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Asthma is a highly heterogeneous disease and many of its clinical manifestations are resistant to
treatment. Recent efforts have suggested that some of this heteogeneity may relate to the bac-
teria, fungi and other organisms that are resident or transiently present in the lungs. Explored
here is the relationship between the microbiota observed in sputum and clinical parameters for
asthmatic patients with diverse disease presentations. Sputum RNA sequencing was performed
on 122 samples and the microbial composition determined. Hierarchical clustering showed slight
separation between asthmatics and controls and between moderately severe asthmatics and other
asthma severities. Correlations with clinical variables showed signficant relationships between
bacteria and fungi for such variables as the number of hospitalizations, lung function spirometry,
and the percent of eosinophils in the sputum. In particular, the percent eosinophils was related to
fungi in the genus Candida and several bacteria. Random forest regression further supported the
relationship between Candida and the percent eosinophils and to a lesser extent Campylobacter and
Saccharomyces. This demonstrates the need to consider fungi in addition to bacteria in the study of
the microbiome associated with asthma.

Keywords: asthma, microbiome, RNAseq, metatranscriptomics

Introduction

Asthma afflicts over 300 million people worldwide and approximately 30 million in the United

States. For reasons that are largely unknown, the prevalence of asthma has risen to epidemic

proportions over the past five decades [Masoli et al.], resulting in roughly 15 billion dollars in

health expenditures in the US each year [Lugogo and Kraft]. While the understanding of dis-

ease pathogenesis has increased in recent years, the morbidity related to asthma remains high,
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accounting for 10 million school absences each year and limitations to physical activity reported

by approximately half of asthma patients [Bousquet et al.]. Efforts to develop better therapeutics

are hampered by the heterogeneity of the disease, the source of which remains poorly understood.

Recently suggested as a potential source of this heterogeneity is the airway microbiome [Huang

and Boushey].

The role of the airway microbiome in the development of disease is being increasingly ap-

preciated. Commensal microbiota have been shown in other contexts to be strong regulators of

host immune system development and homeostasis [Round and Mazmanian]. Disturbances in

the composition of commensal bacteria can result in imbalanced immune responses and affect an

individual’s susceptibility to various diseases, including inflammatory (IBD and colon cancer),

autoimmune (e.g., celiac disease, arthritis), allergic (e.g., asthma and atopy) and metabolic (e.g.,

diabetes, obesity, metabolic syndrome) (reviewed in [Shreiner et al.]).

Investigation of the microbiota in the lower respiratory tract is a relatively new field in com-

parison to the extensive work on the intestinal tract. In fact, the lung was excluded from the orig-

inal Human Microbiome Project because it was not thought to have a stable resident microbiome

[Turnbaugh et al.]. A limited number of reports have investigated the changes in the lung micro-

biota between healthy, non-smoking and smoking individuals as well as in patients suffering from

Cystic Fibrosis (CF), Chronic Obstructive Pulmonary Disease (COPD) or Asthma [Erb-Downward

et al., Hilty et al., Huang et al., Morris et al.]. Despite emerging data on airway microbiota, little

is known about the role of the lung microbiome in modulating pulmonary mucosal immune re-

sponses. The lung microbiota in humans has been observed to include on the order of hundreds of

bacterial species per person and exhibits exceptional inter-individual diversity [Zemanick et al.]

that relate to the clincal heterogenity of asthma.

Traditional methods for the analysis of airway microbiota involve the amplification of ribo-

somal RNA (rRNA) gene fragments and then sequencing the mixture of amplicons, however,

recently studies have shown that this signal is confounded by non-viable sources. For example,

swabbing ATM buttons in different neighborhoods in New York City demonstrated the ability

to distinguish neighborhoods by food preferences, such as chicken and fish [Bik et al.]. In addi-

tion, the primers used to amplify the rRNA fragments has been shown to bias the results, most

strongly in that a single kingdom (typically bacteria) is sampled in each experiment. In contrast,
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RNA is more environmentally labile and therefore more likely to be observed only if isolated from

intact, metabolically active cells. In addition, deep sequencing of the total RNA present in a sam-

ple, so-called meta-transcriptomics, avoids biases introduced by specific primer amplification and

enables discovery of organisms from multiple kingdoms.

Here we use RNA sequencing of the sputum of asthmatic patients to identify and quantify

the non-human community of organisms. Machine learning approaches are used to correlate

microbial taxa with a standard clinical lung function test for asthmatic patients. This work speaks

to the phenotypic heterogeneity of asthmatic patients by incorporating differences in their sputum

microbiomes and may provide insight into the biological mechanisms that drive those differences.

Group Control Asthma
Asthma Severity MILD MODERATE SEVERE

Num Indiv 16 21 41 44
Mean Age (St. Dev) 44.6 (15.2) 44.3 (17.2) 50.1 (16.6) 46 (12.8)

Perc Female 62.5 76.2 80.5 70.5
BMI 26.7 24.9 28.9 33.2
BDR 3.5 5.0 8.8 12.8

ACT Score 19.4 20.0 17.5 12.7
Median Percent Eosinophils 1.7 5.1 7.5 9.5

Perc White 88 76 83 45
Perc Black 6 14 10 32

Percent Other 0 10 7 23

Table 1: Patient characteristics

Methods

Sample collection and sequencing

Sputum induction was performed with hypertonic saline, the mucus plugs dissected away from

saliva, the cellular fraction separated and the RNA purified as described previously. Briefly, RNA

was purified using the All-in-One purification kit (Norgen Biotek) and its integrity assayed by

Agilent bioanalyzer (Agilent Technologies, Santa Clara, CA). Ten ng RNA was amplified using

random primers and the WT-Ovation Pico RNA amplification System (NuGen, San Carlos, CA).

Samples were sequenced using an Illumina HiSeq 4000 with 2x125 bp reads, with an average of

40 million reads per sample.
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RNAseq processing by exceRpt

An adapted version of the software package exceRpt [?, ???], was used to process and conserva-

tively search for exogenous sequences within RNA-seq data. Briefly, RNA-seq reads are subjected

to quality-assessment using the FastQC software v.0.10.1 [?, ???] both prior to and following

3’ adapter clipping. Adapters were removed using FastX v.0.0.13 [?, ???]. Identical reads were

counted and collapsed to a single entry and reads containing N’s are removed. Clipped, collapsed

reads are mapped directly to the human reference genome and pre-miRNA sequences using STAR

[Dobin et al.]. Reads that did not align are mapped against a ribosomal reference library of bac-

teria, fungi and archaea, compiled by Ribosome Database Project [Cole et al.]. Remaining reads

are aligned to genomes of other organisms including bacteria, fungi, plants and viruses, retreived

from GenBank [Benson et al.].

Microbial abundance counting and normalization

Reads mapping to taxa were normalized to the total sequencing output for each sample and

presented as the number reads mapping to each taxon per million sequencer reads. Reads that

mapped to multiple reference genomes were assigned to the phylogenetic tree node shared by all

genomes to which the read mapped. For example, if a read mapped equally-well to two species

in the genus Bacterioides, the read would be assigned to the genus node.

Results and Discussion

The RNA isolated from sputum samples from 122 patients were sequenced with a median of

47.5 million reads per sample. A median of 60% of the reads aligned to the human reference

genome and 50% to annotated transcripts (Figure 1, green bars), which is consistent with other

RNA sequencing efforts on samples of this type. A median of 0.7% of the input reads aligned to

exogenous sources, with some samples containing as much as 28.1% exogenous reads. A large

portion of the reads remained unmapped to any references (median = 27.8%, min = 5.6, max =

90)(Figure 1, grey bars).

A median of 87.4-thousand reads aligned to exogenous ribosomal RNA references, or 0.196%.

Of these reads 8.01% aligned uniquely to 1746 species; the remaining alignments scored equally
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Figure 1: Alignment summary for the RNAseq of control and asthmatic sputum. There is a large
intra-sample variability in the percent of reads aligning to each biotype.

well to multiple references and were assigned to the nearest parent node representing the top

scoring matches.

The alpha diversity of these samples was not signficantly different between the different asthma

severity groups (Figure 2), as defined by the amount of fluticasone or equivalent per day to con-

trol symptoms (mild = > 200µg, moderate = 200 − 800µg, severe = > 800µg ). The Fisher’s alpha,

Shannon and Simpson diversity metrics showed slightly higher diversity in mild asthmatics rela-

tive to other groups, though with a wide distrubution of values for both asthmatics and controls.

Other studies have observed lower alpha diversity in asthmatics (n = 6) relative to controls (n = 8)

using transcriptomics of nasal cavity swabs from children and adolescents [Castro-Nallar et al.].

It is possible that the differences observed here are due to the wider distribution of patient ages,

sampling of the sputum rather than the nasal cavity, or larger number of samples. Notably, more

fungi were observed in our study than by Castro-Nallar et al.

The dominant phyla observed in the samples was Proteobacteria, followed by Firmicutes and

Bacteroidetes (Figure 3). The abundance of Proteobacteria is in contrast to observations from the

gut where Bacterioides predominate [Turnbaugh et al.]. Also notable was the presence of two

phyla of fungi among the eight most abundant overall, though clearly in lower abundance than
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Figure 2: Alpha diversity metrics by asthma severity. All asthmatics have a lower fisher’s alpha
than the control group. The severe asthma group has a higher shannon and simpson diversity
than the others.

many of the bacterial phyla.

Though the asthma severity categories were not significantly different in their alpha diver-

sities, significant category enrichment when clustering by the beta-deversity metric Bray-Curtis

distance was observed (dengrogram cut height 0.7, fisher’s exact test p-value = 0.02)(Figure 7). In

particular, one of the three major clusters observed was significantly depleted in control samples

(permutation test p-value = 0.0085) and significantly enriched in moderate asthmatics (permuta-

tion test p-value = 0.0058). This group has moderate levels of both Proteobacteria and Firmucutes,

but the highest Bacteroidetes, Spirochaetes and Fusobacteria levels in the cohort. However, this

cluster was not signficantly different from the other clusters in any continuous clincal variables

after accounting for multiple hypothesis testing. We therefore sought to identify if specific taxa

were significantly correlated with the clinical parameters by regression approaches.

Correlation with clinical variables

Microbial ribosomal RNA abundances at all taxonomic levels were correlated with continuous

clinical variables. After controlling for the effects of age, body mass index and gender 14 (40%

of total) clinical variables were significantly associated with one or more of 66 1% of total) exoge-

nous taxa (FDR < 0.05)(Figure 4). This included the total signal for exogenous sequences, which

was strongly positively associated with the total pack years of smoking for the patients. Interest-

ingly, none of the individual taxa were associated with the total pack years of smoking, perhaps

suggesting an overall effect of smoking as increasing the total microbial load without selecting

for a subset of the organisms. Alternative explanations include that the chronic inflammation in
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Figure 3: Heatmap of the ten most abundant phyla observed in the data. The amount of Pro-
teobacteria observed strongly influences the hierarchical clustering of the samples.
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asthmatic lungs has phenotypic overlap with the inflammation caused by smoking, leading the

environment to be similar between smoking and non-smoking asthmatics [Larsen et al.].

of corrected correlation-1.pdf of corrected correlation-1.bb
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Figure 4: Heatmap of the regression coefficients for each taxon corrected for the effects of age,
gender and BMI.

Microbial taxa were associated with healthier metrics as well as with potentially pathogenic

roles. In the case of spirometry lung function metrics, the ratio of Forced Expiratory Volume in one

second (FEV1) to the Forced Vital Capacity (FVC) was positively associated with members of the

genus Pseudomonas. This suggests that Pseudomonas is associated with a reduction in obstructive

defects to the airway, which was true both before and after treatment with bronchodilators. How-

ever, Pseudomonas was not associated with the response to bronchodilators (BDR); rather three

bacterial groups were: the family Ruminococaceae, the genus Fusobacteria and its family and or-

der, as well as the genus Prevotella. This result agrees with previously reported observation that

Prevotella does not promote Toll-like receptor 2-independent lung inflammation, whereas mem-

bers of the phylum Proteobacteria did, including Haeomophilus and Moraxella [Larsen et al.].

There were far greater numbers of taxa correlated with negative health effects. Interestingly,

roughly one third of the significant correlations were with fungi, highlighting the importance of
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analyzing more than the 16S of bacteria. In particular, the number of hospitalizations that the

patient has experienced correlated with both fungi and bacteria in roughly equal proportions.

Proteobacteria taxa such as Escherichia coli were observed, as well as the fungal orders of Glom-

eraleas and Pleosporales. Glomerales is an order of arbuscular mycorrhizal fungi not known to be

associated with humans. The order Pleosporales contains a known human pathogen but has not

been associated with the lungs or asthma.

Fungal and bacterial taxa were also correlated with the concentration of cells in the mucus as

well as the percent of eosinophils in both the sputum and the blood. Haemophilus, which has been

reported to increase inflammation, was positively correlated with the percent of eosinophils in

the sputum but not in the blood, nor the overall concentration of cells in the mucus. However,

the fungal genus Candida was associated with all three. Pulmonary candidiasis has long been

associated with allergic bronchial asthma and inflammation [Masur et al.].

Model for the percent eosinophils

To further explore the association of exogenous microbes with the percent of eosinophils found in

the sputum we used a machine learning approach. A random forest model was applied to the 150

genera with the most variance in the dataset. In the context of this large number of genera, Candida

is shown to have the greatest influence in the model (Figure 5). The next most influential genera

were Campylobacter and another yeast genus, Saccharomyces. Campylobacter has been associated

with chronic diseases of various types including asthma [Doorduyn et al.], while Saccharomyces has

been shown to be protective against the development of asthma-like symptoms in mice [Fonseca

et al.]. Moreover, Fonseca et al. observed the protective effect of Saccharomyces to be mediated

in part through decreased airway eosinophils. In the present study, the contrary is observed, in

that each partial dependence plots for each of those taxa has an overall positive slope (Figure

8). However, the particular strain used in the mouse model study, Saccharomyces cerevisiae UFMG

A-905, could not be unambiguously identified in this study, in that reads aligned to several S.

cerevisiae genomes equally well.

One of the benefits of analyzing the bulk sputum by RNAseq, in addition to being able to

survey both the bacteria and fungi, is the ability to simultaneously view the human transcrip-

tome signal. Future work will analyze the human reads to determine if particular pathways are
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Figure 5: Variable importance plot for the random forest model of the hundred genera with the
most variance. Candida and Campylobacter have the strongest effects on node purity.

associated with the microbial taxa observed. For example, are the same patterns relating clinical

and exogenous sequences observable in the human transcriptome signal, such as in inflammation

response pathways? This has the potential to speak directly to the mechanisms by which the mi-

crobial taxa are having an effect, and perhaps shed light on the mechanisms and role of microbes

in asthma heterogenity.

Acknowledgements

This work was supported by a National Library of Medicine fellowship to DS (5T15LM007056-28)

and an NHLBI grant to GC (1R01HL118346-01). The authors would like to thank the support of

the Yale High Performance Computing services (Grace, Ruddle, Farnam).

Supplemental Figures

10



clustering high cut-1.pdf clustering high cut-1.bb
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Figure 6: Hierarchical clustering by Bray-Curtis distance, with five clusters boxed (cut height 0.7).
Cluster two (center) is significantly depleted of control samples (p-value = 0.0085) and signifi-
cantly enriched in moderately severe asthmatics (p-value = 0.0058) by permutation test

enrichment density-1.pdf enrichment density-1.bb

0

10

20

30

40

0.00 0.05 0.10 0.15 0.20

mean

de
ns

ity

category

controls

milds

moderates

severes

Figure 7: Permutation test results for 10K random shufflings of asthma severity labels, testing for
membership in cluster two. Vertical lines show the fraction observed in the hierarchical cluster-
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