
© Oxford University Press 2005 1

1 GENOME ANALYSIS

Efficient Detection of Highly Mutated Regions with Mutations
Overburdening Annotations Tool (MOAT)
Lucas Lochovsky1,2,† , Jing Zhang1,2,† and Mark Gerstein1,2,3*
1Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
2Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
3Department of Computer Science, Yale University, New Haven, Connecticut 06520, USA
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Identifying genomic regions with a higher-than-expected mutation
burden (i.e. overburdened regions) has a number of useful applica-
tions. In the context of somatic cancer variants, overburdened re-
gions may be highly associated with cancer progression. In the
germline, accumulation of rare variants could be an indicator of posi-
tive selection. Mutation burdens could also be applied in the context
of de novo mutations to identify precursor variants for genetic dis-
ease. Here, we release a new GPU-based computational tool, called
MOAT (the Mutations Overburdening Annotations Tool), to perform
mutation burden analysis with great speed. MOAT makes no as-
sumptions about the mutation process, except that the background
mutation rate (BMR) changes smoothly with other genomic features.
This nonparametric scheme randomly permutes the variants (or
target regions) on a relatively large scale where the BMR is as-
sumed to be constant to provide robust burden analysis in various
scenarios. Furthermore, it also incorporates a somatic variant simu-
lator called MOATsim, which randomly permutes the input variants
with effective covariate control. MOAT also offers the option to eval-
uate the significance of annotations’ whole genome signal scores,
as implied by their intersecting variants, with the same permutation
algorithms used for burden analysis. In conclusion, MOAT will be
useful for a broad range of analyses that would benefit from a meth-
ods evaluation on variant permutation data.
Availability: MOAT is available at moat.gersteinlab.org

2 INTRODUCTION
A common analysis strategy in high throughput sequencing is to
look for genomic elements with a high accumulation of variants
across a large cohort of patients. However, it is well known that the
background mutation rate (BMR) is highly heterogeneous across
the whole genome due to numerous external features. For example,
replication timing and chromatin structure usually affects the BMR
at a scale of up to one megabase (Lawrence, et al., 2013). Such
effects may change in a dynamic way across the genome, and are

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint First Authors.

usually difficult to model. Hence, our Mutations Overburdening
Annotations Tool (MOAT) relies on no assumption except that the
BMR changes slowly across the genome and approximately re-
mains the same within a local context. Therefore, this non-
parametric scheme provides robust mutation burden significance
results for any element through permutations.

MOAT offers two methods for determining elevated mutation
burdens, the annotation-centric algorithm (MOAT-a) and the vari-
ant-centric algorithm (MOAT-v), both of which involve a compar-
ison of each annotation’s mutation accumulation to that of the
surrounding genome. We also offer MOATsim, a variant distribu-
tion simulator based on MOAT-v’s source code, which reflects the
distribution of whole genome covariates that influence the BMR.
MOAT can also be given a whole genome signal track, which will
be used to compute the variants' signal scores, and produce aggre-
gate annotation scores. The scores produced on the observed data
will be compared to the scores produced on the permutation data to
gauge the signal significance of the observed data. In the following
sections, we will describe the implementation of MOAT for paral-
lel computer systems, which enables highly efficient data size
scalability. We also evaluate MOAT’s ability to recall known
noncoding cancer drivers on a collection of several hundred cancer
whole genomes’ variant data, on the basis of both mutation burden
and functional impact.

3 METHODS
A number of covariates jointly affect the BMR in a complicated
and dynamic manner, making variant burden analysis very chal-
lenging (Lawrence, et al., 2013). However, the length of the target
region usually varies from hundreds of bases (such as transcription
start sites) to thousands of bases (such as enhancers), while exter-
nal features, such as replication timing, work at up to megabase
resolution. Therefore, MOAT circumvents the necessity for such
parametric models by explicitly permuting the variants or annota-
tions within a region that has essentially constant levels of all the
covariates. It assumes constant covariate values over a fairly large
interval—with a typical size of ~100kb—that is appreciably larger
that the annotations we wish to assess for elevated mutation bur-
dens. Hence, such analyses would be useful for annotations in the

Lochovsky et al.

2

~1kb size range, such as transcription factor binding sites (TFB-
Ses), but not suitable for significantly smaller annotations, like
transcription factor (TF) motifs, or much larger ones like topologi-
cally associating domains (TADs).

One important issue with these permutation algorithms is that
their running times do not scale well to noncoding annotation sets.
A typical burden analysis usually consists of more than 105 annota-
tions (such as all GENCODE transcription start sites), with 1000
permutations per region. It can easily expand to billions of permu-
tation and intersection calculations, making the overall operation
very compute intense. Our analyses indicate that an unoptimized
run (i.e. running the software on a single Intel Xeon CPU core with
no parallelism) that involves ~3 million annotations with 1000
permutations each would take about 14 hours to complete.

Here we have addressed this compute intensity by taking ad-
vantage of very large-scale parallelization available on modern
GPU technology. The key realization behind this design choice is
the fact that MOAT’s most intense operations consist of a huge
number of mathematical calculations with no data dependencies
between each calculation, which plays perfectly into the strengths
of general purpose GPU pipelines. In the following sections, we
demonstrate MOAT’s parallelization schemes for both the variant-
based and annotation-based permutation algorithms.

3.1 MOAT-a: Annotation-centric Permutation
MOAT takes two input files: the annotation file (afile) and the
variant file (vfile). The parallel version of MOAT’s annotation-
centric permutation algorithm, MOAT-a, is a C++ program that
uses NVIDIA’s CUDA language (Nickolls, et al., 2008) for gen-
eral purpose graphics processing unit (GPGPU) programming.
Over the past decade, computing hardware has become increasing-
ly parallel in nature, meaning that multiple sets of instructions, or
threads of execution, can be carried out concurrently on a series of
interlinked CPUs. One of the most common types of problems that
can be easily adapted to parallel computing is the rendering of
computer graphics. This spurred the development of specialized
GPU hardware with hundreds of processing units that are simpli-
fied to handle only instructions relevant to graphics processing.
GPUs are therefore well suited for problems that can be divided
into many data-independent units of parallel computation with a
large proportion of mathematical compute operations. Here, we
have successfully adapted MOAT-a to this computing paradigm.

MOAT-a’s steps are illustrated in Fig. 1. MOAT-a iterates
through the annotations, computing the intersecting variant count
per annotation. It then defines a genomic block with user-defined
boundaries centered on the current input annotation, and randomly
moves the annotation within this block. MOAT-a will find the
variant counts from the vfile that intersect each of the random bins,
which are compared to the input annotation’s variant count. The
input annotation’s p-value is defined as the fraction of bins with a
variant count equal to or greater than the input annotation’s variant
count. If MOAT is run with the whole genome signal score option,
the variants' scores are computed and used to calculate the ob-
served and permuted annotation scores by summing the scores of
the intersecting variants.

In the GPU version, the input variants, annotations, and variant
signal scores are copied to the video RAM (VRAM), making the
data accessible to the GPU’s threads. The annotations are divided
among the threads, and each thread iterates through its subset of
annotations, finding the observed variant count for each annota-
tion, computing the permuted locations, and calculating the per-
muted variant counts and annotation signal scores. The permuted
annotation locations are temporarily stored to calculate the variant
counts and derive the annotation’s p-value, after which the
memory is freed for the next annotation. Only the p-values for
mutation burden and whole genome signal are persistently stored,
which controls MOAT-a’s usage of VRAM—a far more limited
resource compared to main memory. The p-values are then copied
back to main memory for generating the program’s output.

3.2 MOAT-v: Variant-centric Permutation
MOAT-v’s variant-centric permutation algorithm creates permuted
datasets by assigning new coordinates to each variant within a
local genome region to account for the covariate effects from
known genomic features (Fig. 2a). MOAT-v offers the option to
preserve the trinucleotide context of the original variant when
choosing a new variant location. In other words, the new variant
must have the same nucleotide identity as the original variant, and
the two neighbors of the new variant must also have the same nu-
cleotide identity as the original variant’s neighbors. For example, if
MOAT-v is given an input variant that has a reference base G, and
is surrounded by a T and a C (i.e. the variant’s trinucleotide con-
text is TGC), then MOAT-v gathers up every position in the same
bin where TGC occurs in the reference, and selects one of these
with uniform probability (Fig. 2b). This constraint reflects the
differential mutation probabilities of different trinucleotides (i.e.
due to biochemical differences, some trinucleotides are more likely
to be mutated than others), and ensures that the permuted variant
set does not change the expected distribution of mutated trinucleo-
tides. Hence, MOAT-v preserves the mutational signature of the
input variants.

MOAT-v takes a vfile and an afile as inputs, and generates a
permuted dataset by subdividing the genome into blocks of a user-
defined size (excluding mappability blacklist regions), and assign-
ing each block’s variants new positions within the same block,
preserving trinucleotide context in the process. This process con-
tinues until n permutations have been generated. At this point,
MOAT-v will calculate n intersecting permuted variant counts for
each of the input annotations. A p-value for each annotation is
determined based on the fraction of the n intersecting permuted
variant counts that are equal to or greater than the count derived
from the original vfile variants. As with MOAT-a, MOAT-v offers

Figure 1 For each input annotation, MOAT-a finds the number of intersect-
ing vfile variants (red). The annotation’s coordinates are then shuffled to a
new location within the local genome context bounded by user-defined
parameters d_min and d_max, producing n permutations (blue). Each per-
mutation’s intersecting variant count is computed.

d_max	 d_min	 d_min	 d_max	annota+on	

permuted	annota+ons	

Deleted: of GENCODE annotation

Deleted: and

Efficient Detection of Highly Mutated Regions with Mutations Overburdening Annotations Tool (MOAT)

3

users the option to conduct a significance analysis of the annota-
tions’ whole genome signal scores, using the scores of the inter-
secting permuted variants as the background.

3.3 MOATsim: Simulated Somatic Variant Datasets
In addition to the main MOAT programs, we have developed a
variant simulator, MOATsim, that reflects the levels of whole ge-
nome covariates that directly influence the background mutation
rate. It is based off the variant permutation step in MOAT-v, but
also incorporates bigWig signal files in its determination of per-
muted variant locations. Before working with the actual variant
data, MOATsim imports the covariate data, and evaluates covariate

signals over a set of whole genome bins (user-defined size, map-
pability blacklist regions excluded). These bins are then clustered
based on their covariate signal profile using k-means clustering
(Lloyd, 1982). With this information, variants can be permuted not
just within their local genome context, but across all bins with the
same covariate signal profile (i.e. within the same cluster). This
additional functionality enhances MOATsim’s accurate reflection
of the expected somatic variant distribution of a human genome,
and builds on the block bootstrap idea previously used for genome
structure correction in (Bickel, et al., 2010).

4 RESULTS
4.1 MOAT-a

Table 1. Speed benchmark of MOAT-a with respect to the number of
input annotations, and MOAT-v with respect to the number of parallel
CPUs. MOAT-a’s time trials involved generating 1000 permuted variant
datasets, while MOAT-v’s time trials involved generating one permuted
variant dataset using ~8 million input variants, and 1,000,000-bp bins. For
large datasets, the GPU algorithm substantially outperforms the CPU ver-
sion. The timing of both versions included a whole genome signal analysis
with Funseq functional impact scores.

MOAT-a MOAT-v

Annotations GPU speedup Parallel CPUs Speedup

~14,000 1.01x 2 1.90x
~130,000 1.34x 4 3.55x
~3,000,000 6.26x 8 5.72x

We demonstrate the magnitude of the CUDA speedup by evaluat-
ing the running time of MOAT-a on datasets of various sizes. We
took a dataset of pancancer whole genome variant calls that in-
cludes 507 cancer genomes of various types from (Alexandrov, et
al., 2013), and 100 stomach cancer genomes from (Wang, et al.,
2014), totaling ~8 million variants. We used 3 different annotation
sets as input to demonstrate MOAT-a’s scalability (Harrow, et al.,
2012; Thurman, et al., 2012; Yip, et al., 2012). We tested MOAT-
a’s running time on these 3 annotation sets with the number of
random bins n = 1000 (Table 1, left half). It is clear that when scal-
ing up to very large datasets, the CPU version’s runtime increases
considerably, while the GPU version’s runtime rises very gradual-
ly.

Due to the relative lack of verified noncoding regulatory ele-
ments associated with cancer, it is difficult to assess the accuracy
of MOAT-a’s predictions. Nevertheless, we demonstrate MOAT-
a’s usefulness for finding elevated mutation burdens in genomic
elements by identifying highly mutated GENCODE transcription
start sites, promoters, and enhancers, using the aforementioned
pancancer variant dataset. TERT, which has well-documented
cancer-associated promoter mutations (Vinagre, et al., 2013), was
found to have two TSSes with significant mutation burden (both
had BH-corrected p-values of zero)(Benjamini and Hochberg,
1995). Other well-known cancer-associated TSS sites, including
TP53, LMO3, and AGAP5, also had significant mutation burdens
(all had BH-corrected p-values of zero). Part of these results are
also backed up by the concurrent Funseq (Fu, et al., 2014) func-
tional impact analysis, such as TP53.

4.2 MOAT-v
Using the same set of cancer variants used in the MOAT-a tests,
parallel MOAT-v’s running time was evaluated across multiple
CPU configurations to demonstrate the performance gains of the
OpenMPI (Gabriel, et al., 2004) implementation. MOAT-v in
OpenMPI is set up to run one master process on one of the availa-
ble CPU cores, and use the rest for worker processes. This master
process has the sole responsibility of dividing the workload across
the workers processes, and gathering their results. Hence, the pro-
gram must be run with 3 cores to get two cores to process the work
simultaneously, 4 cores to get three cores to process the work sim-
ultaneously, etc. If a whole genome signal analysis is requested,
the master process carries out the signal analysis in parallel with
the workers' permutation computations. Table 1 (right half) repre-
sents the running time improvement relative to the number of
workers added. This improvement scales close to linear with the
number of workers, indicating that the load balancing between
each CPU core is very evenly divided, enabling significant time
savings when MOAT-v is run in parallel. MOATsim’s running
time exhibited similar characteristics (data not shown).

MOAT-v was used on the same variant and annotation sets used
to demonstrate MOAT-a’s usefulness for finding elevated cancer

Figure 2 (a) In MOAT-v, the variant locations are permuted within the
local genome context. The whole genome is divided into bins of a user-
defined size, and variants are moved to new coordinates within the same
bin, preserving the local mutation context. As with MOAT-a, n permuta-
tions are produced. (b) To reflect the influence of nucleotide identity on
mutation likelihood, MOAT-v ensures that variants are moved to locations
with the same trinucleotide context.

annota%on	

permuted	variants	

CTTCAAGTTCTGACCTCCTGTCAATATCCCTTCCCCTCAACTTGACAATC	
*	 *	 *	

Original	loca%on	

(a)	

(b)	

*	=	possible	new	loca%ons	

Deleted: 97x

Deleted: 50x

Deleted: 60x

Deleted: These

Deleted:
Deleted: that was conducted, although LMO3 was ren-
dered non-significant after BH correction

Lochovsky et al.

4

mutation burdens. MOAT-v produced comparable results—the
same known cancer-associated TSSes flagged as significant in
MOAT-a were also flagged in MOAT-v.

5 DISCUSSION
Identification of genomic elements with a high mutation burden is
useful for narrowing down the exact site of functional disruption.
We introduce Mutations Overburdening Annotations Tool
(MOAT), a new software tool to facilitate such analyses. We
demonstrate the usefulness of this tool for flagging putative
noncoding cancer drivers, and provide CUDA- and OpenMPI-
accelerated versions that dramatically increase the speed of muta-
tion burden analysis. Given the demand for efficient, meaningful
analysis of genome sequence data that is now being produced at a
very high rate, we consider MOAT’s provision of such analysis for
genetic disease drivers quite timely.

Funding: This work was supported by the National Institutes of
Health [5U41HG007000-04].
REFERENCES
Alexandrov, L.B., et al. Signatures of mutational processes in human cancer. Nature

2013;500(7463):415-421.

Benjamini, Y. and Hochberg, Y. Controlling the false discovery rate: a practical and

powerful approach to multiple testing. Journal of the Royal Statistical Society. Series

B (Methodological). 1995;57(1):289-300.

Bickel, P.J., et al. Subsampling methods for genomic inference. The Annals of Applied

Statistics 2010;4(4):1660-1697.

Fu, Y., et al. FunSeq2: A framework for prioritizing noncoding regulatory variants in

cancer. Genome biology 2014;15(10):480.

Gabriel, E., et al. Open MPI: Goals, concept, and design of a next generation MPI

implementation. Springer 2004:97-104.

Harrow, J., et al. GENCODE: the reference human genome annotation for The

ENCODE Project. Genome research 2012;22(9):1760-1774.

Lawrence, M.S., et al. Mutational heterogeneity in cancer and the search for new

cancer-associated genes. Nature 2013;499(7457):214-218.

Lloyd, S.P. Least Squares Quantization in PCM. IEEE Transactions on Information

Theory 1982;28:128-137.

Nickolls, J., et al. Scalable parallel programming with CUDA. Queue 2008;6(2):40-

53.

Thurman, R.E., et al. The accessible chromatin landscape of the human genome.

Nature 2012;489(7414):75-82.

Vinagre, J., et al. Frequency of TERT promoter mutations in human cancers. Nature

communications 2013;4:2185.

Wang, K., et al. Whole-genome sequencing and comprehensive molecular profiling

identify new driver mutations in gastric cancer. Nature genetics 2014;46(6):573-582.

Yip, K.Y., et al. Classification of human genomic regions based on experimentally

determined binding sites of more than 100 transcription-related factors. Genome

biology 2012;13(9):R48.

