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A large scale integrative resource from ENCODE for cancer 
research 

Introduction 
A small fraction of mutations associated with cancer have been well characterized, particularly those 

in coding regions of key oncogenes and tumor suppressors. However, the overwhelming bulk of mutations 
in cancer genomes – especially those discovered over the course of recent whole genome cancer genomics 
initiatives – lie within non-coding regions \cite{25261935}. Whether these mutations have substantial 
functional impact on cancer progression remains an open question \cite{26781813}.  

Several recent studies have begun to address this question by incorporating limited functional 
genomics data for variant interpretation \{cite 25261935, 27064257, 27807102}. For example, Hoadley et 
al. integrated five genome-wide platforms and one proteomic platform to uniformly classify various tumor 
types \{cite 25109877}. Torchia et al. integrated various genomic and epigenetic signals to identify 
promising therapeutic targets in rhabdoid tumors \cite{27960086}. Lawrence et al. incorporated large-scale 
genomics profiles to identify cancer drivers \{cite 23770567}. However, there is no systematic integration 
of thousands of functional genomic data sets from a broad spectrum of advanced assays to interpret the 
cancer genome. 

The rich functional assays and annotation resources developed by the ENCODE Consortium allows 
us to characterize these non-coding regions at a great depth \cite{22955616}.  Data from ENCODE is 
particularly suited for cancer research as around eighty percent of the ENCODE cell lines are associated 
with cancerous tissues (see supplements). In the initial release of the ENCODE annotation, this was 
predominantly accomplished by using RNA-seq and ChIP-seq assays on a limited number of cell types 
\cite{22955616}. The new release of ENCODE took two new directions. First, it considerably broadened 
the number of cell types with RNA-seq, ChIP-seq, and DNase-seq assays, hence the main ENCODE 
encyclopedia aims to utilize these to provide a general, unified annotation resource applicable across many 
cell types. Secondly, ENCODE also expanded the number of advanced assays such as STARR-seq, Hi-C, 
ChIA-PET, eCLIP and RAMPAGE on several top-tier cell lines. Many of which are cancer-associated, 
including the blood (K562), breast (MCF-7), liver (HepG2), lung (A549), and cervical (HeLa-S3) cancers 
(Figure 1A). In addition, another data enriched top-tier cell line H1-hESC is from a human stem cell. It has 
been thought for decades that at least a subpopulation of the tumor cells have the ability to self-renew, 
differentiate, and regenerate, similar to what is conceptualized in normal stem cells \cite{24333726}. 
Hence, H1-hESC can serve as a valuable comparison to cancer cells to check the degree to which their 
oncogenic transformation is in a more differentiated or undifferentiated direction \cite{24333726}. 

Here, we endeavor to collect the data catalog to provide deep annotations of cancer genomes. We 
performed large-scale integration to construct an in-depth cancer related companion resource to the general 
encyclopedia. We complied these resources as the “companion ENCODE encyclopedia resource for 
Cancer” (or “EN-CODEC” for short) to interpret cancer-related genomic data, such as mutational and 
transcriptional profiles. [[JZ2MG: EN-CODEC or quoted?]] Formatted: Highlight



Multi-level data integration improves variant recurrence 
analysis in cancer    

One of the most powerful ways of identifying key elements in cancer is through recurrence analysis to 
discover regions that mutate more than expected. Hence, we first attempted to construct an accurate 
background mutation rate (BMR) model in a wide range of cancer types. However, this is a challenging 
problem since the somatic mutation process can be influenced by numerous confounding factors (in the 
form of both external genomic factors and local sequence context factors), which without appropriate 
correction can result in many false positives or negatives \{cite 23770567}. Here, we tackled these problems 
by removing effects of confounding factors in a cancer-specific manner. Specifically, we separated the 
whole genome into bins (1Mb) and calculated mutation counts per bin under each local context category. 
For each category, we used a negative binomial regression of the mutation counts against 475 features from 
xx cell lines, including replication timing, chromatin accessibility, Hi-C, and expression profiles for BMR 
prediction. In contrast to methods that use unmatched data \{cite 23770567}, our approach automatically 
selects the most relevant features, thereby providing noticeable improvements in BMR estimation (Fig 2A). 
Notably the combination of many different genomic significantly improves the estimation accuracy in 
multiple cancer types (Fig 2 B). Also, it is worth mentioning that due to the correlated nature of these 
genomic features, some cancers without features from apparently matched cell types can still automatically 
learn from related cell types and achieve a decent BMR precision. Hence, our analyses could be easily 
extended to other cancer types. [[JZ2MG: checking number of cell lines right now]] 

    A second step to utilize the ENCODE data in the recurrence analysis in cancer is to maximize the 
statistical power of burden tests. In terms of an individual test, focusing on shorter core regions with true 
functional impact would significantly improve the computation power. Hence, we first trimmed the 
conventional annotations, such as enhancers, to the key regions by looking into shapes of various signal 
tracks (see supplements). Furthermore, different from traditional analysis where comprehensive annotations 
are usually beneficial, testing every nucleotide in the genome will subject to huge penalty from multiple 
testing corrections and significantly reduce statistical power (see supplementary file). Therefore, we tried 
to focus on a minimum number of high confident annotations to look for burdened regions. Particularly for 
enhancers, we started from searching for regions supported by multiple evidence. We first proposed a 
machine learning algorithm CASPER to combine shapes of signal tracks from DNase-seq and a battery of 
5 to 10 histone modification marks. We then assembled the CASPER predictions with peaks called from 
STARR-seq experiments, which directly read out candidate enhancers in the genome. Such an integrative 
approach enables accurate enhancers definitions (see supplement). We also reconciled these enhancers with 
the main encyclopedia annotations by reporting the overlapped ones and providing new IDs to the novel 
ones. [[JZ2MG: should we mention the enhancer number here? I prefer not…]] 

 [[JZ2MG: extended gene section, we can claim that we are increasing power, but also we can claim 
the following para is to increase the functional interpretbility. Which do you prefer]] 

A final aspect to increase the power is to link the compact noncoding regulatory elements to the protein 
coding genes to form an extended gene region as a whole test unit.  A natural consequence of this is, 
analogous to the exon regions within genes, a set of discrete regions that potentially affect gene expressions. 
Such unified annotation enables a joint evaluation of the mutational signals from distributed yet biologically 
relevant genomic regions. Traditional methods have to solely rely on computational correlation due to the 
lack of data, resulting in problematic extended gene definition. Here we use direct experimental evidence 
and physical interaction from the Hi-C and ChIA-PET, combined with a machine learning algorithm that 
takes into consideration of the wide variety of histone modification marks and expressions to achieve 
accurate enhancer target gene linkages. Finally, the conserved enhancer-target linkages, refined promoters, 
and RNA-binding sites from eCLIP experiments within genes constitute a so-called extended gene 
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neighborhood (Fig1 C). Such joint test scheme also results in much more interpretable burdened regions as 
they are often associated with well-known oncogenic genes. 

We demonstrate that our multi-level integration scheme can effectively remove false positives and 
discover meaningful regions with higher-than-expected mutation counts (Fig 2C). For example, in the 
context of chronic lymphocytic leukemia (CLL), our analysis identifies well-known highly mutated genes, 
such as TP53 and ATM, which has been reported from previous coding region analysis. It also discovered 
genes that are missed by the exclusive analysis of coding regions, such as BCL6. Note that BCL6 has strong 
prognostic value with respect to patient survival (Fig. 2D), indicating that the extended gene neighborhood 
could be used as an annotation set for recurrence analysis.  

 Integrating regulatory networks and tumor expression 
profiles identifies key regulators in cancer 
 

ENCODE annotation also provides detailed regulatory networks instantiated from experimental assays 
suitable for cancer research. Specifically, for the TF network we first built distal and proximal TF regulatory 
networks by linking TF to genes, either directly by TF-gene interactions by promoters or indirectly via TF-
enhancer-gene interactions in each cell type (Fig1 B). We then pruned these networks to include only the 
strongest edges using another signal shape algorithm \{cite 22039215}. In addition, we merged our cell-
type-specific networks to get a generalized network for pan-cancer analysis. Similar, we also defined an 
analogous RBP network in a simpler format.  Compared to imputed networks from motif analysis, our 
ENCODE TF and RBP regulatory networks were built upon actual ChIP-seq and eCLIP expriments, which 
provide much more accurate regulatory interactions between functional elements.  

The integrated networks are useful for interpreting the oncogenic changes evident in cancer gene 
expression data from tumor samples. In particular, using a machine learning method, we integrated 8,202 
tumor expression profiles from TCGA to systematically search for the TFs and RBPs that most strongly 
drive tumor-specific expression patterns. For each patient, our method tests to the degree a regulators’ 
regulation potentials are sufficiently correlated with their targets’ tumor-to-normal expression changes. We 
then calculated the percentage of patients with these relationships in each cancer type and presented the 
overall trends for key TFs and RBPs in Fig. 3A. 

We find that the target genes of MYC are significantly up-regulated in numerous cancers, which is 
consistent with its well-known role as an oncogenic TF and a transcription activator \cite{22464321}. We 
further validate MYC’s regulatory effect through knock down experiments (Fig 3). Consistent with our 
predictions, the expression of MYC targets is significantly reduced after MYC knockdown (Fig 3A). After 
confirming the importance of MYC, we can use the regulatory network to understand how MYC works 
with other TFs. We first looked at all triplets involving MYC by requiring that a second TF both interacts 
and shares a common target with MYC. In all cancer types, we found that MYC’s expression levels are 
positively correlated with the expressions of most of its targets, while the second TF shows only a limited 
influence as determined from partial correlations. We then investigated the exact structure of such 
regulatory relationships. The most common triplet interaction mode is a well-understood feed-forward loop 
(FFL) structure in which MYC regulates both the common target and the second TF. Most of these FFLs 
involve well-known MYC partners such as Max and Mxl1. However, we also discovered that many involve 
another factor called NRF1. Upon further study, we found that that the MYC-NRF1 FFL relationships were 
mostly coherent ("amplifying"). We further studied these FFLs by forming these triplets into a logical gate, 
in which the two TFs act as inputs and the target gene expression represents the output \{cite 25884877}. 
We can show that the predominant number of these gates follow either OR or MYC-always-dominant logic. 
Thus, the ENCODE regulatory network not only helps find key regulators, but also demonstrates how they 
work in combination with other regulators. 
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We also analyzed the RBP network derived from ENCODE eCLIP data and found key regulators 
associated with cancer. For example, the ENCODE eCLIP experiment has profiled many SUB1 peaks on 
the 3’UTR regions of genes, and we find that the predicted targets of the RBP SUB1 were significantly up-
regulated in many cancer types (Fig. 3C). As a RBP, SUB1 has not been associated with cancer before. We 
thus validated this new association in liver cancer. After knocking down SUB1 in HepG2 cells, its predicted 
targets are also down-regulated relative to other genes (Fig. 3D). In addition, we found that the decay rate 
of SUB1 target genes are significantly shorter than non-targets (Fig. 3C). These results indicate that SUB1 
may bind to 3’UTR regions to stabilize transcripts. Moreover, we found that the up-regulation of SUB1 
target genes is correlated with a poorer patient survival in other cancer types such as lung cancer (Fig. 4).  

We further present the overall regulatory network by systematically arranging it into a hierarchy. TFs 
are placed into different levels where TFs on the top tend to regulate the expression of other TFs and the 
ones at the bottom ones are in turn more regulated by others \{cite 25880651}. A final hierarchical network 
structure is shown in Fig 4. We find that the top layer TFs are not only enriched in cancer associated genes 
but also more significantly drive tumor-to-normal gene differential expressions.  

Extensive rewiring events in regulatory network 
For the top-tier cell types with numerous TF ChIP-seq experiments, we constructed cell-type-specific 

regulatory networks relating to specific cancers and compared them with networks built from their paired 
normal cell types. We proposed the concept of composite normal by reconciling multiple related normal 
cell types as shown in figure 5. The pairings -- relating cancerous cell lines to specific tumors and then 
matching them to normal cell types -- are approximate in nature. However, many of such pairings have 
been widely used in literature before (see supplementary file). Furthermore, with the enrichment of 
functional characterization assays in ENCODE, they provide us the first opportunity to directly understand 
the regulatory alterations in cancer by looking at specific network changes that are "rewired" in the process 
of oncogenesis.  

In "Tumor-normal pairs", we measured the signed, fractional number of edges changing, the rewiring 
index, to study how the targets of each common TF changed (i.e., rewired) over the course of oncogenic 
transformation. We first ranked TFs according this index (Fig. 5 A). In leukemia, well-known oncogenes 
such as MYC and NRF1 were among the top edge gainers, while the well-known tumor suppressor IKZF1 
is the most significant edge loser (Fig 5A). Mutations in this latter factor serve as a hallmark of various 
forms of high-risk leukemia \cite{26202931, 26713593, 26069293 }. Interestingly, IKZF1 loss has been 
found to be associated with well-known BCR-ABL fusion transcript, which is present in K562, and usually 
confers poor clinical outcome \cite{26069293}. In contrast, several ubiquitously distributed TFs retain their 
regulatory linkages (Fig 5A). We observed a similar trend in TFs using a distal, proximal, and combined 
network (see details in supplementary file). The trend was consistent across highly rewired TFs such as 
BHLHE40, JUND, and MYC in lung, liver, and breast cancers (Fig 5). 

In addition to the simple direct TF to gene connection-based model, we also measured rewiring using 
more complex gene community model. The targets within the TF regulatory network were characterized 
by heterogeneous network modules (so called “gene communities”), which usually come from multiple 
biologically relevant genes. Instead of directly measuring the TF’s target changes for each gene, we 
determined the change in gene communities via a mixed-membership model. This enabled us to evaluate 
each TF’s overall association changes to these gene communities in tumor and normal cells. Similar 
rewiring patterns were observed using this model (Fig 5A). 

We then tested whether the gain or loss events from the normal to tumor transition will result in a 
network that is more similar or different from those in stem cells like H1-hESC. Interestingly, we find that 
the gainer group tends to rewire away from the stem cell’s regulatory network while the loser groups are 
more likely to rewire toward the stem cell. 



We also find that the majority of rewiring events were associated with noticeable gene expression and 
chromatin status changes, but not necessarily with variant-induced motif loss or gain events (Fig. 5A). This 
is consistent with previous discoveries that most non-coding risk variants are not well-explained by the 
current model \cite{25363779}. For example, JUND is a top gainer in CLL. The majority of its gained 
targets in tumor cell lines demonstrate higher gene expression, stronger active and weaker repressive 
histone modification mark signals, yet few of its binding sites are mutated. We found a similar trend for the 
rewiring events associated with JUND in liver cancer. Related to this, we can formulate the cell-type-
specific networks to cell-type-specific hierarchies, as shown in figure 3. Specifically, in blood cancer the 
more mutationally burdened TFs actually sit at the bottom of the hierarchy, whereas the TFs that are more 
associated with driving cancer gene expression tend to be at the top. 

Step-wise prioritization schemes pinpoint deleterious 
SNVs in cancer 

Summarizing the analysis described above, the EN-CODEC resource consists of numerous annotation 
summarized in figure 6 : (1) a BMR model with matching procedure for relevant functional genomics data 
and a list of regions with higher-than-expected mutations in a diverse selection of different cancers, (2) 
accurate and refined enhancers and promotors by integrating tens of different functional assays, including 
STAR-seq, and their comparison with those in ENCODE encyclopedia; (3) enhancer-target-gene linkages 
and extended gene neighborhoods, based integrating experimentally determined linkages from Hi-C and 
detailed histone mark and expression correlation, (4) tumor-normal differential expression, chromatin, and 
regulatory changes, (5) TF regulatory networks, both overall and cell type specific; (6) TFs’ position in the 
network hierarchy and their rewiring status; (7) an analogous but less annotated network for RBPs.   

Collectively, these resources allow us to prioritize key features as being associated with oncogenesis. 
The workflow in Fig. 6A describes this prioritization scheme in a systematic fashion. We first search for 
key regulators that are frequently rewired, located in network hubs or at top of the network hierarchy, or 
significantly driving expression changes in cancer. We then prioritize functional elements that are 
associated with top regulators, undergo large regulatory changes in terms of expression levels, TF binding, 
and chromatin status, or are highly mutated in tumors. Finally, on a nucleotide level, we can pinpoint 
impactful SNVs for small-scale functional characterization by their ability to disrupt or create specific 
binding sites, or which occur in positions under strong purifying selection. 

Using this framework, we subject a number of key regulators, such as MYC and SUB1, to knockdown 
experiments to validate their regulatory effects in particular cancer contexts (Fig 3D), as we described 
above.  Next here, we also identified several candidate enhancers in noncoding regions, associated with 
breast cancer, and validated their ability to influence transcription using luciferase assays in MCF7. We 
selected key SNVs, based on significantly recurrent mutations in breast cancer cohorts, within these 
enhancers that are important for controlling gene expression. Of the eight motif-disrupting SNVs that we 
tested, six showed consistent up- or down-regulation relative to the wild type in multiple biological 
replicates. One particularly interesting example, illustrating the unique value of ENCODE data integration, 
is in the intronic region of CDH26 in chromosome 20 (Fig. 6C). Both histone modification and chromatin 
accessibility (DNase-seq) signals indicated an active regulatory role in MCF7, which was further confirmed 
as an enhancer by both CASPER and ESCAPE (STARR-seq) (Fig. 5D). Hi-C and ChIA-PET data indicated 
that the region is within a topologically associated domain (TAD) and validated a regulatory linkage to the 
downstream breast-cancer-associated gene SYCP2 \cite{26334652, 24662924}. We observed massive 
binding events from TFs in this region in MCF-7. Motif analysis predicts that the particular mutations found 
in the cohorts can significantly disrupt the binding affinity of several TFs, such as FOSL2, in this region 
(Fig. 6D). Luciferase assays demonstrate that this mutation introduces a 3.6-fold reduction in expression 
relative to wild type expression levels, indicating a strong repressive effect on this enhancer’s functionality.  
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Conclusion 
This study highlights the value of our companion to the main ENCODE encyclopedia as a resource 

for cancer research. First, we show that, by integrating many different types of assays, we can build  accurate 
BMR model for a wide range of cancer and improve the quality and quantity of annotations to look for 
regions with higher-than-expected mutations. We can also build extensive regulatory networks of various 
forms from thousands of ChIP-seq and eCLIP experiments to direct study the regulatory alteration during 
the transformation to cancer  and pinpoint key regulators that are involved in cancer progression. Finally, 
we show how we can leverage the companion resource to provide a prioritization scheme to pinpoint key 
features for small-scale follow-up.  

Our EN-CODEC resource consists two aspects of resources – generalized annotations, such as BMR 
model and merge networks and hierarchies for pan-cancer type of studies and cancer specific annotations 
drives from pairing the top-tier cell lines to particular cancer types.  We did realize that the representative 
tumor and normal cell types and their pairings are used here are rough. However, some pairings have 
already been widely used in other literatures. Besides, cancer is such a heterogeneous disease that even the 
tumor cells from one patient usually shows distinct molecular, morphological, and genetic profiles 
\cite{24048065}. It is difficult to obtain a "perfect" match even from data of real tumor and normal tissues. 
The richness of the ENCODE functional characterization assays does provide us a unprecedented 
opportunity to systematically study cancer genomes from various aspects. 

This study underscores the value of large-scale data integration, and we note that expanding this 
approach (either by integrating additional data types and/or using tumor mutation and expression data on a 
larger scale) is straightforward. We also anticipate that an additional step would be to carry out many of the 
ENCODE assays on specific tissues and tumor samples. For example, larger number of genomic features 
from matched cell types could result in better BMR estimation; more advanced functional characterization 
assays will generate compact and accurate annotation sets for larger statistical power in burden analysis; 
more ChIP-seq/eCLIP experiments would provide more detailed regulatory networks to understand 
regulatory alterations during cancer progression. In additional, larger cohorts of expression and mutation 
profiles from many cancer types to discover novel key features for cancer. Though volume of material 
needed for such analyses may present challenges, we show that such a framework is technically feasible 
and provides further opportunities for the future.  
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