
1

O.	Stegle et	al,	PLoS Comp.	Biol.	(2010)
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the 1000 Genomes project23. In the MuTHER project, the eQTL 
findings increased twofold in skin and fat tissues, as well as in lym-
phoblastoid cell lines24.

Applications of PEER have also helped in understanding the genet-
ics of inferred cellular traits when including prior information on 
targets of cellular features2. We reanalyzed the data from Smith and 
Kruglyak5, inferring the activations of 167 transcription factors in a 
set of yeast segregants. Here 15% of hotspot-associated trans eQTLs 
could be explained by genetic control of the transcription factor acti-
vations, which had downstream effects on gene expression levels.

PEER can be applied to the analysis of reference populations as 
well as case-control studies and differential expression analyses. 
For such uses, an additional covariate for the case status must be 
introduced, but the availability of genotype data is not required. 
PEER can also account for further measured covariates; for example 
when data are combined from multiple experiments or laborato-
ries. More generally, PEER can be used for analyzing any high-
dimensional phenotype with population-scale data.

Algorithm
The application of PEER to gene expression studies consists of two 
steps (Fig. 1). First, PEER is used to infer hidden expression deter-
minants from the expression profiles. Second, the learned factors 
are used in alternative genetic analyses (Fig. 1a–c).

The learning step done in PEER infers hidden expression deter-
minants from the normalized and preprocessed expression profiles, 
taking any known covariates into account. The learned variables 
can be constrained to affect known sets of genes via a prior con-
nectivity matrix. By default, with no prior connectivity given, they 
are assumed to be global and to affect large fractions of all genes. 

The learning algorithm in PEER estimates a suitable number of 
factors implicitly and only explains broad variance components, 
thereby helping to avoid overfitting1.

PEER produces learned factor activations, their effects on each 
gene and a residual data set of the expression values after subtract-
ing the factor contribution (Fig. 1). eQTLs can then be mapped 
on the residuals directly (Fig. 1a), or on original data, treating the 
learned factors as covariates in the association tests (Fig. 1b). The 
factors can also be used as phenotypes in genetic mapping (Fig. 1c) 
or they can be tested for association with other phenotypes.

PEER itself does not offer low-level data processing. Gene expres-
sion normalization and the necessary preprocessing of genotype 
information need to be done using external tools25,26. When RNA-
seq estimates are used for transcript abundance, we recommend 
using DESeq to estimate library sizes and variance-stabilize expres-
sion data sets27. If it is available from low-level processing, PEER 
can also correctly use information on measurement uncertainty 
for specific probes and samples.

The learning of factors implemented in PEER is based on effi-
cient approximate inference techniques that ensure computational 
tractability for practical applications while retaining the necessary 
accuracy of the results obtained1,2,28. Once the hidden expression 
determinants are learned, association testing is carried out in the 
second analysis step by using a range of existing methods. Our 
instructions assume the use of a standard linear model that yields 
a test statistic for linkage or association between individual variants 
and genes, such as that implemented in R/qtl (ref. 29) or PLINK30. 
To assess genome-wide significance, these statistics have to be 
converted to association probabilities and corrected for multiple 
testing for both genetic variants and transcript levels (e.g., using 
Bonferroni or false discovery rate (FDR)31).

Comparison with other methods
The functionality implemented in PEER is in part also available 
in alternative packages that account for confounding influences 
in eQTL studies. These either recover the set of hidden factors 
explicitly19 or use the covariance structure induced by them20,32. 
The algorithm implemented in PEER is most closely related to 
surrogate variable analysis19 and has previously been compared 
in more detail1. Notably, PEER allows for the following: the auto-
matic setting of an appropriate number of hidden determinants to 
learn, the incorporation of probe-level uncertainties (e.g., if probe 
measurements are not variance-stabilized from count data) and the 
combination of the inference of hidden confounding factors while 
accounting for the effect of known covariates.

Similarly, alternative approaches to learn hidden determinants to be 
used as trait variables have been suggested. For example, other bilinear 
models have previously been used by Biswas et al.33, and methods to 
combine eQTL mapping with integrated network models have been 
considered by Zhu et al.34 and Aten et al.35. Notably, the supervised factor  
inference in PEER is scalable and can be used on genome-wide data 
sets while retaining sufficient accuracy, thus allowing for meaningful 
conclusions to be drawn from the inferred quantities themselves2.

Limitations
PEER is applicable to a wide range of analysis settings. At present, 
there is no support for mixed modeling, wherein some variables 
(e.g., zygosity, gender, batch) have a random effect. In addition, 
information on population structure, if not encoded by the 
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Figure 1 | Protocol alternatives for applying PEER to analyses of expression 
QTL studies. PEER infers hidden factors (red triangles), their weights (red star)  
and a residual gene expression matrix (red square) from a set of gene 
expression levels (orange squares). If available, experimental confounders 
(blue triangles) or prior information on groups of genes affected by a factor 
(blue star) can be included. (a) Results of PEER are processed in downstream 
QTL analysis on the residual data set. (b,c) Alternatively, the inferred factors 
can be used (b) as additional covariates or (c) as phenotypes themselves. 
Orange shapes denote experimental measurements; blue shapes denote prior 
information including covariates; and the red shapes denote PEER results. 
Similar shapes of the figures denote similar matrix dimensions. Dashed 
arrows indicate dependencies that optionally can be taken into account.

2

O.	Stegle et	al,	Nat.	Prot.	(2012)

“PEER	produces	learned	factor	activations,	 their	effects	on	each	gene	and	a	residual	
data	set	of	the	expression	values	after	subtracting	 the	factor	contribution	 (Fig.	1).	
eQTLs	can	then	be	mapped	on	the	residuals	directly	 (Fig.	1a),	or	on	original	data,	

treating	the	learned	factors	as	covariates	in	the	association	 tests	(Fig.	1b).”
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the 1000 Genomes project23. In the MuTHER project, the eQTL 
findings increased twofold in skin and fat tissues, as well as in lym-
phoblastoid cell lines24.

Applications of PEER have also helped in understanding the genet-
ics of inferred cellular traits when including prior information on 
targets of cellular features2. We reanalyzed the data from Smith and 
Kruglyak5, inferring the activations of 167 transcription factors in a 
set of yeast segregants. Here 15% of hotspot-associated trans eQTLs 
could be explained by genetic control of the transcription factor acti-
vations, which had downstream effects on gene expression levels.

PEER can be applied to the analysis of reference populations as 
well as case-control studies and differential expression analyses. 
For such uses, an additional covariate for the case status must be 
introduced, but the availability of genotype data is not required. 
PEER can also account for further measured covariates; for example 
when data are combined from multiple experiments or laborato-
ries. More generally, PEER can be used for analyzing any high-
dimensional phenotype with population-scale data.

Algorithm
The application of PEER to gene expression studies consists of two 
steps (Fig. 1). First, PEER is used to infer hidden expression deter-
minants from the expression profiles. Second, the learned factors 
are used in alternative genetic analyses (Fig. 1a–c).

The learning step done in PEER infers hidden expression deter-
minants from the normalized and preprocessed expression profiles, 
taking any known covariates into account. The learned variables 
can be constrained to affect known sets of genes via a prior con-
nectivity matrix. By default, with no prior connectivity given, they 
are assumed to be global and to affect large fractions of all genes. 

The learning algorithm in PEER estimates a suitable number of 
factors implicitly and only explains broad variance components, 
thereby helping to avoid overfitting1.

PEER produces learned factor activations, their effects on each 
gene and a residual data set of the expression values after subtract-
ing the factor contribution (Fig. 1). eQTLs can then be mapped 
on the residuals directly (Fig. 1a), or on original data, treating the 
learned factors as covariates in the association tests (Fig. 1b). The 
factors can also be used as phenotypes in genetic mapping (Fig. 1c) 
or they can be tested for association with other phenotypes.

PEER itself does not offer low-level data processing. Gene expres-
sion normalization and the necessary preprocessing of genotype 
information need to be done using external tools25,26. When RNA-
seq estimates are used for transcript abundance, we recommend 
using DESeq to estimate library sizes and variance-stabilize expres-
sion data sets27. If it is available from low-level processing, PEER 
can also correctly use information on measurement uncertainty 
for specific probes and samples.

The learning of factors implemented in PEER is based on effi-
cient approximate inference techniques that ensure computational 
tractability for practical applications while retaining the necessary 
accuracy of the results obtained1,2,28. Once the hidden expression 
determinants are learned, association testing is carried out in the 
second analysis step by using a range of existing methods. Our 
instructions assume the use of a standard linear model that yields 
a test statistic for linkage or association between individual variants 
and genes, such as that implemented in R/qtl (ref. 29) or PLINK30. 
To assess genome-wide significance, these statistics have to be 
converted to association probabilities and corrected for multiple 
testing for both genetic variants and transcript levels (e.g., using 
Bonferroni or false discovery rate (FDR)31).

Comparison with other methods
The functionality implemented in PEER is in part also available 
in alternative packages that account for confounding influences 
in eQTL studies. These either recover the set of hidden factors 
explicitly19 or use the covariance structure induced by them20,32. 
The algorithm implemented in PEER is most closely related to 
surrogate variable analysis19 and has previously been compared 
in more detail1. Notably, PEER allows for the following: the auto-
matic setting of an appropriate number of hidden determinants to 
learn, the incorporation of probe-level uncertainties (e.g., if probe 
measurements are not variance-stabilized from count data) and the 
combination of the inference of hidden confounding factors while 
accounting for the effect of known covariates.

Similarly, alternative approaches to learn hidden determinants to be 
used as trait variables have been suggested. For example, other bilinear 
models have previously been used by Biswas et al.33, and methods to 
combine eQTL mapping with integrated network models have been 
considered by Zhu et al.34 and Aten et al.35. Notably, the supervised factor  
inference in PEER is scalable and can be used on genome-wide data 
sets while retaining sufficient accuracy, thus allowing for meaningful 
conclusions to be drawn from the inferred quantities themselves2.

Limitations
PEER is applicable to a wide range of analysis settings. At present, 
there is no support for mixed modeling, wherein some variables 
(e.g., zygosity, gender, batch) have a random effect. In addition, 
information on population structure, if not encoded by the 
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Figure 1 | Protocol alternatives for applying PEER to analyses of expression 
QTL studies. PEER infers hidden factors (red triangles), their weights (red star)  
and a residual gene expression matrix (red square) from a set of gene 
expression levels (orange squares). If available, experimental confounders 
(blue triangles) or prior information on groups of genes affected by a factor 
(blue star) can be included. (a) Results of PEER are processed in downstream 
QTL analysis on the residual data set. (b,c) Alternatively, the inferred factors 
can be used (b) as additional covariates or (c) as phenotypes themselves. 
Orange shapes denote experimental measurements; blue shapes denote prior 
information including covariates; and the red shapes denote PEER results. 
Similar shapes of the figures denote similar matrix dimensions. Dashed 
arrows indicate dependencies that optionally can be taken into account.

3

Adapted	fromO.	Stegle
et	al,	Nat.	Prot.	(2012)

Method	1 :	use	residuals	&	genotype	
data	only	(without	any	explicit	
covariates)

à produced	NO	eQTLs	at	an	FDR	
threshold	of	less	than	5%

“eQTLs	can	be	mapped	on	the	residuals	directly	 (Fig.	1a)”
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the 1000 Genomes project23. In the MuTHER project, the eQTL 
findings increased twofold in skin and fat tissues, as well as in lym-
phoblastoid cell lines24.

Applications of PEER have also helped in understanding the genet-
ics of inferred cellular traits when including prior information on 
targets of cellular features2. We reanalyzed the data from Smith and 
Kruglyak5, inferring the activations of 167 transcription factors in a 
set of yeast segregants. Here 15% of hotspot-associated trans eQTLs 
could be explained by genetic control of the transcription factor acti-
vations, which had downstream effects on gene expression levels.

PEER can be applied to the analysis of reference populations as 
well as case-control studies and differential expression analyses. 
For such uses, an additional covariate for the case status must be 
introduced, but the availability of genotype data is not required. 
PEER can also account for further measured covariates; for example 
when data are combined from multiple experiments or laborato-
ries. More generally, PEER can be used for analyzing any high-
dimensional phenotype with population-scale data.

Algorithm
The application of PEER to gene expression studies consists of two 
steps (Fig. 1). First, PEER is used to infer hidden expression deter-
minants from the expression profiles. Second, the learned factors 
are used in alternative genetic analyses (Fig. 1a–c).

The learning step done in PEER infers hidden expression deter-
minants from the normalized and preprocessed expression profiles, 
taking any known covariates into account. The learned variables 
can be constrained to affect known sets of genes via a prior con-
nectivity matrix. By default, with no prior connectivity given, they 
are assumed to be global and to affect large fractions of all genes. 

The learning algorithm in PEER estimates a suitable number of 
factors implicitly and only explains broad variance components, 
thereby helping to avoid overfitting1.

PEER produces learned factor activations, their effects on each 
gene and a residual data set of the expression values after subtract-
ing the factor contribution (Fig. 1). eQTLs can then be mapped 
on the residuals directly (Fig. 1a), or on original data, treating the 
learned factors as covariates in the association tests (Fig. 1b). The 
factors can also be used as phenotypes in genetic mapping (Fig. 1c) 
or they can be tested for association with other phenotypes.

PEER itself does not offer low-level data processing. Gene expres-
sion normalization and the necessary preprocessing of genotype 
information need to be done using external tools25,26. When RNA-
seq estimates are used for transcript abundance, we recommend 
using DESeq to estimate library sizes and variance-stabilize expres-
sion data sets27. If it is available from low-level processing, PEER 
can also correctly use information on measurement uncertainty 
for specific probes and samples.

The learning of factors implemented in PEER is based on effi-
cient approximate inference techniques that ensure computational 
tractability for practical applications while retaining the necessary 
accuracy of the results obtained1,2,28. Once the hidden expression 
determinants are learned, association testing is carried out in the 
second analysis step by using a range of existing methods. Our 
instructions assume the use of a standard linear model that yields 
a test statistic for linkage or association between individual variants 
and genes, such as that implemented in R/qtl (ref. 29) or PLINK30. 
To assess genome-wide significance, these statistics have to be 
converted to association probabilities and corrected for multiple 
testing for both genetic variants and transcript levels (e.g., using 
Bonferroni or false discovery rate (FDR)31).

Comparison with other methods
The functionality implemented in PEER is in part also available 
in alternative packages that account for confounding influences 
in eQTL studies. These either recover the set of hidden factors 
explicitly19 or use the covariance structure induced by them20,32. 
The algorithm implemented in PEER is most closely related to 
surrogate variable analysis19 and has previously been compared 
in more detail1. Notably, PEER allows for the following: the auto-
matic setting of an appropriate number of hidden determinants to 
learn, the incorporation of probe-level uncertainties (e.g., if probe 
measurements are not variance-stabilized from count data) and the 
combination of the inference of hidden confounding factors while 
accounting for the effect of known covariates.

Similarly, alternative approaches to learn hidden determinants to be 
used as trait variables have been suggested. For example, other bilinear 
models have previously been used by Biswas et al.33, and methods to 
combine eQTL mapping with integrated network models have been 
considered by Zhu et al.34 and Aten et al.35. Notably, the supervised factor  
inference in PEER is scalable and can be used on genome-wide data 
sets while retaining sufficient accuracy, thus allowing for meaningful 
conclusions to be drawn from the inferred quantities themselves2.

Limitations
PEER is applicable to a wide range of analysis settings. At present, 
there is no support for mixed modeling, wherein some variables 
(e.g., zygosity, gender, batch) have a random effect. In addition, 
information on population structure, if not encoded by the 
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Figure 1 | Protocol alternatives for applying PEER to analyses of expression 
QTL studies. PEER infers hidden factors (red triangles), their weights (red star)  
and a residual gene expression matrix (red square) from a set of gene 
expression levels (orange squares). If available, experimental confounders 
(blue triangles) or prior information on groups of genes affected by a factor 
(blue star) can be included. (a) Results of PEER are processed in downstream 
QTL analysis on the residual data set. (b,c) Alternatively, the inferred factors 
can be used (b) as additional covariates or (c) as phenotypes themselves. 
Orange shapes denote experimental measurements; blue shapes denote prior 
information including covariates; and the red shapes denote PEER results. 
Similar shapes of the figures denote similar matrix dimensions. Dashed 
arrows indicate dependencies that optionally can be taken into account.

4

Adapted	fromO.	Stegle
et	al,	Nat.	Prot.	(2012)

Method	2 :	subtract residuals	from	original	gene	
expression	data,	and	calculate	eQTLs	using	the	
resultant	(updated)	gene	expression	matrix,	
without	any	explicit	covariates	added	during	
eQTL detection	(assumed	to	be	implicitly	
represented	by	residuals).

Compare	resultant	eQTLs	w/those	produced	by	
applying	the	approach	in	panel	b

#	eQTLs	from	Method	2:	 2921
#	eQTLs	from	panel	b:	 4877

Jaccard similarity	of	eQTLs	btwn the	2	sets	of	
eQTLS:	 0.37

“eQTLs	can	be	mapped	on	original	data,	treating	the	learned	
factors	as	covariates	 in	the	association	 tests	(Fig.	1b)”
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the 1000 Genomes project23. In the MuTHER project, the eQTL 
findings increased twofold in skin and fat tissues, as well as in lym-
phoblastoid cell lines24.

Applications of PEER have also helped in understanding the genet-
ics of inferred cellular traits when including prior information on 
targets of cellular features2. We reanalyzed the data from Smith and 
Kruglyak5, inferring the activations of 167 transcription factors in a 
set of yeast segregants. Here 15% of hotspot-associated trans eQTLs 
could be explained by genetic control of the transcription factor acti-
vations, which had downstream effects on gene expression levels.

PEER can be applied to the analysis of reference populations as 
well as case-control studies and differential expression analyses. 
For such uses, an additional covariate for the case status must be 
introduced, but the availability of genotype data is not required. 
PEER can also account for further measured covariates; for example 
when data are combined from multiple experiments or laborato-
ries. More generally, PEER can be used for analyzing any high-
dimensional phenotype with population-scale data.

Algorithm
The application of PEER to gene expression studies consists of two 
steps (Fig. 1). First, PEER is used to infer hidden expression deter-
minants from the expression profiles. Second, the learned factors 
are used in alternative genetic analyses (Fig. 1a–c).

The learning step done in PEER infers hidden expression deter-
minants from the normalized and preprocessed expression profiles, 
taking any known covariates into account. The learned variables 
can be constrained to affect known sets of genes via a prior con-
nectivity matrix. By default, with no prior connectivity given, they 
are assumed to be global and to affect large fractions of all genes. 

The learning algorithm in PEER estimates a suitable number of 
factors implicitly and only explains broad variance components, 
thereby helping to avoid overfitting1.

PEER produces learned factor activations, their effects on each 
gene and a residual data set of the expression values after subtract-
ing the factor contribution (Fig. 1). eQTLs can then be mapped 
on the residuals directly (Fig. 1a), or on original data, treating the 
learned factors as covariates in the association tests (Fig. 1b). The 
factors can also be used as phenotypes in genetic mapping (Fig. 1c) 
or they can be tested for association with other phenotypes.

PEER itself does not offer low-level data processing. Gene expres-
sion normalization and the necessary preprocessing of genotype 
information need to be done using external tools25,26. When RNA-
seq estimates are used for transcript abundance, we recommend 
using DESeq to estimate library sizes and variance-stabilize expres-
sion data sets27. If it is available from low-level processing, PEER 
can also correctly use information on measurement uncertainty 
for specific probes and samples.

The learning of factors implemented in PEER is based on effi-
cient approximate inference techniques that ensure computational 
tractability for practical applications while retaining the necessary 
accuracy of the results obtained1,2,28. Once the hidden expression 
determinants are learned, association testing is carried out in the 
second analysis step by using a range of existing methods. Our 
instructions assume the use of a standard linear model that yields 
a test statistic for linkage or association between individual variants 
and genes, such as that implemented in R/qtl (ref. 29) or PLINK30. 
To assess genome-wide significance, these statistics have to be 
converted to association probabilities and corrected for multiple 
testing for both genetic variants and transcript levels (e.g., using 
Bonferroni or false discovery rate (FDR)31).

Comparison with other methods
The functionality implemented in PEER is in part also available 
in alternative packages that account for confounding influences 
in eQTL studies. These either recover the set of hidden factors 
explicitly19 or use the covariance structure induced by them20,32. 
The algorithm implemented in PEER is most closely related to 
surrogate variable analysis19 and has previously been compared 
in more detail1. Notably, PEER allows for the following: the auto-
matic setting of an appropriate number of hidden determinants to 
learn, the incorporation of probe-level uncertainties (e.g., if probe 
measurements are not variance-stabilized from count data) and the 
combination of the inference of hidden confounding factors while 
accounting for the effect of known covariates.

Similarly, alternative approaches to learn hidden determinants to be 
used as trait variables have been suggested. For example, other bilinear 
models have previously been used by Biswas et al.33, and methods to 
combine eQTL mapping with integrated network models have been 
considered by Zhu et al.34 and Aten et al.35. Notably, the supervised factor  
inference in PEER is scalable and can be used on genome-wide data 
sets while retaining sufficient accuracy, thus allowing for meaningful 
conclusions to be drawn from the inferred quantities themselves2.

Limitations
PEER is applicable to a wide range of analysis settings. At present, 
there is no support for mixed modeling, wherein some variables 
(e.g., zygosity, gender, batch) have a random effect. In addition, 
information on population structure, if not encoded by the 
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Figure 1 | Protocol alternatives for applying PEER to analyses of expression 
QTL studies. PEER infers hidden factors (red triangles), their weights (red star)  
and a residual gene expression matrix (red square) from a set of gene 
expression levels (orange squares). If available, experimental confounders 
(blue triangles) or prior information on groups of genes affected by a factor 
(blue star) can be included. (a) Results of PEER are processed in downstream 
QTL analysis on the residual data set. (b,c) Alternatively, the inferred factors 
can be used (b) as additional covariates or (c) as phenotypes themselves. 
Orange shapes denote experimental measurements; blue shapes denote prior 
information including covariates; and the red shapes denote PEER results. 
Similar shapes of the figures denote similar matrix dimensions. Dashed 
arrows indicate dependencies that optionally can be taken into account.

5

Adapted	fromO.	Stegle
et	al,	Nat.	Prot.	(2012)

Method	3 :	add	residuals	to	original	gene	
expression	data,	and	calculate	eQTLs	using	the	
resultant	(updated)	gene	expression	matrix,	
without	any	explicit	covariates	added	during	
eQTL detection	(assumed	to	be	implicitly	
represented	by	residuals).

Compare	resultant	eQTLs	w/those	produced	by	
applying	the	approach	in	panel	b

#	eQTLs	from	Method	3:		3179
#	eQTLs	from	panel	b:	 4877

Jaccard similarity	of	eQTLs	btwn the	2	sets	of	
eQTLS:	 0.41

“eQTLs	can	be	mapped	on	original	data,	treating	the	learned	
factors	as	covariates	 in	the	association	 tests	(Fig.	1b)”


