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tSNE: t-Distributed Stochastic Neighbor 
Embedding

• tSNE performs non-linear dimensionality reduction on 
high-dimensional data (van der Maaten and Hinton, 
JMLR 2008) providing more flexibility than linear 
techniques such as PCA

• Matches the local density around each data point (i) by 
minimizing the KL-divergence between high (P) and 
low (Q) dimensional local distributions

• Widely used in machine learning to visualize and 
discover structure in high dimensional data
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Dimensionality reduction tool for the 
exRNA atlas

• Tool in Genboree for performing tSNE and PCA on 
exRNA atlas data
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WGCNA: Weighted gene coexpression
network analysis

• WGCNA finds modules of coexpressed genes by 
clustering expression patterns across samples/tissues/ 
biofluids (Zhang and Horvath, 2005)

• First builds network using correlations between 
expression patterns, then hierarchically clusters genes by 
connectivity and applies a dynamic tree cut algorithm

• Number of clusters is controlled by the minimum 
module size, and the network connectivity

• Module expression patterns summarized by applying 
linear dimensionality reduction (SVD) to identify 
‘eigengenes’
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Visualizing miRNA modules from the 
exRNA atlas using tSNE

• N=48 samples including controls and 5 placental 
dysfunction conditions (Louise Laurent);                      
2411 miRNAs total, 1419 miRNAs clustered

module [count]

[234]
[230]
[109]
[98]
[83]
[57]
[50]
[46]
[43]
[37]
[37]
[37]
[33]
[32]
[25]
[25]

[24]
[23]
[21]
[19]
[18]
[18]
[17]
[17]
[14]
[13]
[13]
[12]
[12]
[11]
[11]

6



2d/3d tSNE for individual modules 
• Module 1, 234 miRNAs: hsa-miR-92a-3p, hsa-miR-25-

3p, hsa-let-7a-5p, hsa-let-7g-5p, hsa-miR-191-5p…
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2d/3d tSNE for individual modules 
• Module 3, 109 miRNAs: hsa-miR-486-5p, hsa-miR-

451a, hsa-let-7b-5p, hsa-let-7i-5p, hsa-miR-22-3p …
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2d/3d tSNE for individual modules 
• Module 7, 50 miRNAs: hsa-miR-1258, hsa-miR-1247-

5p, hsa-miR-520g-5p, hsa-miR-4677-5p …
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ANOVA test for module relevance to 
chosen factor (biofluid)

• Apply ANOVA to module eigengene values to test 
which modules are relevant to a chosen factor

• Example: Biofluid discrimination across atlas (N=1075 
samples; 7 fluids: CSF, Plasma, Serum, Saliva, Urine, 
Cultured media, Bile; red = significant at FDR = 0.05)
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ANOVA test for module relevance to 
chosen factor (Placental dysfunction)

• Example: Placental dysfunction condition discrimination 
(N=48 samples (Louise Laurent); each condition tested 
against control; red = significant at FDR = 0.25)
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modules 1-31 modules 1-31 …
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tSNE validation of discriminative modules 
for biofluids

• 124 samples (Kendall Van Keuren-Jensen) from 
CSF/Serum control samples

• Comparing sample-based tSNE using all miRNAs (left) 
and using only most discriminative module (right, 10 
miRNAs: hsa-miR-4640-5p, hsa-mir-30b, hsa-mir-92a-
1, hsa-miR-4644, hsa-miR-3942-3p …)

(124 samples)(124 samples)
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tSNE validation of discriminative modules 
for biofluids

• Comparing sample-based tSNE using all miRNAs (left) 
and using only least discriminative module (right, 20 
miRNAs: hsa-miR-4289, hsa-miR-4515, hsa-miR-5004-
3p, hsa-miR-6814-3p, hsa-miR-6759-5p …)

(124 samples)(124 samples)
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Varying the tSNE perplexity
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• Placental dysfunction samples (black = control, 5 colors = conditions)



Decision trees to identify tissue/cell-types 
using cellular miRNAs

• Decision tree for cellular miRNA contents
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miR-203 is induced in the skin
concomitantly with stratification 

and differentiation
Yi R, Poy MN, Stoffel M, Fuchs E. A skin microRNA promotes 

differentiation by repressing “stemness.” Nature. 2008;452(7184):225-
229. doi:10.1038/nature06642.
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miR-515-5p is a highly specific 
placental microRNA and showed 
significant increase in maternal 

plasma concentrations 
throughout gestation

Katerina Kotlabova, Jindrich Doucha, Ilona Hromadnikova, 
Placental-specific microRNA in maternal circulation –

identification of appropriate pregnancy-associated microRNAs 
with diagnostic potential, Journal of Reproductive Immunology, 

Volume 89, Issue 2, May 2011, Pages 185-191, ISSN 0165-
0378, http://dx.doi.org/10.1016/j.jri.2011.02.006.



Biofluid decision trees: miRNAs
• Learn decision tree for discrimination of 6 biofluids

using individual miRNAs
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Biofluid decision trees: piRNAs/tRNAs
piRNAs:

tRNAs:
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Biofluid decision trees: miRNA-modules

• Decision tree for biofluids learnt using module 
eigengene values

• 3 modules dominate (8, 5 and 7 miRNAs in each: hsa-
miR-5584-3p, hsa-miR-6507-3p, hsa-miR-6717-5p …)
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Comparing miRNA and miRNA-module 
based decision trees

Number of modules in model
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Summary
• tSNE may be used to probe for structure in data using 

sample-based and miRNA-based views
• Modules may provide discriminative information as 

biomarkers of pathological conditions, and provide 
insight into exRNA regulation/function across 
biofluids

• Validation of discriminative power of 
modules/miRNAs via decision tree analysis: cell-
type/tissue and biofluid classification
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Thanks for your attention!
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