
Aim 1 

Capstone 1. Cross-Disorder Gene Expression Analyses 

 
Specific Aims of the Capstone 1 [prepared by Dan, Chunyu & Kevin] 
Psychiatric disorders are highly heritable, but also have a highly complex, polygenic risk 
architecture polygenic risk architecture [1, 2]. It is becoming increasingly appreciated that both the 
rare and common genetic variation that contributes to these disorders often lies outside of 
coding regions, and because of this it is expected that most of this disease risk will act on gene 
regulation, rather than protein structure. So, to have mechanistic knowledge of how genetic risk 
leads to disease it is necessary to connect genetic variation to its functional consequences. This 
necessitates comprehensive analyses of the regulatory regions, epigenetic modifications, and 
gene expression patterns present across brain regions and comparing these patterns between 
healthy and diseased human brain. The PsychEncode project is focused on providing a 
landmark resource elucidating the landscape of the regulatory genome as it applies to brain 
development and function, so as to permit mechanistic interpretation of disease associated 
genetic variation across several major psychiatric diseases. 

The consortium is essentially organized around specific techniques and individual disorders, 
with no single laboratory or group performing transcriptomic, methylomic and chromatin 
structure analyses across all of the major disorders. The importance of cross-disorder analyses 
is becoming more appreciated as both a significant proportion of polygenic risk and rare risk 
variants cross disease boundaries boundaries [1-5]. Since the majority of the original funding has 
gone into generating data, additional support for integrative cross disorder analyses are 
necessary. The analysis that is currently funded is primarily geared towards individual diseases, 
or otherwise limited in scope. 

Here we (Geschwind, Liu and White) propose to begin collaborative cross disorder analyses 
within PsychEncode from data already generated, and build a process that incorporates 
additional data as it is produced. This is one of four capstone projects that we expect to lead to 
significant publications within the next one year, so as to increase the profile of the resource 
within the community, and provide data and analyses that will guide future work. At this point, 
there will sufficient RNAseq data and genotyping data to perform cross disorder analyses of 
RNAseq based gene expression, as well as preliminary eQTL analyses. Subsequently as 
additional data on histone modifications and chromatin structure become available, these will be 
intergrated into cross disorder analysis. The data that is available for this project is summarized 
in the Table above. 

RNAseq have undergone 50 or 100 bp paired end Ribo-Zero based sequencing at an average 
depth of about 50M reads per sample. By June 2016, a total of 600 samples representing 113 
individuals from UCLA will be completed and quality checked. Combined with the Common 
Mind (CMC) samples, which after QC and removal of outliers includes BD (n = 44), SCZ (161) 
and control samples (236) and the BrainGVEX cohort (19 SCZ, 17 BD and 184 controls), this 
will amount to over 600 SZ, 300 BD, and 65 ASD and a similar number of matched control 
samples, as well as additional control brains.  Genotypes are available from most of the 
samples, permitting reasonable powered eQTL and sQTL analysis. We will lead the efforts 
gathering the data so a cross-site analysis can be performed. 



Proposed Activities: 

1) Identify cross disorder patterns of differential gene expression (DE) and splicing. We will 
combine all of the RNAseq data and process it accounting for biological and technical covariates 
using a linear mixed model to define DE genes. We will also perform meta-analysis of logFC 
values using a random effects model, restricted maximum likelihood estimate with the metafor 
package in R (Viechtbauer W. 2005). In tandem, we will perform the same analysis using a smaller 
subset of carefully matched samples (age, sex, RIN) to show that the regression does not bias 
the results. 

For splicing we will calculate the percent spliced in (PSI) of each alternative splicing event using 
MATS, which performs very well for simple splicing events [6, 7]. In the future, we can compare 
MATS to other methods to identify novel splicing events, which may not be detected by MATs  

2) We will create cross disorder gene networks using WGCNA[8] to identify distinct as well as 
overlapping biology. We will start by using ME correlations (stringently corrected for multiple 
comparisons) to identify how the transcriptional alterations in ASD, SCZ, and BD cerebral cortex 
are altered to control brain networks, as well as identify disease specific patterns. In separately 
funded work, the Geschwind lab has been working with the Battle lab at Hopkins to develop 
integrating splicing and expression networks. Once these methods are more fully tested, they 
can also be applied to this problem. eQTL data derived in #3 below will also be used to identify 
causal relationships, adding causal directionality to the network edges, which is not possible at 
large scale and with precision using expression data alone. 

3) We will perform eQTL and sQTL analyses to permit causal inference. Using the Network 
Edge Orienting (NEO)[9] with the WGCNA and disease association data, we can calculate 
probabilities of edges of all the network connections. Subsequently, causal inference can be 
resolved for some of the regulatory relationships, and disease GWAS signals as well. 

In addition to using individual genes and splicing events, we will also use control and disease 
specific module eigengenes as composite measures to identify possible trans eQTL that may be 
driving co-expression. This will permit tying causal genetic factors to the observed 
transcriptional alterations at a network level. 
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Capstone 2. Adult and Disease - Epigenetic map 

Subaim 1.3 Transcriptome and eQTL analyses across human 
brain development (Capstone 3a) 
Several studies have pointed to mid-fetal brain development as the vulnerable period for ASD 
and schizophrenia risk. It is therefore critical to map and study and the effect of DNA variations 
on gene expression during the prenatal and postnatal brain development. Capstone project 3a 
proposes to map eQTLs in the human neocortex across prenatal and postnatal development. We 
are performing RNA-seq and whole genome sequencing (WGS) data from 200 neocortical 
samples across multiple periods of development including the entire course of the prenatal 
development, infancy and adolescence. 
In continuation of our previous efforts, for the detection of genetic variants by WGS, we will utilize 
the GATK pipeline for local realignment for indels, base quality score recalibration, SNP and indel 
calling, and variant quality score recalibration. Alongside the variant calling pipeline we will run 
extensive quality metrics that include assessment of sequencing quality, read coverage, duplicate 
reads, Ti/Tv ratio, and number of detected variants. To accurately measure gene expression 
levels, several first order QC analyses will be implemented, followed by employing RSEQtools to 
quantify expression. Two types of gene expression values- read counts and RPKM (reads per 
kilobase of exon model per million mapped reads)- will be generated and the R package DESeq 
will be used to identify differentially expressed (DEX) genes. Cis-eQTLs will be identified through 
linear regression between normalized gene-level expression values and individual genotypes, 
focusing on all SNPs within ±1 Mb of the transcriptional start site (TSS) of each gene, as done by 
the Genotype-Tissue Expression (GTEx) project. Any batch effects, technical/biological 
covariates, or other important covariates for gene expression will be included in the regression 
analysis. Due to our modest sample size for eQTL discovery, we expect that the effect size of 
trans-eQTLs will make detection difficult in this cohort. However, we would explore detecting 
trans-eQTLs by correcting only for SNPs and not for genes. 
In addition to these efforts, we will seek to identify structural variants (SVs), including copy number 
variants (CNVs), to identify svQTLs in the human brain across development. There is substantial 
evidence that large, rare CNVs contribute risk to psychiatric disorders, including ASD and 
schizophrenia and the GTEx consortium has recently demonstrated profound regulatory impact 
of SVs and ascribed common CNVs to previously implicated risk loci from GWAS of several 
disorders. Using WGS data from 2,000 samples from ASD families in the Simons Simplex 
Collection and in collaboration with the Talkowski lab at Harvard/MGH we have developed a 
reliable pipeline for SV detection. This combines seven prediction algorithms to capture both 
changes in read-depth (Genome STRiP, CNVnator, CN.mops) and split reads/read-pairs 
indicating SV breakpoints (Lumpy, Delly, Wham, Manta). svQTLs will be identified using methods 
described in the GTeX paper, specifically assessing gene-level expression normalized by gene 
length. We will identify common and rare svQTLs using FastQTL to assess the 1Mbp upstream 
and downstream of the SV breakpoint. We will assess overlap with cell type specific markers to 
identify svQTLs that are potentially specific to certain cell types. 



We also propose to assess whether there is evidence of enrichment for noncoding de novo 
mutations identified in whole genome sequencing (WGS) data from over 5,000 samples in autism 
spectrum disorder (ASD) families. Our prior work on 519 ASD families has identified 69 de novo 
mutations per child. Comprehensive analysis of about 60,000 annotation categories did not 
identify a significant excess of mutations in cases vs. sibling controls for any independent category; 
the strongest signal came from de novo missense mutations. We are working on extending this 
analysis to over 1,300 ASD families. Along with increasing the sample size, we need to identify 
noncoding regions likely to have functionally important impact in neurodevelopment. The QTLs 
from the data of this capstone project provide an independent method to identify such regulatory 
regions. We will assess whether there is evidence of enrichment of de novo mutations in ASD 
cases under all QTLs using 10,000 label-swapping permutations to assess significance. In 
addition, we will consider subsets of these QTLs based on gene target (e.g. brain expressed 
genes, ASD genes), species conservation, and QTL specificity (e.g. evidence of QTL effect limited 
to specific developmental stages or cell types). 
 

Capstone 3b. Construction of a Developmental EpiMap 

 
ABSTRACT 

The goal of PsychENCODE project is to map and characterize transcriptomes and functional 
genomic elements from the postmortem human brain as well as cell culture systems in normal 
human brain and across disorders. Within the PsychENCODE, the aim of our parent project is to 
compare transcriptomes and regulatory genomic elements mapped by acetylated and methylated 
histones between mid-fetal human brains and brain “organoids” derived from induced pluripotent 
stem cells (iPSC) derived from the same fetal specimen. The scope is to validate the iPSC model 
by directly comparing isogenic neurons that are iPSC-derived with those derived from postmortem 
human brains. The scope of this supplement is two-fold:  (1) to complete data analyses in order 
to achieve the scientific goals of Capstone 3b, and (2) to contribute to the activities of the 
DAC/DCC. In Capstone 3b (Construction of a Developmental EpiMap), we will achieve the 
goal of understanding differences across age (early development through adulthood) with respect 
to gene expression and regulatory elements; we will accomplish this goal by integrating our 
datasets with those generated by the entire PsychENCODE project.  The data will be also 
compared to those obtained from external datasets (BranSpan, GTEX, Roadmap). The scope of 
this capstone is to understand differences in gene regulation across human development and 
how regulatory genomic regions control the transcriptome as cortical development unfolds 
dynamically. The scope of the DAC/DCC is to complete processing of all data according to 
common RNA-seq and ChIP-seq pipelines and ensure sharing and dissemination of all data to 
consortium members and the scientific community. Thus, the current supplement will allow us to 
(1) contribute to the overall activities of the DAC/DCC; (2) finish RNAseq and Chipseq data 
analyses pertinent to Capstone 3b; (3) perform cross-comparative and integrative analyses 
pertaining to Capstone 3B using both PsychENCODE and external datasets (3) submit 
manuscripts for wide dissemination to the scientific community. 

SPECIFIC AIMS 

Specific Aim 1.  Capstone 3B. 

Aim 1A. Analyses of RNAseq datasets. Perform comparative analyses between fetal, early 
postnatal and adult brain transcriptomes as well as cellular model systems (iPSC-derived 
organoids at different stages of development and CNON cells) from Psychencode consortium 
datasets; correlate with external datasets such as BrainSpan and other consortia. 



Aim 1B. Analyses of Chip-seq datasets. Comparison of acetylated and methylated histone 
marks and maps of open/closed chromatin states across normal development, and focusing on 
three stages: (1) fetal; (2) childhood; (3) adulthood. Using Psychencode consortium data, 
specifically assess genome-wide enrichment for the histone marks H3K4me3, H3K27ac, 
H3K27me3 in mid-fetal development, childhood and adulthood brain samples. The aim is to find 
specific elements whose activity is increased or decreased at specific stages to map their overall 
spatio-temporal dynamics across epochs of human brain development. 

Aim 1C.  Define the location and activity of putative promoters and enhancers to construct 
a developmental epigenomic brain map focusing on three stages: (1) fetal; (2) childhood; (3) 
adulthood, and the correspondence of this epimap with neural cells derived from the in vitro model 
systems, iPSCs-derived telencephalic organoids and cultured neuronal cells derived from 
olfactory neuroepithelium (CNON cells). Use histone Chip-Seq data and ChromHMM for each 
tissue type to segment chromatin into distinct states corresponding to particular biochemical 
functions, for example, promoters enhancers, insulators. Call putative enhancers and promoters 
from Chip-Seq and ChromHMM analyses; perform comparative analyses of active enhancer and 
promoters between fetal, early postnatal and adult cortical brain samples as well as cellular model 
to identify the brain-specific gene regulatory elements that are active in different stages of 
development, in models, 

Aim 1D. Perform higher order analyses. Using published Hi-C datasets available for fetal and 
adult brain, integrate the transcriptome and chromatin/TF-binding datasets to link transcripts with 
likely promoters. Intersect the developmental EpiMap constructed above with datasets of putative 
mutations in developmental disorders (autism, intellectual disabilities) that are becoming 
publically available, such as MISSNG and SFARI. Identify and catalogue those noncoding 
transcripts that are in loci previously implicated in developmental disorders such as autism. 

Specific Aim 2. Participation to DAC/DCC activities. 

Aim 2A. DAC. Processing of RNA-seq and ChIP-Seq through a common pipeline and implement 
a standard genotype imputation pipeline. 

Aim 2B. DCC. Coordinate data analyses generated through the psychENCODE project grants, 
maintain the online, publicly accessible record of data, identify long term storage solutions and 
promote their quick dissemination to the research community. 

EXPERIMENTAL DESIGN AND METHODS: 

Aim 1A. We will analyze PsychENCODE consortium datasets at different stages of development 
including fetal, early postnatal, and adult brain tissue as well as cellular model systems (iPSC-
derived organoids at different stages of development and CNON cells) to identify and annotate 
transcriptionally active region to reference to all transcripts (expressed genes, small, long and 
regulatory RNAs). We will use edgeR to compare transcripts expression levels, from counts data, 
at different stages of development as well as cellular model systems. Pearson’s rank correlation 
coefficients of gene expression and number of differentially expressed genes will be used to make 
judgments about similarity of iPSC-derived and dissected cells. 

Aim 1B. From histone Chip-Seq data we will identify histone peaks that can be related to 
actively transcribed or repressed genes/regions. For each histone mark, we will cluster samples 
by peak concordance (the fraction of common peaks between a pair of samples). This clustering 
analysis will include PsycENCODE consortium datasets, including fetal, early postnatal, and 
adult brain tissue and iPSC-derived neurons and CNON cells, and external datasets from 
projects such as BrainSpan and Roadmap Epigenomics (Roadmap Epigenomics et al., 2015). 
We expect that clusters should distinguish different developmental stages and cell types, for 
instance, fetal brains, early postnatal, adult brains, and cellular models, and that neuron-
enriched samples will cluster separately from glial samples. We will also detect differential 



peaks among the above time points from brains and cellular models. We expect to identify 
common and differential usage of active/poised/repressed promoters (H3K4me3 and 
H3K27me3) and active enhancers (H3K27ac) across developmental stages and cell types. This 
analysis is complementary to chromatin states described below. 

Aim 1C. We will segment the genome into distinct chromatin states using ChromHMM (Ernst 
and Kellis, 2012). To compare segmented chromatin states we will calculate a few metrics 
(reflecting various differences that can be observed in chromatin): fraction of genome with the 
same/similar/different states, quantitative values (i.e., phi coefficient) describing patters of 
changes in contingency table, distribution of boundary shifting between neighboring segments. 
We will calculate the values by these metrics for iPSC-derived vs VZ/SVZ progenitor and 
cortical neurons and compare values across cellular models (i.e., iPSC-derived neurons and 
CNON cells) and across different brain samples from PsychENCODE at different stages of 
development (fetal, early postnatal, and adult brain tissue) as well as external datasets such as 
BrainSpan and the roadmap epigenomic dataset of ENCODE 
(http://egg2.wustl.edu/roadmap/web_portal/). 

We will compare our results with those obtained by ENCODE and for non-brain related cell 
lines/tissues to define novel elements (e.g., TF peaks, expressed transcripts) and classify 
elements into broad classes: i) likely specific to brain; ii) pertinent to brain; iii) differentially active 
during brain development; iv) generic. We will define likely brain specific elements as those for 
which we have evidence of biochemical activity only in developing brain tissues (and, possibly, in 
brain cancer tissues analyzed by ENCODE) but not in other tissues/cell lines. 

Aim 1D. Having identified elements (both transcribed and regulatory) that are likely specific or 
pertinent to the embryonic, early postnatal and adult brain, we will correlate those with Hi-C 
published data for embryonic and adult human brain (Rao et al., 2014; Won et al., 2016) to infer 
likely coupling between regulatory and transcribed regions during human brain development. 

Here, we will link differentially expressed genes during brain development (Aim 1A) with 
differential regulatory regions (Aim 2) by measures of long range chromosome interactions 
derived from Hi-C data, in order to accurately match regulatory elements with their target genes. 
This will identify changes in chromatin interactions at those loci showing differential gene 
expression and differential epigenetic state during development. We are first aiming at assigning 
pairs of differentially active enhancers and genes. For differentially active enhancers (identified in 
Aim 1C) we will call genes that are in contacts with them using the Hi-C data. Identified genes will 
be tested for differential expression. We expect that a large fraction of the target genes (but not 
all of them, as due to the relatively low resolution of Hi-C contact map some genes may not be 
detected as targets of differential enhancers) will show differential expression in fetal vs adult 
brains, thereby validating the functional effect of the enhancers. Next we will conduct pathway 
enrichment using Ingenuity Pathway Analysis (http://www.ingenuity.com) and DAVID (Dennis et 
al., 2003) (https://david.ncifcrf.gov/). We expect enrichment of target genes in certain pathways, 
like GABAergic neuronal differentiation, which would also validate the differential enhancers.  
Additionally, we will conduct more refined and precise analysis of enhancer-gene interactions. 
For this, from Hi-C data we will identify TADs using Juicer (Durand et al., 2016) and TADtool 
(Kruse et al., 2016). For differential enhancers and genes within a TAD we will compare their 
interactions relative to a background inferred from other interactions within the TAD. Significant 
interactions will make a list of enhancer-gene pairs. Then we will test for TADs that are enriched 
with differential enhancers, by identifying TADs in which the ratio of differential to all enhancers 
within the TAD is significantly above genome-wide average. Genes in the TADs enriched for 
differential enhancers will be subject to differential expression analysis. Given that now we are 
not testing for all genes in the human genome, we will drastically reduce multiple testing and 
expect to find additional differentially expressed genes. Enhancer-gene pairs will be defined as 
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before. We will also extend our analysis by selecting 1% of TADs showing the smallest (but may 
be not significant) p-values of enrichment of differential enhancers. For those TADs we will 
perform differential gene expression and enhancer-gene matching as just described. As a result 
we will construct a list of differentially active enhancer-gene pairs. 
Analysis of mutations in ASD subject vs controls using the MSSNG and Simons 
collections. Personal variants for over 2,000 ASD subjects are available in each database. Each 
database contains variants for familiar trios and quartets rather than for single ASD subjects, and 
each family has a phenotypically normal parents and a child with ASD (almost always male). To 
match for sex, fathers will be used as controls. We will compare counts of rare variants defined 
from their allele frequency in the human population, i.e., <5% AF (set 1), <1% AF (set 2), and 
<0.1% (set 3). We will test for an enrichment of variants in ASD subjects vs controls in: i) 
differential enhancers and flanking regions of a few hundred base pairs; ii) TADs where differential 
enhancers were found (we hypothesize that pathogenic variants in these TADs may alter 
chromatin organization and affect enhancer activity; iii) TADs where differentially expressed 
genes were found (we hypothesize that pathogenic variants in these TADs may alter chromatin 
organization and affect gene expression). 
  

EXPECTED DELIVERABLES AND MILESTONES: 

Capstone 3B: 

(1) We will provide a comparison between transcripts expressed in cortical brain tissue and 
cellular models (i.e., iPSC-derived organoids and CNON cells) and transcripts that are brain 
specific and expressed at various stages of prenatal and postnatal development by comparing 
our datasets with the Psychencode, ENCODE and other external databases. 

(2.) We will produce a list of genomic elements (e.g. enhancers, promoters, TF binding sites, 
repressed regions) active in cortical brain tissue that are brain specific and expressed at specific 
stages of prenatal and postnatal development (from PsychENCODE datasets) and in cellular 
models (i.e., iPSC-derived organoids and CNON cells) to begin to construct a developmental 
epimap. 

(3) We will define the correspondence of the developmental epigenomic brain map with neural 
cells derived from the in vitro model systems and construct a list of differentially active regulatory 
elements and differentially expressed genes. Analysis of personal variants in public 
developmental disorders (MISSING, SFARI) will identify a, perhaps overlapping, list genomic 
elements that are enriched in variants associated with ASD. 

Milestones:                                                                                                         

Quarter 1: Completing RNA-seq analyses. Completing QC analyses for histone ChipSeq data. 

Quarter 2: Repeating some histone ChipSeq data. Completing analyses for existing ChipSeq 
data. Conducting data integration (regulome with expression). 

Quarter 3: Finalizing histone ChipSeq data analyses. Completing analyses for all ChipSeq data. 
Conducting data integration (regulome with expression). 

Quarter 4: Finalizing data integration. Completing analyses for capstone. Writing manuscripts. 
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Capstone 4. Integrative analysis with CommonMind, Brainspan, 
GTEx, ENCODE and ROADMAP 
We will perform integrative and comparative analysis using GTEx, roadmap, CommonMind, 
BrainSpan and PsychENCODE data. For doing this we will build on our considerable 
experience in ENCODE, modENCODE, 1000 Genomes and KBase in doing large scale cross 



project integrative and comparative analysis. In order to integrate data from different projects, 
we will use the data uniformly processed by PsychENCODE pipeline, then normalize the data to 
correct the batch effects. 
 
After we have normalized all the uniformly processed data from different projects, we will do 
more integrative analysis. In particular, we have developed a novel cross-species multi-layer 
network framework, OrthoClust, for analyzing the co-expression networks in an integrated 
fashion by utilizing the orthology relationships of genes between species (Yan, Wang et al. 
2014). We would like to identify the greatly differentially expressed genes in brain versus the 
other tissues in ENCODE and GTEx Project. These genes can be the biomarkers for 
distinguishing different tissues. After normalization, we then want to analyze their temporal 
expression dynamic patterns. We want to identify these expression patterns associated with 
specific brain regions and specific tissues. In particular, we will construct the gene co-
expression networks where genes are connected with correlated expression profiles across 
different tissues. We will then cluster this network into gene co-expression modules and find 
modules (with associated gene expression signatures) enriched in brain. Finally, we will identify 
the gene regulatory logics using Loregic that drive the tissue types such as the biomarker genes 
associated with specific tissues (Huffman, Koves et al. 2014).  
 
We will use the better enhancer definition provided by the Epigenome Roadmap (Leung, Jung 
et al. 2015, Roadmap Epigenomics, Kundaje et al. 2015, Ziller, Edri et al. 2015), and more 
recently from ENCODE projects.  We will predict brain specific active enhancers based on 
H3K27Ac ChIP-Seq datasets generated by the Epigenome Roadmap, ENCODE, brainspan and 
PsychENCODE projects. 
 
We will use Matrix eQTL and/or fastQTL package for eQTL analysis by integrating all genotype 
and gene expression data from GTEx, roadmap, CommonMind, BrainSpan and PsychENCODE 
data. The gene expression matrix will be normalized according to gender, Age, RNA Integrity 
Number (RIN) and library preparation batch (LIB) for eQTL analysis (Fromer, Roussos et al. 
2016). The genotypes from different projects will be imputed using the same reference panel 
and the same imputation pipeline. Probabilistic Estimation of Expression Residuals (PEER) 
factors, ancestry vectors, age and gender will be used as covariates input for Matrix 
eQTL/fastQTL. Based on our sample size, we will calculate both cis-eQTL and trans-eQTL. 
Finally we will correct for the multiple hypothesis tests of SNPs in LD for a given gene for eQTL 
analysis.   
 

Aim 2 

DAC 
We will use the standardized RNA-seq processing pipelines including data organization, format 
conversion, and quality control metrics to process the RNA-Seq data first. Specifically, we will 
employ STAR (Dobin, Davis et al. 2013) to align the reads to their reference genome and RSEM 
(Li and Dewey 2011) to quantify expression profiles of each type of annotation entry retrieved 
from the latest release of the GENCODE project.  Additional quality control measures will be 
introduced to assess potential issues including sequencing error rate, ribosomal contamination 
and DNA contamination. 



We will use the ENCODE ChIP-seq data processing pipeline developed by both Gerstein lab 
and Zhiping Weng’s lab. This pipeline includes steps of quality assessment, trimming the 
contamination, alignment of the fastq files, peak calling and downstream analysis such as peak 
comparison, peak annotation, motif analysis and super-enhancers identification. The Gerstein 
lab developed PeakSeq (Rozowsky, Euskirchen et al. 2009), a versatile tool for identification of 
TF binding sites and a standard peak calling program used by the ENCODE and modENCODE 
consortia for ChIP-Seq datasets (Rozowsky, Euskirchen et al.). We will also use a new peak 
caller MUSIC (Harmanci, Rozowsky et al.) recently developed in Gerstein lab. MUSIC performs 
multiscale decomposition of ChIP signals to enable simultaneous and accurate detection of 
enrichment at a range of narrow and broad peak breadths. This tool is particularly applicable to 
studies of histone modifications and previously uncharacterized transcription factors, both of 
which may display both broad and punctate regions of enrichment. We have already 
implemented this pipeline to process ChIP-Seq data from PsychENCODE.  
 
We will implement a standard genotype imputation pipeline. Genotype imputation will enable us 
to evaluate the evidence for association at genetic markers that are not directly genotyped and 
increases the power of eQTL analysis. Moreover, genotype imputation is very important for 
combining data from studies using different genotyping platforms. Firstly, for the Sample level 
quality control,  we will exam the call rate, heterozygosity and relatedness between genotyped 
individuals correspondence between sex chromosome genotypes and reported gender of the 
raw genotype calling using PLINK \cite{22138821}.  Then we will perform ancestry analysis on 
the QCed genotype data to identify the ancestry vectors. In order to improve the genotype 
imputation accuracy, SHAPEIT2 \cite{22138821} will be used to estimate haplotypes from 
genotype data. The estimated haplotypes will be used as input for IMPUTE2 for imputation 
using the selected reference panel. We will also use both 1000 Genome phase 1 or the recently 
released HRC Reference Panel for imputation on Michigan Imputation Server. The imputed 
genotypes will be filtered according to imputation confidence score (INFO), minor allele 
frequency (MAF), SNP missing rate and Hardy-Weinberg Equilibrium (HWE).  

DCC 
Sage Bionetworks has demonstrated success in enabling broad distribution of data and 
collaborative analyses across diverse consortia through the use of centralized repositories, 
analytical tracking and provenance, communication forums and collaborative work across 
consortium members.  These tools allows analyses and research outcomes to be shared across a 
distributed network of scientists working on a common set of data.  It is our goal to continue to 
employ this approach to coordinate data release and analyses generated through the psychENCODE 
project grants.  Within the scope of this project, Sage Bionetworks proposes to enhance the 
psychENCODE effort as follows: (1) to ensure that data and knowledge are quickly disseminated, 
(2) to facilitate project-wide analyses that leverage combined resources across partnering 
institutions to more effectively answer pressing scientific questions and and to maintain the online, 
publicly accessible record of data and the research performed, allowing others to freely use the 
generated knowledge for new purposes, (3) to identify long term storage solutions for the 
PsychENCODE data. The goal of this proposal is to continue these efforts through further 
development of the framework and infrastructure the psychENCODE project depends on. 

Deliverables 
Sage Bionetworks will continue to coordinate with the NIMH and the PsychENCODE investigators 
to provide the following deliverables in support of the project aims. 
(1) Development of a collaborative space for centralized storage of data, protocols, analysis 
methods, and results generated by psychENCODE. 



Sage Bionetworks has developed the Synapse software platform, an open computational 
platform for research collaboration, where integration, analysis, and publication of data-intensive 
science occur in real time as the research is performed. Synapse has been used to successfully 
support large-scale distributed team efforts such as the analysis of TCGA data by the Pan 
Cancer analysis consortium1,2 and hosting of the DREAM challenges in computational biology3. 
For this project, we use the Synapse infrastructure to create a centralized repository for storage 
and sharing of PsychENCODE resources.  We will continue the development of a 
psychENCODE project space within Synapse for data dissemination and analysis. Development 
of this resource initially focused on data directly generated through the PsychENCODE project 
but will be expanded to include ancillary data of value to downstream analysis.  
 
(2) Continued development and implementation of a data release process for collection and 
verification of data from the data production centers. 

Systemized processing for data release will enable rapid and facile data access.  All data is made 
available through both web and programmatic interfaces with capabilities for fine-grain tracking of 
data updates through a versioning system and for association with metadata describing data 
sources and protocols.  
  

(3) Identify long term storage and cloud computing solutions for psychENCODE data.   
Synapse uses Amazon Web Services for data storage, a solution that has been used for data 
storage throughout the first years of this project.  We are able to provide both distribution of the 
data to investigators to work on their own systems, and direct access to the data on the Amazon 
cloud as an option.  We view the co-location of data and compute capability would provide 
significant benefits to researchers working the volumes of data expected in this project. We will 
explore options for long-term data storage and archival to include public cloud providers, 
academic cloud providers and local storage options.  We anticipate that use of public cloud 
providers will be the safest, most stable, most cost effective option and will need to explore 
appropriate plans for funding of data storage in perpetuity beyond the time frame of these 
funding mechanisms. 
All data transfer over the public Internet brokered by Synapse is encrypted and occurs over 
https.  Data stored at Amazon through Synapse is maintained in a secure subnetwork within the 
Amazon cloud; Amazon infrastructure isolates Synapse from all other traffic within the 
cloud.  Data access is only granted to those given permission to access resources by project 
admins, and we have mechanism to place access restrictions on certain data sets to ensure 
requests for access are reviewed and approved before data can be accessed.  Synapse 
maintains an access log of all data download requests such that inadvertent data releases can 
be traced, and Sage's Access and Compliance Team conducts quarterly audits of the system to 
ensure appropriate data use.  For this project, the NIH could be involved in or even solely 
responsible for managing this system. 
Works Cited: 
1.         Omberg, L. et al. Enabling transparent and collaborative computational analysis of 12 tumor 

types within The Cancer Genome Atlas. Nat. Genet. 45, 1121–6 (2013). 
2.         Chang, K. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–

20 (2013). 
3.         Margolin, A. A. et al. Systematic Analysis of Challenge-Driven Improvements in Molecular 

Prognostic Models for Breast Cancer. Sci. Transl. Med. 5, 181re1–181re1 (2013). 

 

 


	Aim 1
	Capstone 1. Cross-Disorder Gene Expression Analyses
	Capstone 2. Adult and Disease - Epigenetic map
	Subaim 1.3 Transcriptome and eQTL analyses across human brain development (Capstone 3a)
	Capstone 3b. Construction of a Developmental EpiMap
	Capstone 4. Integrative analysis with CommonMind, Brainspan, GTEx, ENCODE and ROADMAP

	Aim 2
	DAC
	DCC


