A typical cancer genome contains thousands of somatic mutations, with the overwhelming majority in non-coding regions. However, classical. Classical models of tumor evolution posit that only a few of these mutations are under strong positive selection and drive the cancer forwardprogression. Currently, almost all of these "driver mutations" have been found in coding regions 1,2. However, the overwhelming majority of cancer mutations lie in non-coding regions. Thus, a key question arises: whetherhow many driver mutations lurkremain to be discovered in non-coding regions?
 	Identification of non-coding drivers is challenging due to vastnessthe vast scale of the non-coding spacegenome, and the difficulty inof characterizing noncoding elements. These issues confounddecrease the power to detect non-coding drivers. In contrast, identifying coding drivers is easiermore straightforward: we have a bettergood understanding of the start and end ofwhere coding regions start and end, and theof what functional impact of coding mutations may produce -- e.g. whether or not a mutation changes change in a protein (nonsynonymous/sequence (synonymous or non-synonymous mutation) or completely knocks it gene knock-out (loss- of- function)? Potentially, our  mutation). Our better understanding of coding regions creates an may create a form of ascertainment bias and raises the question of whether the. The paucity of non-codingidentified non-coding drivers may actually reflect our preference to search for driver mutations actually reflects a drunk-looking-under-the-lamppost phenomenonin coding regions, where we are best able to evaluate the effect of mutation.	Comment by Patrick: Pretty sure that it doesn’t really matter, but it is unclear why it is difficult to characterize non-coding elements.
NeverthelessNonetheless, there has been great interest in finding non-coding drivers3}, . Several methods have been developed specifically to identify them. For instance, previous studies identified recurrent mutations in the TERT promoter \cite{23887589}. Similarly, aA recurrence based method found driver mutations in upstream regulatory regions of the PLEKHS1, WDR74 and SHDH genes4. Furthermore, panSimilarly, previous studies identified recurrent mutations in the TERT promoter5. Pan-cancer analysis of copy-number aberrations has highlighted the role of enhancer hijacking in cancer6. However, these are few examples and our understanding of non-coding drivers is incomplete.
On page xxx of this issue, Rheinbay et. al. make a further forayreport progress towards addressing this question identifying non-coding drivers \cite{}. For a cohort of 360 breast cancer patients, they attempt to looklooked for both coding and non-coding driver mutations, in an unbiased fashion. They provide evidenceidentified non-coding driver mutations by locating non-coding elements that withharbor significantly more mutation than expected and that contain clusters of mutations around their regulatory motifs. They also utilized patient-specific background mutation rates for driver discovery. With uniform ascertainment, one could find, they found as many noncoding drivers as coding ones. Moreover, they drivers. They predicted that mutations within the promoters of FOXA1, RMRP and NEAT1 significantly alter transcription and then validated thisthese predictions with functional assays. 	Comment by Patrick: Moved this text up, as it describes the method they used. Results then follow methods.
More specifically, they predicted driver mutations based on identifying non-coding elements that harbor significantly more mutations than expectation and contain clusters of mutations around their regulatory motifs. Furthermore, for driver discovery, they utilized patient-specific background mutation rates. Their power analysis indicates that the size of the cohort size in thistheir study makes it possible identifying promotorto identify promoters with drivers thatif those promoters are mutated in at least 10% of patients in the cohort.. However, they also show that one would need a larger sample size to identify confidently identify drivers present in ~5% of patients. Interestingly, their analysis of mutational hotspots (single site recurrent mutations) indicates that thosehotspots in promoters are as common as those in coding genes. Furthermore, the per -base mutation rate of promoters with drivers was similar to that of well-known coding regions with drivers. This suggests that the smallersmall number of driver mutations found in promotorspromoters in contrastcomparison to coding genes can be attributed to their small amount of functional territory (i.e. they simply occupy lessfewer base pairs in the analysis). 
ThisThe work of Rheinbay et. al. describes the state-of-the-art in identifying non-coding drivers, but there is still more to do. To understand thepossible directions for improvement, it is worthwhile to briefly review the non-coding annotation process and its interplay witheffect on power calculations (Figure).  Currently, the majority of annotated non-coding elements are fairly large in size due to the way, because they are determinedresult from processing of noisy functional genomicsgenomic signals (e.g. 1-kb-sized peak calls). However, their actual functional territoryterritories maybe considerably smaller, and aggregating than annotated. Aggregating mutation recurrence across over-sized regions can dilute the true signal of positive selection and hinder driver identification. Power calculations show that restricting annotation to smaller functionally relevant blocks enhances power. MoreoverRelated to power and to the size of functional elements, both coding and non-coding elements (e.g. genes and their regulatory structures) comprise ofmay span multiple discontinuous blockblocks of functional territories (and this. This discontinuous nature becomes more apparent as the functional blocks shrink). Theseblock size shrinks. The connections between functional blocks are well understood for coding regions, where multiple exons can be clearly linked through splice junctions. In contrast, we lack such clear understanding of connections for non-coding connectionsregions. For instance, a gene can be connected to multiple promoters and enhancers, and one enhancer andcan affect multiple genes. One approach to better define nonNon-coding functional territories is tocan be better defined through use conservation. Conserved regions can be regulatory motifs (such as TF binding motifs) and, more generally, ultra-conserved and ultrasensitive sites.	Comment by Patrick: Not totally clear how these two sentences on conservation relate to the idea of connections among discontinuous functional elements above. Not sure if that’s an issue.
After defining the functional territory of an individual non-coding elementelements, the next step in driver identification involves mutation burden testing over many elements. Lack of specificity in non-coding annotationannotations will increase the multiple-testing burden, which will decrease driver detection power. OneSpecificity can increase specificity through removingbe increased by removal of as muchmany false positives as possible inwithin the annotation set. Thus, overall the best annotation for increasing power for driver detection is non-intuitively not an annotation of every base in the genome. Rather it is a compact and highly accurate annotation set with as few elements as possiblenecessary, where each element corresponds closely to an underlying functional territory, which potentially linksand where discontinuous functional regions in the non-coding genome are linked together. 
An additional difficultyEven with a well-defined annotation set, it is still difficult to evaluate the functional impact of non-coding mutations is evaluating their functional impact.affecting annotated regulatory regions. Currently, it is unclear whether substitution of each nucleotideall nucleotides in a regulatory region has anhave equal functional impact. when mutated. We can see this most clearly for certain among well characterized situations in TF binding sites, e.g.where some non-coding mutations are considered more disruptive if they break an existing TF motif or generate a new binding motif7. Nonetheless, betterBetter metrics of functional impact are needed over the whole genome to find the non-coding equivalentequivalents of synonymous, nonsynonymous and loss-of-function mutations. Finally, theThe power to detect drivers in non-coding regions is also dependent on the uniformity of thean underlying background mutation rate. However, this is far from uniform that varies across wide expanses of the genome and is knownaccording to co-vary in a complex way with various genomic and epigenomic signals (chromatin state, transcriptional activity and replication timing)8.	Comment by Patrick: It is not explained why this is true (although it may seem obvious). These sentences are also not connected to the other topics in this paragraph. Could delete for word count?
[bookmark: _GoBack]An exhaustive (but expensivealbeit costly) approach to deal with some of these challenges is sequencing a large number of patients. This approach can beis feasible only through large-scale collaborative efforts such as the Pan Cancer Analysis of Whole Genome (PCAWG) project. These efforts will generate comprehensivelarge non-coding variant cataloguecatalogues, which can be leveraged to detect regulatory mutations with sufficient power. However, these large-scale studies require assembling uniform cohorts, which can be challenging due to the highly heterogeneous nature of cancer (e.g. different breast cancer subtypes). An alternative approach will beis to develop a more compact functional annotation of the non-coding genome with precise definitiondefinitions of functional territoryterritories. Here, a large scale annotation compendium such as ENCODE can play a vital role9.
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