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Abstract 
The functional genomics data is emerging as a valuable resource for personalized medicine. Although 

one might think that the functional genomics data is safe to share, the extent to which they leak 

sensitive information is not well studied. Here, we focus on the privacy aspects of genome-wide signal 

profiles of functional genomics experiments, which represent measurement of activity at each genomic 

position. We show that the signal profiles, which are often publicly shared, can cause concerns for 

privacy. We first present measures of predictability and information leakage from the signal profiles of 

several sequencing based functional assays including RNA-seq and ChIP-Seq. We then present methods 

for detecting and genotyping genomic deletions, and demonstrate that the genotyped deletions can 

accurately identify an individual among a large sample. We also present an effective anonymization 

procedure for protection of signal profiles against genotype prediction based attacks. Given that several 

consortia, for example GTex and TCGA, publicly share signal profiles for personal functional genomics 

data; these results point to a critical source of sensitive information leakage, which can be potentially 

protected by our anonymization technique.  

1. Introduction 
Individual privacy is emerging as an important aspect of biomedical data science[1]. A deluge of genetic 

data is being generated with the Cancer Moonshot Project[2], Precision Medicine Initiative[3, 4], and 

UK100K[5, 6] from hundreds of thousands, if not millions, of individuals. Moreover, there is much effort 

to make genetic data more prevalent in the clinical setting[7]. The leakage of genetic information 

creates many privacy concerns, e.g. genetic predisposition to diseases may bias insurance companies[8].  

The initial studies on genomic privacy have focused primarily on protecting the identities of participants 

in the early genetic profiling and genotype-phenotype association studies[9, 10]. These focused on 

whether an individual’s genetic information can be used to reliably predict whether they participated in 

a certain cohort of individuals in a genetic study. We refer to these scenarios as detection of a genome 

in a mixture. In this arena, the differential privacy[11] has been proposed as a theoretically optimal 

formalism that can fulfill the privacy requirements such that the probability that any individual’s 

participation can be identified made arbitrarily small. In addition, the cryptographic approaches have 
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proven useful for privacy-aware analysis of genomic datasets albeit with high requirements of 

computational resources[12, 13].  

The decrease in cost of DNA sequencing technologies has substantially increased the number and size of 

available genomic data and has made genomic data much more practically available to hospitals, 

research institutes, and to individuals[14]. This increase will render new types of attacks much more 

practical where an adversary can use statistical methods to link multiple datasets to reveal sensitive 

information. These attacks are termed the linking attacks[15–17]. In a nutshell, the linking attacks are 

based on cross-referencing and matching of two or more datasets that are released independently. 

Some of the datasets contain personal identifying information, e.g. names or addresses, while others 

contain sensitive information, e.g. health information. The immediate consequence of the cross-

referencing is that the sensitive information in one dataset gets linked to the identifying information in 

another, which in turn breaches privacy of individuals whose sensitive information are revealed. The 

risks behind linking attacks have risen recently because the personal data is generated at exceedingly 

high pace and these data are independently released and maintained. For this reason, a rather 

challenging aspect of the linking attacks is that risk assessment is complicated because one dataset that 

is currently deemed safe to release may become a target for linking attacks when another dataset is 

released in the future, i.e., a dataset that seems safe to release now may become vulnerable to a linking 

attack next year. 

A well-known example of linking attacks is the Netflix Prize Competition[15] (Supplementary Fig 1a,b). In 

this competition, a training dataset was released by the movie rental company Netflix, which was to be 

used for training new automated movie rating algorithms. The dataset was anonymized by removing 

names. Although the dataset seemed safe to share at the time, two researchers showed that this 

training dataset can be linked to a seemingly independent database of the Internet Movie Database 

(IMDb). The linking revealed movie preferences and identities of many Netflix users. We believe that 

similar scenarios will be a major route to breaches in individual genomic privacy and these must be 

studied well to enable privacy-aware data sharing approaches.  

Several studies have addressed aspects of linking attacks in the genomic privacy context. Still, there are 

two major aspects of genomic privacy that are not well addressed in the previous studies in the context 

of linking attacks. Firstly, although it is well known that the major portion of the individual genomic 

polymorphism are structural variants, which comprise deletion, insertion, translocation, and 

transversion of large chunks of DNA sequence, these did not receive much attention in the debate of 

genomic privacy[18]. The structural variants can have much larger effects on the molecular phenotypes 

(like gene expression) than single nucleotide polymorphisms simply because they effect a much larger 

portion of the genome. In other words, structural variants are more obviously identifiable in the 

genome. Secondly, functional genomics data is not in center of the most studies. Nevertheless the 

newer functional genomics datasets based on sequencing assays, like RNA-Seq[19] and ChIP-Seq[20] are 

very rich sources of information that can lead to leakage of individual characterizing information. In 

general, the raw sequenced reads from these experiments are not shared because of privacy concerns. 

The reads are used to create genome-wide signal profiles by piling them up along the genome. The 

signal profiles represent the activity at each genomic position and are therefore fundamental in the 

analysis of any type of genome-wide functional assay. It is generally assumed that the signal profiles are 

mostly void of sensitive information and they are publicly shared, for example by the ENCODE 

Project[21], Roadmap Epigenome Mapping Consortium[22], and GTex[23, 24]. Although one might think 
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that the signal profiles are safe to share, there has been no study that systematically analyzed the 

information leakage in these datasets.  

In this paper, we analyze the sensitive individual characterizing information leakage from the signal 

profiles of several sequencing based functional genomics datasets. By signal profile, we refer to the 

signal generated by counting the number of reads that overlap with each nucleotide on the genome. 

Although the signal profiles do not contain any explicit sequence information, signal processing 

techniques can be utilized to detect the large and small structural variants. There are two quantities that 

determine how well structural variants can be detected from sequencing data. First is breadth coverage, 

which measures how well the genome is covered by signal profiles. Second is depth coverage that 

measures how deep the sequencing is performed. DNA-sequencing read depth signal[25, 26] is very 

suitable for detection of structural variants because it attempts to uniformly cover genome (high 

breadth coverage) in a deep manner (high depth coverage). On the other hand, detection of structural 

variants from functional genomics datasets is not as straightforward. The main reason for this is the 

dynamic and non-uniform nature of the signal profiles of functional genomics experiments. For example, 

RNA-seq[19] signal profiles are concentrated mainly on the exonic regions and promoters of the 

genome, respectively. In other words, RNA-seq signal profiles generally have high depth coverage but 

lower breadth coverage. On the other hand, ChIP-Seq[20] signal profiles for diffuse histone 

modifications generally cover have high breadth coverage but low depth coverage. Moreover, these 

experiments are generally done in combination. This is important because although each experiment 

assays a different type of genome-wide activity, we show that pooling the signal profiles increases both 

the depth and breadth coverages and can bring enough power to an adversary for genotyping structural 

variants and perform successful linking attacks. 

The paper is organized as following: We first present the general scenario of linking attacks that utilize 

signal profiles. We next propose a new metric for quantifying the extent to which genotypes of small 

and large deletion variants can be estimated using functional genomics signal profiles. In combination 

with information content of the deletion variants, we use this new metric for evaluating the extent of 

characterizing information leakage from functional genomics datasets. We next present several practical 

instantiations of linking attacks that utilizes different practical methods for deletion variant genotyping. 

Finally, we focus on protection of the signal profiles against linking attacks. We present a novel signal 

processing methodology for anonymizing a signal profile. We show that it is effective in decreasing the 

predictability of deletion variant genotypes from signal profiles. The source code for linking attacks and 

anonymization can be downloaded from privaseq.gersteinlab.org. 

2. Results 

2.1. Linking Attack Scenario 
Figure 1 summarizes the linking attack scenario. The attack involves cross-referencing the individuals in 

a signal profile dataset (denoted by 𝑆) against the individuals in a genotype dataset, denoted by 𝐺. The 

signal profile dataset is publicly available and it contains, for each individual, a genome-wide signal 

profile, and an anonymized identifier. The signal profile for an individual represents the measurements 

of functional activity at each genomic position for this individual. In addition, the signal profile dataset 

contains sensitive information about each individual, e.g. HIV status. We assume that this dataset is 

generated for research purposes and is publicly released. The genotype dataset, 𝐺, contains genotypes 

for a panel of structural variants, denoted by 𝑝𝐺 . The genotype dataset also contains the identities of 
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the individuals. We assume that the adversary obtained the genotype dataset by stealing or hacking of a 

protected database. The adversary aims at linking 𝐺 and 𝑆 by first predicting the structural variant 

genotypes from signal profiles in 𝑆, then matching the predicted genotypes to the genotypes in 𝐺. For 

any matching individuals in 𝐺 and 𝑆, the name and disease information are revealed to the adversary.  

The attack has two steps. The first step is genotyping of the deletion variants, which is illustrated in Fig 

1a. The adversary has access to a genome-wide signal profile dataset (𝑆) for a sample of individuals. This 

dataset stores, for each individual, a genome-wide signal profile, for example RNA-seq, or ChIP-Seq data. 

In the first scenario, we assume that the adversary has access to a reference panel of genomic structural 

variant loci, which are denoted by 𝑝𝑆. For each individual, she (we assume the adversary is a female) 

utilizes the signal profile and genotypes the deletions in 𝑝𝑆. After the genotyping, the adversary builds a 

data matrix with the predicted genotypes, which is denoted by �̃�. We refer to this scenario, where the 

adversary has access to a reference panel of structural variants, as linking based on “genotyping only”. 

The second scenario, also illustrated in Fig 1a, is very similar except that the adversary does not have 

access to the panel of structural variants but discovers the panel of structural variants from the signal 

profiles. She then uses the signal profiles to genotype the SVs in this de-novo discovered SV panel. We 

refer to this scenario as linking based on “joint discovery and genotyping”. After the genotyping, the 

genotyped SV matrix (�̃�) includes, for each individual, the predicted SV genotypes, and also the sensitive 

information about HIV status.  

The second step of the linking attack is cross-referencing of the individuals in the genotyped SVs (�̃�) and 

the individuals in the genotype dataset, 𝐺, illustrated in Fig 1b. The SV genotype dataset 𝐺 is assumed to 

contain identifying information about individual’s identities. Thus, we assume that this dataset was 

previously protected and is either leaked or stolen, e.g. SNPs from a glass. The adversary first compares 

her genotyped SV panel (𝑝𝑆) to the SV panel of the genotype dataset, which denoted by 𝑝𝐺 . After the 

matching of the SVs in the two panels, she compares the genotypes of the matching SVs in two panels. 

She uses this comparison to cross-reference the individuals in two datasets and finds the individuals that 

best match to each other with respect to genotype match distance, i.e., links the individuals in two 

datasets. The results are used to link the individuals in genotype dataset to those in the signal profile 

dataset and the sensitive information, e.g., HIV status of individuals in the genotype dataset are 

revealed to the adversary (the matched columns in the final linked matrix). 

2.2. Information Content and Correct Predictability of Structural Variant Genotypes 
In order to assess the correct predictability of SV genotypes, we propose using a measure named 

genome-wide predictability of SV genotypes, denoted by 𝜋𝐺𝑊, from signal profiles. The predictability 

measures how accurately an SV genotype can be estimated given the signal profile (Methods Section). 

The predictability of the genotype of a structural variant is the conditional probability of the variant 

genotype given the signal profile. By this definition, the predictability only depends on the genomic 

signal levels of an individual and how well they can be used to predict genotypes. For example, Fig 1c 

illustrates a large deletion that can be easily predictable using the histone modification signal profiles. In 

principle, the genome-wide predictability is computed for each individual independently from other 

individuals. Therefore the genome-wide predictability of a variant from signal profile is independent of 

the population frequency of the variant. 

Other than the predictability, an important measure in the linking attacks is the information content 

each SV genotype supplies. We utilize a previously proposed metric termed individual characterizing 
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information (ICI) to quantify the information content of each SV[16]. For a given variant genotype, ICI 

measures how much information it supplies for pinpointing an individual in a population. This measure 

gives higher weight to the genotypes that have low population frequency and vice versa. As we 

discussed above, the genome-wide predictability is independent of the population frequency of the 

variants. Therefore the adversary can utilize genome-wide prediction approaches and predict rare 

variant genotypes to gain high ICI and characterize individuals very accurately.  

2.3. Linking Attacks using RNA-Seq Signal Profiles 
We first focus on the predictability of short deletions using RNA-seq signal profiles (Fig 1d). As we 

mentioned earlier, the RNA-seq signal profiles generally have high depth coverage but low breadth 

coverage. The short deletions are the type of variants that can be detected most easily using signal 

profiles that have high depth and low breadth coverage. By small deletions, we refer to the deletions 

that are smaller than 10 base pairs. Regarding detection of small deletions, the basic observation is that 

each deletion is manifested as an abrupt dip in the signal profile (Fig 1d). The discovery and genotyping 

of a deletion rely on detecting these dips in the signal profiles. The genome-wide predictability (𝜋𝐺𝑊) of 

the small deletions quantifies how well the adversary can identify the dips corresponding to deletions 

from the signal profile (Methods Section). We first estimated the genome-wide predictability for the 

panel of short deletions in 1000 Genomes Project using the RNA-seq expression signal profiles from the 

GEUVADIS project. Figures 2a,b show 𝜋𝐺𝑊 vs ICI for short deletions. There is a substantial number of 

deletions that have much higher predictability compared to a randomized dataset where the signal 

profile is randomized with respect to the location of deletions. There are also many more variants with 

very high ICI (on the order of 5-6 bits) with high predictability (greater than 80% predictability). This 

result shows clearly that signal profile based attack scenario is much more powerful that the other 

approaches like population-wide prediction of variant genotypes (Supplementary Fig 2) 

In order to present practicality of small deletion predictability and information content, we propose an 

instantiation of a linking attack where we utilize outlier signal levels in the signal profiles for discovery 

and genotyping of the small deletions. As mentioned before, the genotyping of deletions are based on 

detecting the abrupt dips in the signal profile. In order to detect these dips in the signal profile, the 

adversary utilizes a quantity we term self-to-neighbor signal ratio, denoted by 𝜌[𝑖,𝑗], that measures the 

extent of the dip in the signal as the fraction of signal on the interval and the signal in the neighborhood, 

𝜌[𝑖,𝑗] =
Average signal within [𝑖, 𝑗]

Average signal within neighborhood of [𝑖, 𝑗]
. 

The genomic regions with low 𝜌[𝑖,𝑗] values point to intervals tend to have dips in them. For each 

individual, the prediction method sorts the short deletions with respect to self-to-neighbor signal ratio 

and assigns homozygous genotype to a number of deletions with the smallest self-to-neighbor signal 

ratio (Methods Section). The adversary then compares these genotyped deletions to the genotype 

dataset and identifies the individual whose deletion genotypes that are closest to the predicted 

genotypes. Using this genotyping strategy, we simulated an attack to link GEUVADIS signal profile 

dataset to the 1000 Genomes genotype dataset. We used the panel of deletions from the 1000 

Genomes Project. In the genotyping only scenario, the linking is perfectly accurate when the adversary 

utilizes more than 40 deletions (Fig 2c). In the scenario where the adversary performs joint discovery 

and genotyping, the linking accuracy is maximized (around 60%) when the attacker utilizes the top 50 

deletion candidates in linking (Fig 2d). Next, we studied how accurate the linking is if adversary uses 
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deletions of different lengths. Figure 2e shows the accuracy and number of indels with different lengths. 

The accuracy of linking decreases substantially for the indels that are longer than 5 base pairs. The 

decrease in accuracy is affected by both the decrease in the number of indels (i.e., low ICI), shown in Fig 

2e, and also decreasing predictability of indels whose lengths are above 5 base pairs. We then asked, for 

each individual, what the minimum number of indels that are sufficient to accurately link the individual 

is. Figure 2f and 2g shows the distribution of minimum number of indels for accurately linking each 

individual in the GEUVADIS dataset, for genotyping only (Fig 2f) and adversary jointly discovery and 

genotyping (Fig 2g) scenarios. As small as 30 indels are sufficient to correctly link a large fraction of the 

individuals. 

In the previous analysis, the sample set used for discovery of deletion panel and RNA-seq sample set are 

matching, i.e. 1000 Genomes individuals. This may introduce a bias in linking because the SV genotype 

dataset may contain rare deletions which may also be in the panel of deletions. This would make it 

trivial to link some of the individuals. To get around this bias, we studied linking attack where signal 

profile dataset is generated by the GTex Project Consortium [23, 24] and the panel of small deletions is 

the deletion set generated by the 1000 Genomes Project. This way, the SVs in the panel are identified 

among the 1000 Genomes individuals while the RNA-seq signal profiles are generated on a non-

matching set of individuals in the GTex Project. In other words, the deletion panel is discovered in a 

sample set that is totally independent of the sample set that the adversary is linking. In this scenario, the 

adversary is linking the signal profile dataset to the genotype dataset that is obtained from the GTex 

Project. With this setup, we first computed 𝜋𝐺𝑊 versus ICI for the deletions and observed that there is 

substantial enrichment of deletions that have high predictability with high ICI compared to randomized 

datasets (Fig 3a, b). As before, there are many deletions that are highly predictable (>80%) and are very 

high in ICI (>5bits). In addition there is a substantial increase of predictability in real data compared to 

the randomized dataset.  

We next instantiated the linking attack using the previously presented extremity based approach. In the 

instantiation, we first evaluated the attack based on genotyping only scenario. In this scenario, the 

linking accuracy is close to 100% using a relatively small number of variants, i.e., 30 variants (Fig 3c). An 

interesting observation is that when the attacker increases the number of variants used in the attack, 

the linking accuracy decreases. This is caused by the fact that the additional variants after the 30 

variants are incorrectly genotyped and decrease the accuracy of linking. In simple terms, the additional 

variants act as noise and decrease linking accuracy.  

Following this, one question that arises is if the adversary can assign reliability scores to the linked 

individuals. We tested whether the first distance gap (Methods Section) measure is suitable for 

evaluating the reliability of linkings. This is important because when the overall linking accuracy is low, 

e.g. smaller than 50%, unless the attacker has a systematic way of selecting correct linkings, the risk of 

linking attack is low. As a test case, we focused on the linking where the adversary uses 200 deletions 

where the overall linking accuracy is 35% (Fig 3c). Figure 3d shows the sensitivity and positive predictive 

value (PPV) with changing first distance gap metric. The adversary can link 10% of the individuals 

perfectly and 20% of the individuals are linked with around 90% accuracy, i.e., makes 1 mistake in 10 

linkings. Figure 3d also shows the average sensitivity and average PPV over 100 random selections of the 

linkings. As expected, the PPV is always around 35% and average sensitivity is also always smaller than 

first distance gap based selection of linkings. These results show that even some parameter selections 
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(e.g., number of variants) may show low accuracy, the adversary can increase accuracy by selecting the 

linkings using first distance gap measure.  

2.4. Linking Attacks using ChIP-Seq Signal Profiles 
We next focused on predictability versus ICI of large deletions, which are longer than 1000 base pairs. 

Since the deletions are large, the signal profiles that are suitable for genotyping these deletions must 

have high breadth coverage. We utilize the ChIP-Seq signal profiles for histone modifications, which 

generally manifest high breadth and low depth coverage. Several recent studies have generated 

individual level epigenomic signal profiles through ChIP-Seq experiments [27–29]. These studies aimed 

at revealing how the genetic variation interacts with the epigenomic signals, mainly the histone 

modifications. These datasets are very convenient for our study because the majority of the individuals 

have matching structural variant genotype information in the 1000 Genomes Project. It is worth noting 

that although we are focusing on the predictability of large deletion genotypes from ChIP-Seq profiles, 

this does not mean that the small deletions are not detectable in the ChIP-Seq dataset. In fact, the small 

deletion genotyping based linking attack we presented in the previous section can be applied to ChIP-

Seq signal profiles as it is.  

We use these personalized epigenomic signal profiles for quantifying how much characterizing 

information leakage they provide. For any individual where there are multiple histone mark ChIP-Seq 

signals, we pool the signal profiles and compute several features for each large deletion. These are then 

used for quantifying information leakage (Methods Section). First, we computed 𝜋𝐺𝑊 versus ICI using 

the panel of large deletions in 1000 Genomes Project. Figure 4a,b show 𝜋𝐺𝑊 versus ICI for the large 

deletions from the 1000 Genomes. We use the personal epigenome profiling ChIP-Seq datasets 

presented in studies by Kasowski et al and Kilpinen et al (Methods Section). Similar to the small deletion 

analysis, it can be seen that for both datasets there are many large deletions with high predictability and 

high ICI.  

We next focused on instantiating linking attacks using ChIP-Seq profiles. We again utilize a variant of the 

outlier based genotyping in the linking attack. The genotyping of the panel of large deletions is done as 

follows. The average ChIP-Seq signal on each deletion is computed and the variants are sorted with 

respect to their average signal in increasing order. The deletions with smallest ChIP-Seq signal are 

assigned homozygous deletion genotype. For the deletions with assigned genotypes, we identified the 

individual in the genotype dataset (from the 1000 Genomes project) whose genotypes match closest to 

the assigned genotypes. We repeated this linking attack with different number of windows and 

computed the accuracy of linking (Methods Section). Figure 4c shows the accuracy of linking attack 

based on genotyping only scenario, where the adversary is assumed to have access to the large deletion 

panel from 1000 Genomes. The linking accuracy reaches 100% with a fairly small number of deletions 

for both datasets. For the joint discovery and genotyping scenario where the adversary first discovers 

deletions and then genotypes them, the accuracy is also very high with small number of identified 

deletions (Fig 4d). 

An interesting question about histone modifications is which combinations of histones leak the highest 

amount of characterizing information. To answer this question, we studied the individual NA12878, for 

which there is an extensive set of histone modification ChIP-Seq data from the ENCODE Project[21]. We 

have evaluated whether different combinations of histone modifications render NA12878 vulnerable 

against a linking attack among 1000 Genomes individuals, which is illustrated in Fig 4e. In general, we 
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have observed that NA12878 is vulnerable with the dataset combinations that cover the largest space in 

the genome. This can be simply explained by the fact that when histone marks cover a larger genomic 

region, higher number of deletions can be detected and genotyped. For example, H3K36me3 and 

H3K27me3, an activating and a repressive mark respectively, are mainly complementary to each other 

and they render NA12878 vulnerable. In addition, H3K9me3, a repressive mark that expands very broad 

genomic regions, renders NA12878 vulnerable in several combinations with other marks. On the other 

hand, H3K27ac, an activating histone mark that spans punctate regions do not render NA12878 

vulnerable. 

2.5. Linking Attacks using Hi-C Matrices 
We also asked whether a relatively new data type, Hi-C interaction matrices can be used for 

identification of genomic deletions. Hi-C is a high throughput method for identifying the long range 

genomic interactions and three dimensional chromatin structure[30]. It is based on proximity ligation of 

the genomic regions that are close-by in space followed by high throughput sequencing of the ligated 

sequences. After sequencing data is processed, it is converted to a matrix where the entry 

(𝑖, 𝑗) represents the strength of interaction between 𝑖𝑡ℎ and 𝑗𝑡ℎ genomic positions. To study leakage 

from Hi-C matrices, we again focused on NA12878 individual for whom Hi-C interaction matrices are 

generated at different resolutions[31]. We first converted the matrix into a genomic signal profile. For 

this, we summed the interaction matrix along columns and obtained a signal profile along the genome 

(Fig 5a, Methods Section). This way, we are simplifying the multidimensional nature of the Hi-C contact 

matrix and treat it as a sequencing assay that spans the entire genome. It is important to emphasize that 

the standard analysis of Hi-C matrices do not involve such a signal profile generation. We are using this 

step to convert the Hi-C matrix into a signal activity profile along the genome. Using the signal profile, 

we simulated an extremity based linking attack using the outliers in the Hi-C signal profile: For all the 

large deletions in the 1000 Genomes whose population frequency is higher than 1%, we computed the 

average Hi-C signal. We next sorted the deletions in increasing order with respect to average signal and 

assigned top 1000 windows with homozygous deletion genotype. We next compared the predicted 

genotypes with all the genotypes in the 1000 Genomes project. We observed that NA12878 is 

vulnerable to this attack when the Hi-C contact matrix resolution (bin length) is 10 kilobases or smaller 

(Fig 5b).  

It is important to clarify that we are focusing on using the final output of Hi-C data, i.e., the Hi-C contact 

matrix, for generating a genome-wide signal profile and performing a linking attack. We are not studying 

the possibility of discovering complex structural variants using the paired-end reads of Hi-C experiment, 

which is a different problem by itself[32]. It also requires access to mapped reads, which we assume the 

attacker does not have. As we explained above, our attack scenario treats the Hi-C data as any type of 

sequencing data and uses the linear genomic signal profile to identify deletions for the purpose of 

linking datasets. We are highlighting the fact that Hi-C interaction matrices themselves leak substantial 

amount of characterizing information. 

2.6.  Anonymization of Signal Profiles 
An important aspect of the genomic privacy is risk management and protection of datasets. For 

protection, anonymization of the datasets is the most effective way so that the data can be shared 

publicly in a safe manner. The most effective way to protect against linking attack scenario is to ensure 

that the deletion genotypes are not predictable from the signal tracks. As we showed in previous 

Deleted: when

Deleted: more space

Deleted: predicted

Deleted: [29].

Deleted: [30].

Deleted: profiles

Deleted: [31].

Deleted: to share



 

 

sections, the small deletions are major source of leakage of genetic information from signal profiles. We 

propose systematically removing the dips in the signal profiles as a way to anonymize the signal profiles 

against the prediction of small deletions. Specifically, we propose smoothing the signal profile using 

median filtering locally around a given panel of deletions (Methods Section). We have observed that 

median filtering removes the dips in the signal very effectively while conserving the signal structure 

fairly well. To evaluate the effectiveness of this method, we applied signal profile anonymization to the 

RNA-seq signal profiles generated by the GEUVADIS Project consortium and the GTex Project 

Consortium. After application of the signal profile anonymization, we observed that the large fraction of 

the leakage is removed for GTex datasets (Fig 2b and 3b). We also observed that the extremity based 

linking attack proposed in the previous section is ineffective in characterizing individuals such that no 

individuals are vulnerable for GTex project and only 1% of the individuals are vulnerable for GEUVADIS 

dataset. It is worth noting that the anonymization of any signal profile dataset against small deletion 

genotyping can be performed using above approach. However as we showed in the previous section, 

there is significant leakage when large deletions are genotyped using ChIP-Seq datasets.  

3. Discussion 
We have systematically analyzed a critical source of sensitive information leakage from the signal profile 

datasets, which were previously thought to be largely secure to share. Specifically, our results show that 

an adversary can perform fairly accurate linking attacks for characterizing individuals by prediction of 

structural variants using functional genomics signal profiles. Although we are focusing mainly on RNA-

seq and ChIP-Seq signal profiles, the linking attack scenario and the measures that we presented are 

data-driven and are generally applicable to any type of genome-wide signal profile. For example, 

although it is obvious, the linking attacks can easily be carried out on the DNA-sequencing signal profiles. 

Also, signal profiles from genome-wide profiling techniques other than sequencing based assays, like 

ChIP and expression tiling arrays[33, 34] can be vulnerable to the linking attack scenario that we 

presented. Different genome-wide data representation, e.g., Hi-C interaction matrices, can be utilized 

for generation of genome-wide signal profiles and these can in turn leak sensitive information. We 

believe that many more genome-wide omics technologies will be developed in the near future[35]. The 

genome-wide signal profiles will be a vital source of information in the analysis of these datasets. The 

framework we presented here can be utilized for assessing the leakage and protection of these datasets. 

In addition, albeit the focus is on the small and large deletion variants, the analyses of predictability and 

practical linking attacks can be extended for other structural variants, for example, genomic insertions.  

We showed that the linking can be done by predicting a fairly small number of variants (generally less 

than 100 variants). Our results show that these data leak enough information for individual 

characterization among a large set of individuals. This can cause practical privacy issues because several 

large consortia are making signal profiles publicly available. For example GTex signal profiles are publicly 

available through the UCSC Genome Browser. Given the extent of public sharing of datasets, we believe 

that the anonymization of the RNA-seq signal profiles using the signal processing technique that we 

proposed is very useful. The technique we proposed applies a signal smoothing around all the known 

deletions and removes a significant amount of characterizing information. The anonymization procedure 

can be easily integrated into existing functional genomics data analysis pipelines. It can handle all the 

widely used files types including bigwig, wiggle, and bedGraph. We believe that this anonymization 

technique can complement other approaches for removing genetic information from shared datasets. 
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For example file formats like MRF[36] and tagAlign[21] can enable removing raw sequence information 

from reads while keeping the information about read mapping intact.  

4. Methods 
We provide the details of the computational methodologies. We first introduce the notations. The 

genomic deletions are intervals of genomic coordinates. We refer to them simply as intervals, e.g. a 

deletion between genomic positions 𝑖 and 𝑗 by [𝑖, 𝑗]. The genotype of a genomic deletion at [𝑖, 𝑗] is 

denoted by 𝐺[𝑖,𝑗], which is a discrete random variable distributed over the 3 values {0,1,2}. These values 

correspond to the three genotypes of the deletion and they represent how many copies of the genomic 

sequence is deleted. The functional genomics read depth signal is denoted by 𝑺, which is a vector of 

values corresponding to each genomic position. The signal level at genomic position at 𝑖 is denoted by 

𝑆𝑖. An important quantity that we utilize in formulating methods is the multi-mappability profile of the 

deletion regions. The multi-mappability is a signal profile that measures, for each position in the 

genome, how uniquely we can map reads. The multi-mappability signal is denoted by 𝑴, which is a 

vector of multi-mappability signals for all the genomic positions and the signal at genomic position 𝑖 is 

denoted by 𝑀𝑖. The multi-mappability signal profile is generated as follows: The genome is cut into 

fragments and the fragments are mapped back to the genome using bowtie2[37] allowing the multi-

mapping reads. We then generate the read depth signal of the mapped reads. In this signal profile, the 

uniquely mapping regions receive low signal while the multi-mapping regions receive high signal[38]. 

4.1. Genome-wide Predictability of Deletion Genotypes and Individual Characterizing 

Information 
The genome-wide predictability, 𝜋𝐺𝑊, of a deletion genotype refers to how well a deletion can be 

genotyped given the functional genomics signal (𝑺) of interest. We assume that the adversary employs a 

prediction methodology based on statistical modeling of the deletion genotypes with respect to read 

depth signal profile such that the adversary utilizes features from the functional genomics signal profile. 

We define here the features that are most useful for genotyping deletions (Supp Fig 3). Given a deletion 

[𝑖, 𝑗], an important feature for genotyping the deletion is the average functional genomic signal within 

the deletion: 

�̅�[𝑖,𝑗] =
∑ 𝑆𝑖′  
𝑗
𝑖′=𝑖

𝑗 − 𝑖 + 1
. 

Another feature is the average multi-mappability signal within the deletion:  

�̅�[𝑖,𝑗] =
∑ 𝑀𝑖′  
𝑗
𝑖′=𝑖

𝑗 − 𝑖 + 1
. 

In order to measure the extent of the dip within the signal, we observed that a measure we termed self-

to-neighbor signal ratio and neighbor signal balance ratio are very useful for genotyping. Given a 

deletion [𝑖, 𝑗] , self-to-neighbor signal ratio, denoted by 𝜌[𝑖,𝑗], is computed as 

𝜌[𝑖,𝑗] =
2 × �̅�[𝑖,𝑗]

�̅�[2𝑖−𝑗+1,𝑖−1] + �̅�[𝑗+1,2𝑗−𝑖+1]
. 

Deleted: [20]

Deleted: We also proposed a new metric for measuring the 
predictability of deletions from signal profiles. It is 
important to note that this measure of predictability is more 
inclusive, in terms of the spectrum of variants that it can be 
applied to, than the sample-wide genotype predictability 
measure[15]. Sample-wide predictability measures how well 
variants can be genotyped given a sample of phenotypic 
measurements from multiple individuals. For example, 
expression quantitative trait loci (eQTL) variant genotypes 
of multiple individuals can be predicted from the gene 
expression levels of the individuals. Sample-wide 
predictability is suitable when adversary utilizes sample-
wide, i.e. measurements from multiple individuals, 
phenotypic measurements to predict genotypes in a linking 
attack. By definition, the sample-wide predictability of rare 
variants will not be high because sample-wide predictability 
relies on the fact that the genotype-phenotype relation is 
statistically detectable within a sample of individuals. Since 
the phenotypic effects of rare variants are not easily 
detected, their sample-wide predictability is not high. For 
example, the structural variants that affect gene expression 
have very low population frequency and they have low 
effect on the expression level when the effect is averaged 
over all the individuals. Thus, the sample-wide predictability 
of these are rather low (Supplementary Fig 1). Genome-
wide predictability, on the other hand, is for each individual 
separately. A variant, independent of its population 
frequency, can have a high genome-wide predictability. 
Following previous example, the structural variants have 
high genome-wide predictability because they do have very 
obvious effect on the genome-wide signal profiles. Thus, 
genome-wide prediction strategy can predict both high and 
low frequency variant. The sample-wide and genome-wide 
prediction approaches underpin different paths to linking 
attacks. They must be studied together in a risk assessment 
procedure while functional genomics datasets are being 
shared. ¶

Deleted: 𝑺𝒊

Deleted: 𝑴𝒊

Deleted: ¶

Deleted: . We assume

Deleted: performs prediction by extracting

Deleted: 4

Deleted: 𝑺

Deleted:  important

Deleted: 
∑ 𝑴𝑖′  
𝑗

𝑖′=𝑖

𝑗−𝑖+1



 

 

This is simply twice the ratio of total signal on the deletion and the total signal in the neighborhood of 

the deletion. The neighbor signal balance ratio, is computed as 

𝜂[𝑖,𝑗] = min(
�̅�[𝑗+1,2𝑗−𝑖+1]

�̅�[2𝑖−𝑗+1,𝑖−1]
,
�̅�[2𝑖−𝑗+1,𝑖−1]

�̅�[𝑗+1,2𝑗−𝑖+1]
). 

Finally, we observed that the average signal on the neighborhood of the deletion coordinates are useful 

in genotyping deletions. This is because when the neighbor signals are more balanced around a dip, i.e., 

higher 𝜂[𝑖,𝑗], the accuracy of deletion genotyping is higher. Next, we compute the average signal in the 

neighborhood as 

𝜏[𝑖,𝑗] = 0.5 × (�̅�[2𝑖−𝑗+1,𝑖−1] + �̅�[𝑗+1,2𝑗−𝑖+1]). 

We define 𝜋𝐺𝑊 as the conditional probability of a deletion genotype 𝑔 given the 5 features computed 

from functional genomics signal profile: 

𝜋𝐺𝑊(𝐺[𝑖,𝑗] = 𝑔, 𝑺[𝑖,𝑗]) = 𝑃𝐺𝑊

(

 
 
 
𝐺[𝑖,𝑗] = 𝑔 

|

|

 log2(�̅�[𝑖,𝑗]) ,

log2(�̅�[𝑖,𝑗]) ,

log2(𝜌[𝑖,𝑗]),

log2(𝜂[𝑖,𝑗]) ,

log2(𝜏[𝑖,𝑗]) )

 
 
 
. 

This corresponds to the conditional probability (over all the deletions within the genome) that we 

observe the genotype 𝑔 for a deletion at [𝑖, 𝑗] given the average functional genomics signal and average 

multi-mappability signal over the interval [𝑖, 𝑗]. The probability is defined over the genome, i.e., we 

estimate the probability for all the deletions in the genome. For this, we compute 5 features for every 

deletion in the genome, then estimate the conditional probability using this set as the sample of 

deletions.  

The basic idea behind the formulation of predictability is the observation that the regions with low 

functional genomics signal, low multi-mappability (i.e., uniquely mappable), low self-to-neighbor signal 

ratio, and high average neighbor signal are more likely to be deleted, i.e., their probability is large. 

Therefore, 𝜋𝐺𝑊 is higher for deletions that are more easier to identify than the deletions with lower 

𝜋𝐺𝑊. In order to estimate the conditional probabilities, we binned the feature values by computing the 

logarithm then rounding this value to the closest smaller integer value.  

4.2. Discovery and Genotyping of Small and Large Deletions from Signal Profiles 
The practical instantiation of the linking attacks that we study are based on genotyping the panel of 

small deletions, 𝑝𝑆, using the functional genomics data. In addition, when the deletions panel 𝑝𝑆 is not 

available, the adversary also discovers the deletions using the signal profile. For GEUVADIS and GTex 

datasets, we perform small deletion genotyping using RNA-Seq signal profiles. The basic idea behind 

genotyping of deletions is the fact that there is a sudden dip in signal profile whenever there is a 

deletion (Fig 1d). In order to detect these dips, we observed that self-to-neighbor signal ratio is very 

useful for genotyping small deletions. For all the small deletions, self-to-neighbor signal ratio, 𝜌[𝑖,𝑗], 

neighbor signal balance,  𝜂[𝑖,𝑗], and average neighbor signal are computed. We then select the deletions 

that satisfy following criteria:  
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 �̅�[𝑖,𝑗] < �̅�𝑚𝑎𝑥 (High Mappability)  

 𝜏[𝑖,𝑗] > 𝜏𝑚𝑖𝑛 (High Neighbor Signal)  

 𝜂[𝑖,𝑗] > 𝜂𝑚𝑖𝑛 (High Neighbor Signal Balance)  

For the set of small deletions that pass these criteria, we sorted the deletions with respect to increasing 

𝜌[𝑖,𝑗]. The deletions which are at the top of the sorted list correspond to the deletions which are highly 

mappable (low multi-mappability signal), have strong neighbor signal support (high average neighbor 

signal), and finally they have a strong signal dip on them (Low 𝜌[𝑖,𝑗], and high 𝜂[𝑖,𝑗]). We selected the top 

𝑛 deletions and assigned them homozygous genotypes, i.e., 𝐺[𝑖,𝑗] = 0. The basic idea is that the 

deletions with strongest signal dips are enriched in homozygous deletions. It is worth noting that this 

genotyping method only assigns homozygous genotypes. Although this might result in low genotyping 

accuracy (Supp Fig 4), these genotyping predictions have enough information for accurate linking 

attacks. 

We utilize pooled ChIP-Seq read depth signal profiles and Hi-C signal profiles for genotyping large 

deletions. For genotyping the large deletions, we first computed the average signal (�̅�[𝑖,𝑗] =
∑ 𝑺

𝑖′
 

𝑗

𝑖′=𝑖

𝑗−𝑖+1
) and 

average multi-mappability signal (�̅�[𝑖,𝑗] =
∑ 𝑴

𝑖′
 

𝑗

𝑖′=𝑖

𝑗−𝑖+1
) on each large deletion. We select candidate large 

deletions using average multi-mappability signal: 

 �̅�[𝑖,𝑗] < �̅�𝑚𝑎𝑥 (High Mappability)  

 

We sorted the deletions that satisfy above criteria with respect to increasing average signal, �̅�[𝑖,𝑗]. For 

the top 𝑛 deletions, we assigned homozygous genotypes, i.e., �̃�[𝑖,𝑗] = 0.  

We generally observed that the parameter selection for filtering variants did not have substantial effect 

on accuracy of linking attacks as long as they are not made too stringent. In the computational 

experiments, we used �̅�𝑚𝑎𝑥 = 1.5, 𝜏𝑚𝑖𝑛 = 10, 𝜂𝑚𝑖𝑛 = 0.5 as the parameter set. 

For the case when the adversary does not have access to the deletion panel, we fragment the genome 

into windows and use these windows as candidate deletions. Above procedure is utilized for selection of 

the candidate deletions, which are assigned homozygous deletion genotypes. For small deletions, we 

use 5 base pair windows within the exonic regions. For large deletions, we use 1000 base pair windows 

over all genome. 

4.3. Details of the Instantiations of Genome-wide Linking Attack  
Following the genotyping of the deletions in 𝑝𝑆, we use the genotyped deletions to link the individual to 

the individuals in the SV genotype dataset. Given the genotyped deletions for the 𝑘𝑡ℎ individual in the 

signal profile dataset, we first compare these deletions to the panel of deletions in the genotype 

dataset, 𝑝𝐺 . The comparison is performed simply by overlapping the deletions in 𝑝𝑆 and in 𝑝𝐺 . For the 

set of deletions that are overlapping with each other, {[𝑖1, 𝑗1], [𝑖2, 𝑗2],… , [𝑖𝑛 , 𝑗𝑛]}, we compute the 

genotype distance by matching the genotypes, 
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𝑑𝑘−𝑙 = ∑ 𝑑(�̃�
[𝑖′,𝑗′]

(𝑘)
, 𝐺
[𝑖′,𝑗′]

(𝑙)
)

𝑎=[𝑖′,𝑗′]∈
{[𝑖1,𝑗1,…
[𝑖𝑛,𝑗𝑛]}

 

where 𝑑𝑘−𝑙  represents the genotype distance of 𝑘𝑡ℎ individual in the signal profile dataset to the 𝑙𝑡ℎ 

individual in the genotype dataset and 𝑑 (𝐺[𝑖′,𝑗′], 𝐺[𝑖′,𝑗′]) is the distance function: 

𝑑 (�̃�
[𝑖′,𝑗′]

(𝑘)
, 𝐺
[𝑖′,𝑗′]

(𝑙)
) = {

1 𝑖𝑓 �̃�
[𝑖′,𝑗′]

(𝑘)
≠ 𝐺

[𝑖′,𝑗′]

(𝑙)

0 𝑖𝑓 �̃�
[𝑖′,𝑗′]

(𝑘)
= 𝐺

[𝑖′,𝑗′]

(𝑙)
. 

We next compute the genotype distance of 𝑘𝑡ℎ individual to all the individuals in the genotype dataset; 

𝑑𝑘−𝑙 for all 𝑙 in [1, 𝐾] where 𝐾 represents the number of individuals in genotype dataset. The individual 

in the genotype dataset that has the smallest genotype distance is linked to 𝑘𝑡ℎ individual: 

linked individual′s index = argmin
𝑙′∈[1,𝐾]

(𝑑𝑘−𝑙′) 

Finally, if the linked individual in the genotype dataset matches the individual in signal profile dataset, 

we mark the individual in the signal profile as a vulnerable individual. We also compute the first distance 

gap, 𝑑1,2, for each linked individual[16] to evaluate the reliability of linking. For a linked individual, first 

distance gap is computed as 

𝑑1,2 = 𝑑𝑘
(1)
− 𝑑𝑘

(2)
 

where 𝑑𝑘
(1)

 and 𝑑𝑘
(2)

 is the minimum and second minimum genotype distance among all the genotype 

distances computed between 𝑘𝑡ℎ individual and all the genotype dataset individuals. 

4.4. Computation of Sensitivity and Positive Predictive Value 
In order to compute the sensitivity and positive predictive value (PPV) of linkings when the linkings are 

selected using first distance gap measure, we use following formula: 

Sensitivity =
Number of correctly linked individuals with 𝑑1,2 > 𝑑1,2

𝑚𝑖𝑛 

Number of All Individuals
 

 

PPV =
Number of correctly linked individuals with 𝑑1,2 > 𝑑1,2

𝑚𝑖𝑛 

Number of Individuals with 𝑑1,2 > 𝑑1,2
𝑚𝑖𝑛

 

where 𝑑1,2
𝑚𝑖𝑛 represents the minimum first distance gap measure that are used to select individuals. In 

these formulae, sensitivity represents the fraction of all individuals that adversary correctly links. PPV 

represents the fraction of individuals that are correctly linked among the individuals whose linking 

satisfies minimum first distance gap threshold. 

4.5. Anonymization of Signal Profile Datasets 
The anonymization of the signal profile datasets refers to the process of protecting the signal profile 

data against correct predictability of the genotypes for deletion variants. As we discussed earlier, the 
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large and small dips in the functional genomics signal profiles are the main predictors of deletion variant 

genotypes. To remove these dips systematically, we propose using the median filtering[39] based signal 

processing to locally smooth the signal profile around the deletion. This signal processing technique has 

been used to remove shot noise in 2 dimensional imaging data and 1 dimensional audio signals[38, 40]. 

For each genomic 𝑎 in the deletion [𝑖, 𝑗], we replace the signal level using the median filtered signal 

level: 

�̃�𝑎 = median ({𝑥𝑏}, 𝑏 ∈ [𝑎 −
𝑙

2
, 𝑎 +

𝑙

2
])  

where 𝑥𝑎 refers to the signal level at the genomic position 𝑎, 𝑙 = 𝑗 − 1 + 1, �̃�𝑎 refers to the smoothed 

signal level at position 𝑎, and median refers to the median of all the signal values in the genomic region 

[𝑎 −
𝑙

2
, 𝑎 +

𝑙

2
]. The median is computed by sorting all the signal levels and choosing the value in the 

middle of the sorted list of signal levels.  

5. Datasets 
The mapped reads for the RNA-seq data from gEUVADIS project are obtained from gEUVADIS project 

web site (http://geuvadis.org/). The RNA-seq mapped reads from the GTex project are obtained from 

dbGAP portal. We used only the RNA-seq datasets from whole blood tissue to create signal profiles. The 

structural variant panel and genotypes are obtained from the 1000 Genomes Project. The very low 

frequency SVs may introduce bias since they can uniquely identify and individual. In order to get around 

this bias, we removed the SVs whose minimum genotype frequency is larger than 0.01. Also, we 

extended the genotype dataset by re-sampling 1000 Genomes deletion dataset and created genotype 

data for 10,000 simulated individuals. 

We have utilized randomized datasets for comparison of predictability with real data. In order to create 

randomized data, we shuffled the signal profiles circularly. This way, the association between the SV 

genotypes and signal profiles are randomized. 

The anonymized signal profiles for GTex and GEUVADIS individuals can be downloaded from 

privaseq2.gersteinlab.org/Anonymized_Signal_Profiles. 

Figure Legends 
Figure 1: Illustration of the attack scenario. a) The adversary starts the attack with a signal profiles 

dataset(𝑆). This dataset contains, for each individual, a genome-wide signal profile and also sensitive 

information, e.g., HIV status. The names are anonymized into IDs as shown in yellow shaded column. 

The adversary uses an SV panel (𝑝𝑆) in the attack. This panel can be obtained from outside or the 

adversary can use the genome-wide signal profiles to discover the panel, as denoted by the shaded red 

arrows. She then genotypes the SVs in the panel and builds the genotyped SVs dataset (�̃�). b) The 

adversary acquires an SV panel (𝑝𝐺) and genotype dataset (𝐺) which contains genotypes of the SVs in 

the panel for a large number of individuals. In order to link the genotyped SV dataset (�̃�) to the SV 

genotype dataset, the adversary compares her SV panel (𝑝𝑃) to the SV panel (𝑝𝐺). For the matching 

SVs, the adversary compares the genotypes. The individuals in genotype and that show significantly 

good matches with respect to genotype distance are linked to signal profile individuals, as indicated by 

the matching of the colored columns. This linking reveals the HIV status of the individuals in genotype 
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dataset. c) Example of a large deletion in NA12878 individual and how it affects signal profiles. 70kb long 

region is deleted in NA12878 individual and the decrease in signal profiles show the loss of signal along 

the deletion. d) The schematic representation of large and small deletions and how they are manifested 

in signal profiles. The large deletions show a large decrease in the signal profiles while small deletions 

have much smaller footprints. 

Figure 2: The accuracy of linking attack on GEUVADIS dataset. a) The scatter plot shows the ICI versus 

predictability for each deletion, denoted by a dot. The real data (blue dots) show a much higher 

predictability compared to randomized data (red dots) b) After anonymization of signal profiles, the 

predictability of real data is decreased substantially. c) The accuracy of linking with genotyping of a 

known panel. The number of variants used in the attack is shown in x-axis while accuracy is shown on y-

axis. d) The accuracy of linking when adversary discovers the panel and uses the discovered panel to 

perform linking. e) The blue plot shows the accuracy of linking when the length of indels used in the 

attack are increased. Green plot shows the number of indels at different lengths. f) For the scenario 

where adversary has access to an SV panel, the plot shows the distribution of minimum number of 

variants that is required to identify each individual. X-axis shows the number of indels and y-axis shows 

the frequency of individuals who are identified by corresponding number of indels. g) For the scenario 

where adversary discovers the SV panel first and performs genotyping on the discovered panel, the plot 

shows the distribution of minimum number of variants that is required to identify each individual. 

Figure 3: The accuracy of linking attack on GTex dataset. The ICI leakage versus predictability for all the 

indels before (a) and after (b) signal profile anonymization. c) The linking attack accuracy with changing 

number of variants used in the attack. X-axis shows the number of variants used in the attack and y-axis 

shows the accuracy of linking. d) When the adversary uses the 200 variants in (c) and selects linking based 

on thresholding 𝑑1,2 (shown on x-axis), the plot shows on the y-axis the sensitivity (solid) and specificity 

(dashed) of linkings for real (red) and random (blue) datasets while 𝑑1,2 is changed. For the real data, 

approximately 10% of the individuals can be linked with 100% specificity. 

Figure 4: a) The scatter plot of ICI leakage versus predictability for Kasowski (a) and Kilpinen (b) datasets. 

c) The accuracy of linking attack on the two datasets for genotyping only scenario. X-axis shows the 

changing number of variants used in the attack and y-axis shows the linking accuracy. d) The accuracy of 

linking on the two datasets when the adversary first discovers the SV panel and genotypes the SVs in the 

panel. e) The accuracy of linking of NA12878 when adversary utilizes different combinations of histone 

modifications. The first column shows different combinations. Middle column indicates whether 

NA12878 is identifiable among 1000 Genomes samples, represented by green check for yes and red 

cross for no.  The third column is a schematic representation of the signal profiles for each combination. 

Figure 5: The linking attack that utilizes Hi-C interaction matrix data. a) Schematic representation of how 

genome-wide signal profile is computed from the interaction matrix. Each column 𝑖 of the matrix is 

summed along the rows and the total value is recorded at the 𝑖𝑡ℎ entry of the signal profile. b) Table 

shows whether NA12878 is vulnerable when different resolutions of the interaction matrix is used in 

linking. Green check indicates that NA12878 is vulnerable while red cross indicates not vulnerable. 

Figure S1: Illustration of Netflix Prize competition and linking to IMDb. a) Netflix released an anonymized 

training dataset that contained the movie identifiers, ratings, dates of ratings, and anonymized user 

identifiers. This dataset contained more than 100 million ratings for 500,000 users where each user had 
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rated on average 200 movies and each movie was rated on average by 5,000 users. b) The training 

dataset was linked to the Internet Movie Database (IMDb)’s database. The linking is based on matching 

the movie rating, the date of rating and other features in the databases. For the individuals whose 

names can be found in the IMDb database, the movie ratings are made public. 

Figure S2: The scatter plot of sample-wide predictability versus ICI leakage of the SV genotypes when 

gene expressions are used to genotype SVs. Each dot represents a 1000 Genomes SV and the sample-

wide predictability represents how correctly predictable the SV genotypes are given the gene expression 

levels. The expression levels are obtained from GEUVADIS dataset. The ellipse point to the small number 

SVs that have high predictability and high ICI leakage. 

Figure S3: Feature set that are used to genotype and discover deletions. The deletion is between 𝑖 and 𝑗 

indices. The attacker uses the signal profiles within the deletion region and the left and right 

neighboring regions ([2𝑖 − 𝑗 − 1, 𝑖 − 1] and [𝑗 + 1,  2𝑗 − 𝑖 + 1], respectively) to compute the features.  

𝜌[𝑖,𝑗] represents how deep the dip is in the signal profile along the deletion. 𝜂[𝑖,𝑗] represents how 

balanced the signal levels in the neighboring regions are. 𝜏[𝑖,𝑗] represents how high the signal levels are 

in the neighboring regions. 

Figure S4: Accuracy of genotype predictions that are used in instantiating the linking attacks. The x-axis 

shows the number of variants used and y-axis shows the genotype accuracy. The GEUVADIS signal 

profiles are used with known panel of 1000 Genomes small indels. 
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