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Thousands of somatic mutations accumulate within coding and non-coding regions of a typical cancer 

genome. However, only handful of these mutations, often termed drivers, play key roles in tumorigenesis. 

Previous studies have comprehensively characterized coding driver variants in large number of cancer 

genomes. However, most somatic mutations lie in non-coding regions. Prior studies have shown that 

driver mutations occur in the TERT promoter in many cancer types. However, identifying driver 

mutations in other non-coding elements has remain a challenge. 

On page XXX, Esther et al. focus on the mutations in promoter regions of 3 key genes, which 

play important role in breast cancer progression. They found that mutations leading to gain-of-motif 

events in FOXA1 and RMRP promoters facilitate enhanced binding of transcriptional activators and 

increase gene expression. In contrast, mutations in the promoter of NEAT1 disrupted motifs, thereby 

reducing expression. 

To identify these key genes, Esther et al. applied an “exome-plus” sequencing strategy (capturing 

exons, promoters, untranslated regions, and other regulatory motifs in the genome) to identify variants in 

360 breast cancer samples. They subsequently developed and applied the MutSigNC tool on this cohort to 

identify promoter regions of nine genes as driver elements for breast cancer. MutSigNC evaluates non-

coding regions associated with specific genes, and predicts that these elements may act as cancer drivers 

if they either a) harbor significantly high variant counts relative to expectation, or b) contain clusters of 

mutations around their regulatory motifs. Furthermore, MutSigNC considers the total mutation frequency 

and total frequency of bases with sufficient coverage across all analyzed elements to compute the patient-

specific background mutation rate. Similarly, mutation cluster in a non-coding element is defined based 

on whether there is cluster of mutation present more than a random expectation. determined in an element 

compared to a random expectation. Functional assays, which evaluate changes in gene expression and 

protein binding, were used to assess the effects of mutations on the identified set of driver regions. 



Leveraging these assays, they were able to determine that mutations within promoters of FOXA1, RMRP 

and NEAT1 significantly alter transcription.  

Furthermore, these functional assays were used to propose a mechanism of action for the hotspot 

mutation within the promoter of FOXA1, wherein the variant induces a gain-of-motif event, thereby 

facilitating a canonical binding mode of the E2F transcription factor. The resultant overexpression of 

FOXA1 opens chromatin, which further promotes binding of the estrogen receptor (ER) to its target 

binding sites in the genome.  

Major challenge associated with identifying non-coding drivers can be attributed to low patient 

cohort sizes and inadequate sequencing coverage in promoters (as a result of high GC nucleotide content). 

Nonetheless, this study is sufficiently powered to identify drivers in promoter elements, which are 

mutated in at least 10% of patients within the studied cohort. However, power analyses indicate that we 

would require larger cohort size to detect majority of driver mutations which are typically present in 3-5% 

of patients. Interestingly, close inspection of mutational hotspot percentages and functional mutation rate 

of various genes indicate similar abundance of hotspot in coding and promoter region but smaller 

functional territory for promoters. 

This study clearly elucidates the key role of regulatory variants in promoter regions of different 

genes involved in breast cancer progression. A logical extension will be to determine whether promoter 

elements of other genes harbor driver mutations in different cancer types. Similarly, we also need to 

comprehensively investigate the presence of driver mutations in other regulatory elements such as UTRs, 

enhancers and non-coding RNAs (ncRNAs). However, the exome-plus approach adopted in this study 

might be limited when trying to identify driver events in other regulatory elements. Thus, it is important 

to leverage whole-genome sequencing (WGS) to comprehensively characterize driver mutations in non-

coding regions of the genome. Furthermore, WGS will also aid in identifying other categories of driver 

alterations, such as copy number aberrations and large SVs. The relatively uniform coverage across the 

genome provided by WGS can also help in accurately identifying variants in GC-rich regulatory regions. 



Similarly, statistical power is pivotal in identifying coding as well as non-coding driver variants. 

For a number of reasons, uncovering driver mutations in non-coding elements is far more challenging 

relative to those in to coding regions. First, non-coding regions are generally much larger than coding 

regions. Second, we lack information regarding the functional unit or regulatory motif boundaries for 

most non-coding elements. Third, evaluating the functional impacts of variants in non-coding regions is 

less straightforward than in coding elements. Furthermore, although both coding and non-coding regions 

comprise discontinuous blocks of functional annotation, there is clear distinction between them. For 

instance, exons in a coding region are clearly linked through splice junctions. However, we usually lack 

such clear demarcation sites for the regulatory units in a given non-coding region. Finally, coding regions 

often reside within uniform chromosomal and epigenetic contexts. In contrast, the genomic context of 

non-coding regions is relatively more heterogeneous, thereby making background mutation rate 

estimation quite challenging. Thus, non-coding driver discovery often requires correction for many 

covariates, such as chromatin state, transcriptional activity and replication timing, which is non-trivial. 

A simplistic (but exceedingly expensive) approach deal with these challenges is to sequence a 

large number of patients in a given cohort. An alternative approach will be to develop better functional 

annotations of the non-coding genome with precise definition of functional motifs. Furthermore, we will 

need to link these functional motifs into distinct modules to better estimate the functional burden of the 

non-coding genome. We will also need to accurately distinguish between functional consequences of 

high-impact (such as motif-breaking events) and low-impact mutations. Another approach will be to 

identify small blocks of ultra-conserved non-coding elements and ultrasensitive sites in the genome 

(though a detailed understanding of such elements is often missing). Finally, accurate functional 

annotation will help in proper estimation of background mutation rates (thought the statistical challenges 

of such estimations should not be understated). 

Thus, larger cohorts remain a popular paradigm, and this approach is adopted by the Pan Cancer 

Analysis of Whole Genome (PCAWG) project, in which ~2800 tumor-normal samples for 40 different 

cancer subtypes have been sequenced through WGS. The large number of samples sequenced can provide 



sufficient power to detect sparsely mutated regulatory elements. In addition, there is a vital need to 

develop more accurate non-coding genome annotations. The accuracy of non-coding annotation is 

particularly important because of their scale. An appreciable false positive rate in defining the annotations 

or inaccurate annotations will quickly dilute any signal for positive selection in non-coding regions.  

In summary, the work by Esther at al. underscores the importance of identifying non-coding 

driver mutations in cancer genome. The falling costs of WGS will further bolster such efforts to 

comprehensively characterize all clinically significant alterations in cancer genomes. Finally, these 

comprehensive catalogues of clinically relevant alterations will help us to achieve the goal of cancer 

diagnosis and precision medicine. 


