hi-C 

read characteristics



mHiC identifies novel promoter-enhancer interactions

39

20.4% (2,249) more 
promoter-enhancer 
interactions which are 
reproducible for at least 
2 replicates.
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