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ENCODEC:	A	large	scale	integrative	resource	from	ENCODE	for	
cancer	research	

Introduction	
A small fraction of mutations associated with cancer have been well characterized, particularly those coding regions 

of key oncogenes and tumor suppressors. However, the overwhelming bulk of mutations in cancer genomes – particularly 
those discovered over the course of recent large-scale cancer genomics initiatives – lie within non-coding regions. 
Whether these mutations drive cancer development or progression, or simply emerge as byproducts of genomic instability 
remains an open question \cite{26781813}.  

Several recent studies have begun to address this question by incorporating limited functional genomics data for 
variant interpretation \{cite 25261935, 27064257, 27807102}. For example, Hoadley et al integrated five genome-wide 
platforms and one proteomic platform to uniformly classify various tumor types \{cite 25109877}. Torchia et al integrated 
various genomic and epigetnic signals to identify promising therapeutic targets in rhabdoid tumors \cite{27960086}. 
Lawrence et al. incorporated large-scale genomics profiles to identify cancer drivers \{cite 23770567}. However, there 
is no systematical integration of thousands of functional genomic data sets from tens of experimental assays of various 
types to interpret the cancer genome. 

The main goal of the ENCODE Consortium is to systematically map the functional elements in the human genome. 
In the initial release of the ENCODE annotation years ago, this was predominantly accomplished using RNA-Seq and 
ChIP-Seq assays on a limited number of cell types \cite{22955616}. The new release of ENCODE took two new 
directions. First, it considerably broadened the number of cell types with the main RNA-Seq, ChIP-Seq, and DNase-Seq 
assays; the main ENCODE encyclopedia aims to utilize this to provide a general, unified annotation resource applicable 
across many cells. Secondly, ENCODE expanded the number of sophisticated assays such as STARR-Seq, Hi-C, ChIA-
pet, eCLIP and RAMPAGE on several top-tier cell lines, many of which are cancer-associated. This enables precise 
definitions of enhancers, direct identification of enhancer-target gene links, and the construction of RNA-binding protein 
(RBP) networks. Here, we focus on top-tier cell lines by performing large-scale integration of these various assays to 
construct an in-depth cancer related companion resource to the general encyclopedia. We call this the “companion 
ENCODE encyclopedia resource for cancer” (or “EN-codec” for short) for interpreting the wealth of mutational and 
transcriptional profiles produced by the cancer research community.  [[JZ2MG: ENCODEC or EN-codec?]] 

Comprehensive	functional	characterization	by	ENCODE	data	integration		
The ENCODE top-tier cell lines provide good models not only for studying gene regulation in detail, but also for 

understanding cancers of the blood (K562), breast (MCF-7), liver (HepG2), lung (A549), brain (SK-N-SH), and cervix 
(HeLa-S3). In different contexts, these top-tier cell lines can be "paired" with functional genomics data form normal 
tissue (often from epigenome roadmap) or another immortalized cell line from corresponding healthy tissue (Fig 1 A). 
We reconciled multiple related data from many normal cell types to the main tumor cell lines and believe that such 
comparisons of these "TN-pairs" could help to model the differential gene regulation between tumor and normal tissues. 
It is worth noting both relating these cell lines to cancers and pairing the tumor-normal matches is approximate in nature 
and are not intended to substitute real tumor and normal tissues. However, cancer is such a heterogeneous disease that 
even the tumor cells from one patient usually shows distinct molecular, morphological, and genetic profiles 
\cite{24048065}. It is difficult to obtain a "perfect" match even from data of real tumor and normal tissues. We believe 
that these "TN-pairs" still serve as good models for performing a wide variety of functional genomics profiles, 
perturbation assays, and experimental validations. Furthermore, many of these pairings have been used in previous 
analyses \{cite 25144821, 1975513}(Figure 1 A & supp Fig. s2). 

To build the companion encyclopedia, we started by defining enhancers. We used genomic signal tracks from a 
battery of 5 to 10 histone modification marks in combination with DNase-seq. These were used as input into CASPER, 
a machine learning predictor that we developed to integrate the signal shapes of these various signals. We then assembled 
these predictions with peaks called from STARR-Seq experiments, which directly read out candidate enhancers in the 
genome. Such an integrative approach gives accurate definitions of enhancers (see supplement). We then used 
RAMPAGE data to better define promoters, and further linked enhancers to putative promoters using a deep learning 
algorithm. These potential linkages were then further filtered through the results of Hi-C and ChIA-pet experiments to 
obtain high confidence enhancer target linkages. It is worth mentioning that ENCODEC provides enhancers at difference 
confidence levels, which includes tens of thousands of lenient enhancers from CASPER to only thousands of conserved 
enhancers supported by expression correlation, STARR-Seq, Hi-C, and ChIA-pet experiments. We also reconciled these 
enhancers with the main encyclopedia annotations by reporting the overlapped one and providing new IDs to the novel 
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ones. Finally, the conserved enhancer-target linkages, refined promoters, and RNA binding sites from eCLIP experiments 
within genes constitute a so-called extended gene neighborhood (Fig1 C). 

[[JZ2MG: pls see the two highlighted marks. We either say result is directly from chipseq not motif, or pointing it 
out by a separate sentence. Which do you think is better? We cannot do both.]] 

By incorporating the transcription factors (TF) binding profiles from real ChIP-Seq experiments, we further linked 
the conserved enhancers and promoters with their associated TFs to construct extended regulatory networks. First, we 
built cell-type-specific distal and proximal TF regulatory networks by linking TF to genes, either directly by TF-promoter 
interactions or indirectly via TF-to-enhancer-to-gene interactions (Fig1 B). It is worth mentioning that our TF regulatory 
network is built up based on direct peaks of ChIP-Seq experiments rather than motif analysis \cite{25409825}.  We then 
pruned these networks to include only the strongest edges using another signal shape algorithm called TIP \{cite 
22039215}. In paired "tumor-normal" cell lines, we measured the signed, fractional number of edges changing, the 
rewiring index, and ranked TFs by this. In addition, we merged our cell-type-specific networks to get a generalized 
network for pan-cancer analysis. For each network, we then arranged all regulators into a hierarchy. TFs are placed into 
different levels of the hierarchy to the degree which they directly regulate the expression of other TFs \{cite 25880651} 
or are in turn regulated by them. A final hierarchal network structure is shown in Fig1 D. This shows that the top layer 
TFs are not only enriched in cancer associated genes but also more significantly drive tumor-to-normal gene differential 
expressions. We also observe that highly mutated TFs tend to sit at the bottom of the hierarchy. 

Multi-level	data	integration	improves	variant	recurrence	analysis	in	cancer	
One of the most powerful ways of identifying key elements and functional mutations in cancer is with recurrence 

analysis to discover regions that mutate more than expected. However, somatic mutational processes can be influenced 
by numerous confounding factors (in the form of both external genomic factors and local sequence context factors), 
which can result in many false positives or negatives without appropriate correction \{cite 23770567}. In addition, 
traditional methods often neglect the natural association of different annotation types (e.g. a gene body and its linked 
enhancer) and evaluate regions separately. Consequently, they sometimes fail to identify mutational signals from 
distributed yet biologically relevant genomic regions, thereby limiting their functional interpretation. 

To address these limitations, we adopt a two-pronged approach for better recurrence analysis. First, we predict an 
accurate local background mutation rate (BMR) by removing effects of confounding factors in a cancer-specific manner. 
Specifically, we separated the whole genome into bins (1Mb) and calculated mutation counts under each local context 
category. For each category, we used a negative binomial regression of the mutation counts against features like 
replication timing, chromatin accessibility, Hi-C signal, and expression profiles for BMR prediction. In contrast to 
methods that use unmatched data \{cite 23770567}, our approach automatically selects the most relevant features, thereby 
providing noticeable improvements in BMR estimation, which significantly benefits recurrence analyses (Fig 2A). 
Notably it requires the combination of many different genomic features to get such an accurate estimation (Fig 2 B) 

Second, rather than separately testing standalone annotation categories, we used our extended gene neighborhoods 
as joint test units that contain both the coding exons and non-coding regulatory elements (Fig 1C). Such a scheme allows 
for the accumulation of weak mutational signals distributed across multiple biologically relevant functional elements, 
which may otherwise be missed if evaluated under individual tests. It should be noted that to maximize the statistical 
power to pick up highly mutated regions, we only incorporate the most conservative regulatory regions in to the extended 
gene burdening analysis. We demonstrate that our scheme can effectively remove false positives and discover meaningful 
regions with higher-than-expected mutation counts (Fig 2C). For example, in the context of chronic lymphocytic 
leukemia (CLL), our analysis identifies well-known highly mutated genes, such as TP53 and ATM, which has been 
reported from previous coding region analysis. It also discovered genes that are missed by the exclusive analysis of 
coding regions, such as BCL6. Note that BCL6 has strong prognostic value with respect to patient survival (Fig. 2D), 
indicating that the extended gene neighborhood could be used as an annotation set for recurrence analysis. In addition, 
we can easily generalize this BMR calibration approach for other cancer types beyond the five discussed here, as our 
model will pick an appropriately matched ENCODE feature type. 

Extensive	rewiring	events	in	regulatory	network		
We then integrated the binding sites from real ChIP-Seq experiments to set up cell-type specific network and 

investigated such network to highlight the key regulators in cancer. Here, we utilized 4 main tumor-normal cell line 
pairings described earlier to study how the targets of each common TF changed (i.e., rewired) over the course of 
oncogenic transformation. We first ranked TFs according the “rewiring index” (Fig. 3 A). In leukemia, well-known 
oncogenes such as MYC and NRF1 are among the top edge gainers, while the well-known tumor suppressor IKZF1is 
the most significant edge loser (Fig 3A). Mutations in this later factor serve as a hallmark of various forms of high-risk 
leukemia \cite{26202931, 26713593, 26069293 }. Interestingly, IKZF1 loss has been found to be associated with well-
known BCR-ABL fusion transcript, which is present in K562, and usually confers poor clinical outcome 
\cite{26069293}. In contrast, several ubiquitously distributed TFs retain their regulatory linkages (Fig 3A). We observe 
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a similar trend in TFs using a distal, proximal and combined network (see details in supplementary file). We also observe 
highly rewired TFs such as BHLHE40, JUND, and MYC in lung, liver, and breast cancers (Fig 3).  

Our rewiring index only considers direct connections associated with a given TF. However, the targets within the 
TF regulatory network are characterized by heterogeneous network modules (so called “gene communities”), which 
usually come from multiple biologically relevant genes. Instead of directly measuring the TF’s target changes for each 
gene, we determined these gene communities via a mixed-membership model. This enabled us to evaluate each TF’s 
overall association changes to these gene communities in tumor and normal cells. Similar patterns are observed using 
this model to using the rewiring index (Fig 3A).  

We find that the majority of rewiring events are associated with noticeable gene expression and chromatin status 
changes, but not necessarily with variant-induced motif loss or gain events (Fig. 3A). This is consistent with previous 
discoveries that most non-coding risk variants are not well-explained by the current model \cite{25363779}. For example, 
JUND is a top gainer in CLL. The majority of its gained targets in tumor cell lines demonstrate higher gene expression, 
stronger active and weaker repressive histone modification mark signals. We found a similar trend for the rewiring events 
associated with JUND in liver cancer.  

It has been doubted for decades that at least a subpopulation of the tumor cells have the ability to self-renew, 
differentiate, and regenerate, similar to what is conceptualized in normal stem cells \cite{24333726}. Hence, we tested 
whether the gain or loss events from the normal to tumor transition will result in a network that is more similar or different 
from that in stem cells like H1-hESC. Interestingly, we found the majority of the cancer associated gainer genes are 
changing away from H1-eESC cells while the loser group in tumor are more likely to move toward H1-eESC cells. 

[[JZ2MG: seems that we need one more conclusion like sentence to end up here, but to be disc next week.]] 

Integrating	regulatory	networks	with	tumor	expression	profiles	identifies	key	
regulators	in	cancer	

Next, we extended our network analysis in a pan-cancer fashion by merging the cell-type-specific networks for 
both TFs and RBPs.  Then using a machine learning method, we integrated 8,202 tumor expression profiles from TCGA 
to systematically search for the TFs and RBPs that most strongly drive tumor-specific expression patterns. For each 
patient, our method tests to the degree a regulators’ regulation potentials are sufficiently correlated with their targets’ 
tumor-to-normal expression changes. We then calculated the percentage of patients with these relationships in each 
cancer type and presented the overall trends for key TFs and RBPs in Fig. 4A. 

We find that the target genes of MYC are significantly up-regulated in numerous cancers, which is consistent with 
its well-known role as an oncogenic TF and a transcription activator \cite{22464321}. We further validate MYC’s 
regulatory effect through knock down experiments (Fig 4). Consistent with our predictions, the expression of MYC 
targets is significantly reduced after MYC knockdown (Fig 4A). After confirming the importance of MYC, we use the 
regulatory network to understand how MYC works with other TFs. We first looked at all triplets involving MYC by 
requiring that a second TF both interacts and shares a common target with MYC. In all cancer types, we found that 
MYC’s expression levels are positively correlated with the expressions of most of its targets, while the second TF shows 
only a limited influence as determined from partial correlations. We then investigated the exact structure of such 
regulatory relationships. The most common triplet interaction type is a well-understood feed-forward loop (FFL) structure 
in which MYC regulates both the common target and the second TF. Most of these FFLs involve well-known MYC 
partners such as Max and Mxl1. However, we also discovered that many involve another factor called NRF1. Upon 
further study, we found that that the MYC-NRF1 FFL relationships were mostly coherent ("amplifying") FFLs. We 
further studied these FFLs by forming these triplets into a logical gate, in which the two TFs act as inputs and the target 
gene expression represents the output \{cite 25884877}. We can show that the predominant number of these gates follow 
either OR or MYC-always-dominant logic. Thus, the ENCODE regulatory network not only helps find key regulators, 
but also to really demonstrate how they work in combination with other regulators. 

We also analyzed the RBP network derived from ENCODE eCLIP data and found key regulators associated with 
cancer. For example, the ENCODE eCLIP experiment has profiled many SUB1 peaks on the 3’UTR regions of genes, 
and we find that the predicted targets of the RBP SUB1 were significantly up-regulated in many cancer types (Fig. 4C). 
As a RBP, SUB1 has not been associated with cancer before. We thus validated this new association in liver cancer. After 
knocking down SUB1 in HepG2 cells, its predicted targets are also down-regulated relative to other genes (Fig. 4D). In 
addition, we found that the decay rate of SUB1 target genes are significantly shorter than non-targets (Fig. 4C). These 
results indicate that SUB1 may bind to 3’UTR regions to stabilize transcripts. Moreover, we found that the up-regulation 
of SUB1 target genes is correlated with a poorer patient survival in other cancer types such as lung cancer (Fig. 4). 
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Step-wise	prioritization	schemes	pinpoint	deleterious	SNVs	in	cancer	
Summarizing the analysis described above, EN-codec consists of number annotation resources: (1) a BMR model 

with matching procedure and a list of regions with higher-than-expected mutations in various cancers, (2) accurately 
determined enhancers, promotors and enhancer-target-gene linkages by integrating tens of different functional assays and 
their comparison with those in ENCODE encyclopedia; (3) extended gene neighborhoods, (4) tumor-normal differential 
expression and chromatin changes, (5) a regulatory network of TFs; (6) the TF’s position in the network hierarchy and 
rewiring status; (7) an analogous but less annotated network for RBPs. Collectively, these resources allow us to prioritize 
key features as being associated with oncogenesis. The workflow in Fig. 5A describes this prioritization scheme in a 
systematic fashion. We first search for key regulators that are frequently rewired, located in network hubs or at top of the 
network hierarchy, or significantly driving expression changes in cancer. We then prioritize functional elements that are 
associated with top regulators, undergo large regulatory changes in terms of expression levels, TF binding, and chromatin 
status, or are highly mutated in tumors. Finally, on a nucleotide level, we can pinpoint impactful SNVs for small-scale 
functional characterization by their ability to disrupt or create specific binding sites, or which occur in positions under 
strong purifying selection. 

Using this framework, as we described above, we subject a number of key regulators, such as MYC and SUB1, to 
knockdown experiments to validate their regulatory effects in particular cancer contexts (Fig 4D). Next here, we also 
identified several candidate enhancers in noncoding regions, associated with breast cancer, and validated their ability to 
influence transcription using luciferase assays in MCF7. We selected key SNVs, based on significantly recurrent 
mutations in breast cancer cohorts, within these enhancers that are important for controlling gene expression. Of the eight 
motif-disrupting SNVs that we tested, six showed consistent up- or down-regulation relative to the wild type in multiple 
biological replicates. One particularly interesting example, illustrating the unique value of ENCODE data integration, is 
in the intronic region of CDH26 in chromosome 20 (Fig. 5C). Both histone modification and chromatin accessibility 
(DNase-Seq) signals indicated an active regulatory role in MCF7, which was further confirmed as an enhancer by both 
CASPER and ESCAPE (STARR-seq) (Fig. 5D). Hi-C and ChIA-PET data indicated that the region is within a 
topologically associated domain (TAD) and validated a regulatory linkage to the downstream breast-cancer-associated 
gene SYCP2 \cite{26334652, 24662924}. We observed massive binding events from TFs in this region in MCF-7. Motif 
analysis predicts that the particular mutations found in the cohorts can significantly disrupt the binding affinity of several 
TFs, such as FOSL2, in this region (Fig. 5D). Luciferase assays demonstrate that this mutation introduces a 3.6-fold 
reduction in expression relative to wild type expression levels, indicating a strong repressive effect on this enhancer’s 
functionality.  

Conclusion	
This study highlights the value of our companion to the encyclopedia as a resource for cancer research. First, we 

show that, by integrating many different types of assays on a large scale, we can achieve a very accurate annotation of 
ENCODE top-tier cell lines and relate them to cancer to build up extensive regulatory networks. We did notice that the 
representative tumor and normal cell types used here are very rough. However, cancer is such a heterogeneous disease 
that even the tumor cells from one patient usually shows distinct molecular, morphological, and genetic profiles 
\cite{24048065}. It is difficult to obtain a "perfect" match even from data of real tumor and normal tissues. Then we 
show how comparisons within this resource itself can illuminate potential regulatory changes in cancer (e.g. key rewiring 
TFs). Next, we show how the resource can be generalized into a pan-cancer regulatory network and BMR framework to 
help interpret patient data from cancer cohorts, both gene expression and mutation data. Finally, we show how we can 
leverage the companion resource to provide a prioritization scheme to pinpoint key regulatory elements and SNVs for 
small-scale follow-up. This study underscores the value of large-scale data integration, and we note that expanding this 
approach (either by integrating additional data types and/or using tumor mutation and expression data on a larger scale) 
is straightforward. We also anticipate that an additional step would be to carry out many of the ENCODE assays on 
specific tissues and tumor samples. Though volume of material needed for such analyses may present challenges, we 
show that such a framework is technically feasible and provides further opportunities for the future. 

Deleted: [JZ2MG: MP questioned that some RBPs in 
Figure4 are not RBP… But somehow they are eCLIPped. 
Not sure whether we should go into so much details]

Deleted: our 

Deleted:  resource

Deleted: based on the network, for each 

Deleted: DNase-seq

Deleted: 58



Page 2: [1] Deleted jingzhang.wti.bupt@gmail.com 4/6/17 2:53:00 PM 

[JZ2MG:	actually	I	personally	feel	a	little	bit	uncomfortable	of	all	using	the	present	
tense	through	the	paper.	I	agree	with	Shirley	that	past	tense	is	better.	Please	advise]	
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