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A typical cancer genome contains thousands of somatic mutations, with the overwhelming majority in 

non-coding regions. However, classical models of tumor evolution posit that only a few of these are under 

strong positive selection and drive the cancer forward. Currently, almost all of these "driver mutations" 

have been found in coding regions1,2. Thus, a key question arises: whether many driver mutations lurk in 

non-coding regions? 

  Identification of non-coding drivers is challenging due to vastness of non-coding space and the 

difficulty in characterizing noncoding elements. These issues confound the power to detect non-coding 

drivers. In contrast, identifying coding drivers is easier: we have a better understanding of the start and 

end of coding regions and the functional impact of coding mutations -- e.g. whether or not a mutation 

changes a protein (nonsynonymous/synonymous) or completely knocks it out (loss-of-function)? 

Potentially, our better understanding of coding regions creates an ascertainment bias and raises the 

question of whether the paucity of non-coding driver mutations actually reflects a drunk-looking-under-

the-lamppost phenomenon. 

Nevertheless, there has been great interest in finding non-coding drivers3, and several methods 

have been developed specifically to identify them. For instance, previous studies identified recurrent 

mutations in the TERT promoter4. Similarly, a recurrence based method found driver mutations in 

upstream regulatory regions of the PLEKHS1, WDR74 and SHDH genes5. Furthermore, pan-cancer 

analysis of copy-number aberrations highlighted the role of enhancer hijacking6. However, these are few 

examples and our understanding of non-coding drivers is incomplete. 

On page xxx of this issue, Rheinbay et. al. make a further foray towards addressing this question. 

For a cohort of 360 breast cancer patients, they attempt to look for coding and non-coding driver 



mutations, in an unbiased fashion. They provide evidence that with uniform ascertainment, one could find 

as many noncoding drivers as coding ones. Moreover, they predicted mutations within promoters of 

FOXA1, RMRP and NEAT1 significantly alter transcription and validated this with functional assays.  

More specifically, they predicted driver mutations based on identifying non-coding elements that 

harbor significantly more mutations than expectation and contain clusters of mutations around their 

regulatory motifs. Furthermore, for driver discovery, they utilized patient-specific background mutation 

rates. Their power analysis indicates that the cohort size in this study makes possible identifying promotor 

drivers that are mutated in at least 10% of patients in the cohort. However, they also show that one would 

need a larger sample size to confidently identify drivers present in ~5% of patients. Interestingly, their 

analysis of mutational hotspots (single site recurrent mutations) indicates that those in promoters are as 

common as those in coding genes. Furthermore, the per base mutation rate of promoters with drivers was 

similar to that of well-known coding regions with drivers. This suggests that the smaller number of driver 

mutations found in promotors in contrast to coding genes can be attributed to their small amount of 

functional territory (i.e. they simply occupy less base pairs in the analysis).  

This work describes the state-of-the-art in identifying non-coding drivers, but there is still more to 

do. To understand the directions for improvement, it is worthwhile to briefly review the non-coding 

annotation process and its interplay with power calculations (Figure).  Currently, the majority of non-

coding elements are fairly large in size due to the way they are determined from processing noisy 

functional genomics signals (e.g. 1-kb-sized peak calls). However, their actual functional territory can be 

considerably smaller, and aggregating mutation recurrence across over-sized regions can dilute the true 

signal of positive selection and hinder driver identification. Power calculations show that restricting 

annotation to smaller functionally relevant blocks enhances power. One approach to better define non-

coding functional territories is to use conservation. Conserved regions can include regulatory motifs (such 

as TF binding motifs) and, more generally, ultra-conserved and ultrasensitive sites. Moreover, both 

coding and non-coding elements (e.g. genes and their regulatory structures) comprise of discontinuous 

block of functional territories (and this discontinuous nature becomes more apparent as the functional 



blocks shrink). These connections are well understood for coding regions, where multiple exons can be 

clearly linked through splice junctions. In contrast, we lack such clear non-coding connections. For 

instance, a gene can be connected to multiple promoters and enhancers, and one enhancer and affect 

multiple genes.  

After defining the functional territory of an individual non-coding element, the next step involves 

mutation burden testing over many elements. Lack of specificity in non-coding annotation will increase 

the multiple-testing burden, which will decrease driver detection power. One can increase specificity 

through removing as much false positives as possible in the annotation set. Thus, overall the best 

annotation for increasing power for driver detection is non-intuitively not an annotation of every base in 

the genome. Rather it is a compact and highly accurate annotation set with as few elements as possible, 

where each element corresponds closely to an underlying functional territory, which potentially links 

discontinuous functional regions in the non-coding genome.  

An additional difficulty with non-coding mutations is evaluating their functional impact. 

Currently, it is unclear whether substitution of each nucleotide in a regulatory region has an equal 

functional impact. We can see this for certain among well characterized situations in TF binding sites, e.g. 

some non-coding mutations are considered more disruptive if they break an existing TF motif or generate 

a new binding motif7. Nonetheless, better metrics of functional impact are needed over the whole genome 

to find the non-coding equivalent of synonymous, nonsynonymous and loss-of-function mutations. 

Finally, the power to detect drivers in non-coding regions is dependent on the uniformity of the 

underlying background mutation rate. However, this is far from uniform across wide expanses of the 

genome and is known to co-vary in a complex way with various genomic and epigenomic signals 

(chromatin state, transcriptional activity and replication timing)8. 

An exhaustive (but expensive) approach to deal with some of these challenges is sequencing a 

large number of patients. This approach can be feasible only through large-scale collaborative efforts such 

as the Pan Cancer Analysis of Whole Genome (PCAWG) project. These efforts will generate 

comprehensive non-coding variant catalogue, which can be leveraged to detect driver regulatory 



mutations with sufficient power. However, these large-scale studies require assembling uniform cohorts, 

which can be challenging due to the highly heterogeneous nature of cancer (e.g. different breast cancer 

subtypes). An alternative approach will be to develop a more compact functional annotation of the non-

coding genome with precise definition of functional territory. Here, large scale annotation compendium 

such as ENCODE can play a vital role9. 

 

Figure 1: Key factors influencing driver discovery in non-coding regions of the genome: A) The 

connection between multiple exons (green blocks) in coding regions is well defined. However, 

connection between promoter and other CREs (cis-regulatory elements) with their underlying gene are 

more ambiguous. Moreover, the length of functional territory/motif (L) is much smaller compared to the 

entire CRE peak. B) The power associated with driver discovery is a function of the number (N) and 

length (L) of promoters: 1) the solid black, 2) dotted black and 3) dashed black lines correspond to power 

curves for N = 20,000, 100 and 400,000 promoters, respectively. The solid brown line represents the 

power when mutations are aggregated over promoter cores (i.e., smaller L values) instead of the entire 

promoter length. 
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