
Specific Aims 
To the Review Committee:  The public facing documents of this application (Narrative and Abstract) are 
less detailed than usual, as this essential line of research has become extremely high-risk over the last 
two years for the Investigators, and their staff.  Please read this Specific Aims page for the greater 
details on the experimental design and analysis plan we propose.  

Many of the psychiatric disorders are thought to have a neurodevelopmental component.  This is probably 
best understood for schizophrenia, which is thought to begin to arise in the second trimester, the developmental 
period during which the brain is formed.  Similarly, alterations in brain development have been hypothesized for 
Bipolar Disorder, Autism, OCD, Tourette’s Syndrome and perhaps most of the psychiatric disorders.  In 
recognition of the potential importance of understanding the molecules and mechanisms of brain development 
throughout the lifespan, we and others, have begun to examine the transcriptomic and epigenetic profiles of the 
human brain at different ages.  One such large project, the BrainSpan Atlas of the Developing Human Brain 
(BrainSpan.org; Drs. Knowles and Gerstein), studied up to 16 regions (11 cortical, 5 subcortical) of 43 high 
quality human brains from 10 weeks post-conception to 40 years of age, with a number of molecular modalities, 
including RNA-Seq.  Initial examination of the data from this project quickly revealed that gene expression in fetal 
brains was dramatically different from that in non-fetal brains.  Dimensional reduction of the gene expression 
data, as measured by RNA-Seq by either hierarchical clustering or Principle Component Analysis (PCA) clearly 
demonstrated that pre- and post-natal gene expression varies by age (it is PC1; data not shown). 

The Genotype-Tissue Expression (GTEx) Project (gtexportal.org/home) has generated tissue specific 
expression Quantitative Trait Loci (eQTL) maps (and multi-tissue maps).  With 13 CNS and 35 non-CNS tissue 
types, and over 7,000 samples this is a comprehensive project, but with an average age of the CNS tissue 
donors of 60-69, the brain eQTL maps do not reflect the state of the prenatal brain. 

The PsychENCODE Consortium (psychencode.org; Drs. Knowles, Gerstein and Crawford) is a group of 
projects that “aims to produce a public resource of multi-dimensional genomic data using tissue and cell-type 
specific samples from approximately 1,000 phenotypically well-characterized high quality healthy and diseased 
human post-mortem brains, …” (The PsychENCODE Consortium, 2016).  As part of the activities of this 
Consortium, Drs. Gerstein and Knowles are leading Capstone Project 4, which will generate a high power eQTL 
map of adult frontal cortex by combining ~2,300 samples from BrainSpan, GTEx, CommonMind, 
PsychENCODE, and other available sources.  Unfortunately, comparable data from fetal samples is limited.  We 
propose to fill this gap of data and knowledge, by collecting samples of fetal cortical brain tissue and performing 
a set of molecular assays and data analyses to produce maps of eQTLs, chromatin QTLs of ATAC-Seq and the 
histone mark H3K27Ac (promoter and enhancer mark) and surveys of additional chromatin marks (CTCF and 
100 transcription factors expressed in fetal brain), as well as data to determine the 3D organization of the fetal 
genome across late first trimester to the end of the second trimester.  These data will enable testing of the 
relationship between the genomic elements important for the development of the brain in the second trimester, 
and the genetic risk for the psychiatric, neurological, and the neurodevelopmental disorders.  Specifically, we 
propose: 
Aim 1.  Collect a large sample (n=750) of cortical brain tissue from 10-24 post-conception weeks (PCW), 
and use these tissues for a number of molecular assays. 

a) Genotyping of all samples with the Illumina Global Screening Array (GSA), which will contain a backbone 
of ~660,000 SNPs, which provides LD coverage and imputation accuracy of >0.8, for over 87% of the 
genome. 

b) Perform bulk long RNA-seq (strand-specific ncRNA and mRNA >100bp) of all samples.  
c) Perform ChiP-Seq of the chromatin marks H3K27Ac (750 samples) CTCF (24 samples), and of a panel of 

100 transcription factors on at least 4 samples for each transcription factor. 
d) Perform ATAC-Seq on all samples.  
e) Perform deep Hi-C analysis of at least 1 billion reads per sample for 12 samples. 

Aim 2.  Data processing and bioinformatics analysis 
a) Data processing and analysis to identify fetal QTLs 
b) Early brain expression dynamics from differentially expressed genes 
c) Dynamic modeling of brain developmental gene regulatory networks by integrating adult data from GTEx, 

PsychENCODE, etc 
d) Integrate the fetal data with the genetic, expression and epigenetic data from studies of the psychiatric 

diseases to provide greater insight into the developmental aspects of the pathology 
Aim 3.  Provide an easy-to-use, web-based informatics framework for communication of the raw and 
computed data of this PsychENCODE project to other neuroscientists. 
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A. Significance 
Many of the psychiatric disorders are thought to have a neurodevelopmental component.  This is probably best 
understood for schizophrenia, which is thought to begin to arise in the second trimester (Weinberger 1987, 
Raedler, Knable et al. 1998, Lewis and Levitt 2002, Schmidt-Kastner, van Os et al. 2006), the developmental 
period during which the brain is formed.  Similarly, alterations in brain development have been hypothesized for 
Bipolar Disorder, Autism, OCD, Tourette’s Syndrome and perhaps most of the psychiatric disorders.  In 
recognition of the potential importance of understanding the molecules and mechanisms of brain development 
throughout the lifespan, we and others, have begun to examine the transcriptomic and epigenetic profiles of the 
human brain at different ages.  One such large project, the BrainSpan Atlas of the Developing Human Brain 
(BrainSpan.org; Drs. Knowles and Gerstein), studied up to 16 regions (11 cortical, 5 subcortical) of 43 high 
quality human brains from 10 weeks post-conception to 40 years of age, with a number of molecular modalities 
including RNA-Seq.  Initial examination of the data from this project quickly revealed that gene expression in fetal 
brains was dramatically different from that in non-fetal brains.  Dimensional reduction of the gene expression 
data, as measured by RNA-Seq by either hierarchical clustering or Principle Component Analysis (PCA) clearly 
demonstrated that pre- and post-natal gene expression varies by age (it is PC1; data not shown).  A graphic 
demonstration of this is seen in Figure 1, to the right, where the BrainSpan expression data is shown on a heatmap 
for the top 10 cortically expressed genes in adults (top 10 
rows/genes) and top 10 cortically expressed genes from the P3-P5 
fetal samples (bottom 10 rows/genes).  It is clear that the highest 
expressed genes in the cortical samples are expressed at lower 
levels in the fetus, while the converse is true for the highest 
expressed cortical genes in the fetus, which are nearly absent in 
the adult.  More difficult to see, is that there is also very little 
region-to-region variation across the cortical samples, at each time 
period (more on this below).                                                                                                                  
The Genotype-Tissue Expression (GTEx) Project 
(gtexportal.org/home), which utilizes RNA-Seq to measure gene 
expression across hundreds of samples of many tissues of the 
human body, plus genotypes from each individual, combines these 
data to generate tissue specific expression Quantitative Trait Loci 
(eQTL) maps (and multi-tissue maps)(Consortium 2015).  With 13 
CNS and 35 non-CNS tissue types, and over 7,000 samples this is 
a comprehensive project, but with an average age of the CNS 
tissue donors of 60-69, neither the GTEx RNA-Seq data, nor the 
eQTL map, reflect the state of the brain prenatally, when we think 
the psychiatric disorders may arise.  This is crucial; as eQTL maps 
are powerful tools to link DNA sequence variation to gene 
expression.  Frequently, disease associated GWAS variants are non-coding and it is not obvious what transcript 
they may alter the expression of, to influence trait or disease.  eQTL maps provide this link between genome and 
transcriptome. 
 
The PsychENCODE Consortium (psychencode.org; Drs. Knowles, Gerstein and Crawford) is a group of projects 
that “aims to produce a public resource of multi-dimensional genomic data using tissue and cell-type specific 
samples from approximately 1,000 phenotypically well-characterized high quality healthy and diseased human 
post-mortem brains, as well as functionally characterize disease-associated regulatory elements and variants in 
model systems”(Psych, Akbarian et al. 2015).  As part of the activities of this Consortium, Drs. Gerstein and 
Knowles are leading Capstone Project 4, which will generate a high power eQTL map of adult frontal cortex by 
combining ~2,300 samples from BrainSpan, GTEx, CommonMind, PsychENCODE, and other available sources.  
Unfortunately, the number of available fetal samples with data across these projects is limited.  We propose to fill 
this gap of data, and hence knowledge, by collecting samples of fetal cortical brain tissue and performing a set of 
molecular assays and data analyses to produce maps of eQTLs, chromatin QTLs of ATAC-Seq and the histone 
mark H3K27Ac (promoter and enhancer mark) and surveys of additional chromatin marks (CTCF and 100 
transcription factors expressed in fetal brain), as well as data to determine the 3D organization of the fetal 
genome across late first trimester to the end of the second trimester.  These data will enable testing of the 
relationship between the genomic elements important for the development of the brain in the second trimester, 
and the genetic risk for the psychiatric, neurological, and the neurodevelopmental disorders. 

B. Innovation 

• Large sample size of human fetal cortical brain tissue will enable discovery of eQTLs for RNA and 
chromatin QTLs of ATAC-Seq and H3K27Ac peaks. 

 

Figure 1 
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• Survey of several other molecular modalities (100 Transcription Factors, CTCF, Hi-C for 3D genome 
structure) in fetal brain tissue. 

• Relatively low-cost, for the valuable information generated. 
C. Approach 

C.1 Overall Experimental Strategy.  As mentioned above, there is a significant gap in our knowledge of the 
regulatory and epigenetic landscape of fetal brain development, and this knowledge maybe vital to understand, 
and hence rationally treat the psychiatric, and perhaps other brain disorders.  The BrainSpan project 
(BrainSpan.org) first led this effort by determining the pattern of gene expression in up to 16 regions of 43 brains 
across the human lifespan, which clearly demonstrated that gene expression in the brain is very different pre- 
and post-natally.  As a survey of gene expression across brain region and developmental time, it also lacked the 
power to map the eQTLs that regulate this gene expression.  The goal of mapping human brain eQTLs has fallen 
to the GTEx project (Consortium 2015), which has done a wonderful job for adult tissues, but has not studied 
fetal tissue, despite the knowledge that gene expression, and hence gene regulation is substantially different in 
the womb.  The PsychENCODE Consortium/projects(Psych, Akbarian et al. 2015), have taken on improving the 
brain eQTL map and extending it to mapping the epigenetic components.  Unfortunately, most of the work of the 
PsychENCODE and other consortiums has been on adult tissue.  Hence, as a field, we still lack good maps of 
eQTLs, enhancers and transcription factor binding sites during the prenatal period.  This study is designed to 
close that gap. 
 
Our overall goal is to generate a large, high-quality, multidimensional dataset of fetal brain development from 
ages 10-24 weeks post-conception.  We will collect 750 fetal cortical brain samples from across this time period 
and perform high-quality genotyping, RNA-Seq of strand-specific total RNA, ChIP-Seq of H3K27Ac, and 
ATAC-Seq of all samples.  Additionally, we will perform ChIP-Seq of CTCF and 100 transcription factors, and a 
developmental time series of the 3D structure of the fetal genome, using Hi-C, on a subset of samples.  These 
data will be analyzed by a talented team of biologists to generate eQTLs, splicing QTLs (sQTLs), chromatin 
QTLs (cQTLs) of H3K27Ac and ATAC-Seq peaks, and transcription factor binding and one kilobase resolution 
3D interaction maps of fetal brain.  These products will then be analyzed further to determine gene networks and 
their regulatory elements, as well as 
the relationship of the genetic 
regulatory elements in fetal brain to 
human psychiatric disorders. 
We have chosen to focus on fetal 
cortical brain, as it easily identifiable in 
the mixture of tissue fragments from 
the termination procedure.  Fetal 
brains are rarely delivered intact (and 
we will not alter the treatment of any 
patient).  Within the each fragment of 
fetal cortex we can standardize 
dissection by using the dark, cortical 
plate as a reference, providing a 
consistent mixture of brain region/cell 
types, across all 750 samples.   
 
Another source of sample-to-sample 
variability we have considered is:  
What part of the cortex did each 
particular fragment come from (e.g., frontal vs. visual, or motor vs. temporal), and is this variation something we 
have to worry about?  We have observed that there are almost no statistically significant differentially expressed 
(DEX) genes between cortical samples from different regions in adult brains in the BrainSpan data.  There are an 
intermediate number of DEX genes between cortical and non-cortical regions in adults, and the largest number 
between adult and fetal brains (remember, age is PC1 and accounts for the largest source of variation).  For this 
proposal we examined the BrainSpan data to determine if fetal cortical regions have the same paucity of truly 
DEX genes, as the adult brains.  As you can see in Figure 2, the CTX vs. CTX comparison in the Pre- samples 
(third from right, 366 DEX genes at p<0.001) is one of the lightest, nearly the same as the Post- CTX vs. CTX 
comparison, and much less DEX than the Pre-natal vs. Post-Natal CTX vs CTX comparisons (3,873 DEX genes 
at p<0.001).  So, regional variation should not be a problem, and if necessary, we can build a model to place 
each sample into regional space using the DEX genes.  
 

 

Figure 2 
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We also considered, but have not included, the study of the fetal methylome.  Ideally, this would be done with 
whole genome bisulfite sequencing (WGBS) of NeuN+ and NueN- cell fractions, or by using the WGBS variant, 
NOMe-Seq (Kelly, Liu et al. 2012), which can deconvolute the signal from multiple cell types, but both are quite 
expensive and would only provide a survey of sites, not a complete map of methylation QTLs (mQTLs), which 
would be more desirable.  The alterative use of Illumina EPIC Methylation arrays for 750 samples would add 
~$250,000+ to the project, and only provide an mQTL map of methylation sites derived from studies of 
oncogenesis.  Similarly, we have considered, but removed, study of the fetal gene expression at the single cell 
level.  The Knowles laboratory is one of the leaders of using these technologies (SCAP-T.org) and could employ 
either Drop-Seq, or other droplet based technologies (e.g., 10X Genomics Chromium), to determine gene 
expression in thousands of cells per tissue sample, cluster these into consistent groups across samples and 
determine cell-specific eQTLs, but this is beyond the scope of the present budget.  Both of these can be 
performed with frozen tissue (using nuclei in the case of Drop-Seq or 10X Genomics, personal communication 
from Kun Zhang, UCSD), hence we will bank unused tissue from the project for future studies. 
 
C.2  Principle Investigators. 

James Knowles M.D.-Ph.D. is the newly hired Professor and Chair of the Department of Cell Biology and the 
Deputy Director of the Genomics Institute at SUNY Downstate. He is both a board-certified psychiatrist and a 
well-established psychiatric geneticist with years of experience in large-scale collaborations. He studies the 
genetics of multiple complex disorders (Schizophrenia, Bipolar Disorder, Early-Onset Depression and 
Obsessive-Compulsive Disorder). He is an expert in neuroscience and Next-Generation Sequencing (NGS) and 
is one of the PIs of the BrainSpan project (BrainSpan.org) and the Single Cell Analysis Program (SCAP-T.org).  
His laboratory is also a leader in the analysis of NGS data, and he was one of the co-PIs of the NHGRI funded 
network to make and distribute software for RNA-Seq analysis (iSeqTools Network, http://iseqtools.org/).  He is a 
member of the PsychENCODE Consortium (psychencode.org) and the Whole Genome Sequencing of 
Psychiatric Disorders consortium (WGSPD).  His site will also include his PsychENCODE Consortium 
collaborator at USC, Peggy Farnham, Ph.D. who is the Chairman and Professor of Department of Biochemistry 
and Molecular Medicine.  She is an international leader in the study of chromatin regulation and its control of 
transcription factor binding and function. She is a member of an international consortia of genomic scientists 
working on the ENCODE project and was a member of an NIH Roadmap Reference Epigenome Mapping 
Center. 

Mark Gerstein, Ph.D. is the Albert Williams Professor of Biomedical Informatics at Yale University. His lab 
(gersteinlab.org) was one of the first to perform integrated data mining on functional genomics data and to do 
genome-wide surveys. He was a member of the 1000 Genomes Project and is currently a leader in the ENCODE 
and modENCODE projects. He led the data analysis team of the BrainSpan project (BrainSpan.org).  He is also 
a co-PI in DOE KBase and the leader of the Data Analysis Center for the NIH exRNA Consortium. In these roles 
Dr. Gerstein has designed and developed a wide array of databases and computational tools to mine genomic 
data in humans, as well as in many other organisms.  Dr. Gerstein has led the Data Analytics Core (DAC) of the 
PsychENCODE Consortium and will direct the Data Analysis Group of this project.  Zhiping Weng, Ph.D. is a 
Professor in Biochemistry and Molecular Pharmacology at University of Massachusetts Medical School.  She 
has worked for the last decade on biological problems ranging from genomic to protein-protein interaction 
analysis. She has participated in the ENCODE project since its inception in 2003, and she is leading the Data 
Analysis Center (DAC) for ENCODE Phase III (2011-2017) and will co-lead the DAC with Prof. Gerstein for 
Phase IV (2017-). She has been a member of the PsychENCODE Data Analysis Center, working on the data 
analysis pipelines and integrative analysis. Daifeng Wang, Ph.D. is an Assistant Professor in the Department of 
Biomedical Informatics at Stony Brook University.  He has ~10 years of research experience developing 
specialized computational and bioinformatics approaches to analyze next generation sequencing datasets and 
systematically understand gene expression dynamics, gene regulatory networks and circuits in complex 
biological processes. He was a key participant in the data analysis centers (DACs) for ENCODE, modENCODE, 
PsychENCODE and KBase when he worked as postdoctoral associate and associate research scientist in 
Gerstein Lab at Yale University.  

      Richard Myers, Ph.D. has been a major contributor to basic and disease-applied human genomics for more 
than 30 years. He has long studied cis- and trans-acting components of gene expression, initially at mechanistic, 
biochemical levels, and in the past 20 years, at genome-wide, network levels. He has also made major 
contributions to the Human Genome Project, high-throughput genetic technologies and studies, and the 
ENCODE Project. He also has long-standing interests in the genetics and genomics of neurological diseases, 
including epilepsy, neurodegenerative diseases, autism, and psychiatric disorders. Gregory Cooper, Ph.D. has 
a strong record in the development and use of strategies for genomic analysis and disease genetics. He was a 
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lead developer of multiple widely used approaches to identify genomic positions and variants (e.g., GERP, 
CADD) that have important biological roles and/or disease effects. He was also a key contributor to a number of 
genetic studies of complex human traits, including neurological diseases and expression variation. Drs. Myers 
and Cooper have worked together on many of these projects for more than a decade, which have benefitted from 
their complementary and overlapping expertise.  

Greg Crawford, PhD is an Associate Professor of Medical Genetics at Duke University.  He trained with 
Francis Collins at NHGRI and was one of the developers of DNase-seq to identify DNase hypersensitive (DHS) 
sites genome-wide, and was among the first to compare global chromatin maps across cell types(Crawford, Holt 
et al. 2004, Crawford, Davis et al. 2006, Crawford, Holt et al. 2006, Boyle, Davis et al. 2008, Song, Zhang et al. 
2011). He identified variable DHS sites between individuals(McDaniell, Lee et al. 2010), and participated in a 
study that showed the existence of cQTLs(Degner, Pai et al. 2012) which explain a large fraction of eQTLs in 
lymphoblastoid cell lines(Degner, Pai et al. 2012). Dr. Crawford extended DNase-seq and ATAC-seq to intact 
frozen tissues, which will be valuable for this study.  He is a member of the PsychENCODE Consortium and is 
identifying cQTLs in 300 adult brain samples from controls and individuals with schizophrenia. 
 
C.3 Aim 1. Collect a large sample (n=750) of cortical brain tissue from 10-24 post-conception weeks 
(PCW), and use these tissues for a number of molecular assays.  
C.3.1 Source of samples.  Samples will come from Kings County Hospital Center in Brooklyn, NY.  Kings 
County is one of the hospitals run by New York City Health and Hospitals and runs multiple pregnancy 
termination clinics.  Dr. Natalie Ohly, runs a second trimester termination clinic that performs ~200 elective 
terminations per year.  Additional clinics at Kings County perform ~1,000 elective terminations per year.  All 
patients will sign consent for permission to use the fetal tissue for medical research and permit the deposition of 
the genetic, epigenetic and transcriptomic data into public databases.  In our experience at LA County Hospital at 
USC, over 90% of women sign consent to use of the tissue, with many expressing the thought that ‘something 
good might come from a bad situation’. All tissue will be de-identified of personal information of the mother and 
fetus with staff excluding samples undergoing termination for known genetic abnormalities from entering the 
study and only providing the estimated date of conception.  All collection and use of tissue samples will undergo 
review and require approval by the respective Institutional IRBs.  We propose to collect approximately 188 
high-quality samples per year in each of the first four years of the project. We also have a fetal tissue bank of 
~150 tissues, at present, from our work on the SCAP-T project, as a back-up, in case of sample collection 
difficulties.   
 
C.3.2 Sample Collection and Dissection.  Samples will be collected at the OR by a trained technician, placed 
in 4o hypothermosol solution and transported on ice across the street to the Knowles laboratory at SUNY 
Downstate.  Cortical tissue is easily identifiable due to the curvature of its outer most surface, which also contains 
remnants of pia mater (often with blood vessels).  Fresh tissue will be dissected, sliced into slices using a 
vibrotome and examined under a microscope to ensure the distinctive cortical plate is present as expected.  The 
region between the subventricular zone and the marginal zone will be dissected, and 100 mg tissue snap frozen 
in liquid N2 for RNA extraction, other slices will be dissociated with trypsin and cell number and the cell number 
determined.  Aliquots of 1-10 million, as appropriate will then be fixed in 1% formaldehyde for Hi-C and ChIP-seq 
of H3K27Ac and CTCF.  Additional slices will be frozen in liquid N2 and subsequently pulverized using a 
Cellcrusher (cellcrusher.com).  This pulverized tissue will then be divided and shipped on dry ice to Duke 
(ATAC-Seq) and HudsonAlpha (TF ChIP-Seq).  DNA will be extracted using AutoGen kits, preferably from 
non-cortical brain regions. 
 
C.3.3 Genotyping.  DNA samples extracted from fetal tissue will be genotyped with Illumina Global Screening 
Arrays (GSA).  The GSA contains a backbone of ~660,000 SNPs, which provides LD coverage and imputation 
accuracy of 0.88 (Africans) to 0.94 (European) (and intermediate for Native Americans and East and South 
Asians) for SNPs with MAF>1.0% from the Phase 3 1000 Genomes Project (1KGP).  These data will provide 
imputed genotypes from between 6.5M (East Asian) to 12.6M (African) SNPs with MAF>1.0%, and an accuracy 
score of 0.80, across the wide ranging ethic populations we expect to sample from in Brooklyn.  Additionally, 
there are over 2,000 curated SNPs for malformations and chromosomal abnormalities which will be used to 
remove fetal samples with chromosomal aberrations (CNV analysis will be used for the same purpose).  
Genotyping will be performed at the USC Molecular Genomics Core Facility, which has processed over 100,000 
genotyping microarrays. We propose to genotype samples in approximately four batches (~yearly) to minimize 
batch effects requiring correction during analysis. 
 
C.3.4 RNA-seq.  RNA will be extracted from the cortical plate region of each fetus using Direct-zol RNA MiniPrep 
kit (Zymo Research), which was the best performer of five kits tested in the Knowles laboratory.  This kit also 



efficiently captures short RNA (miRNA, piRNA, etc.), so a portion of the RNA will be retained for future short 
RNA-Seq.  Total RNA will be QCed with an Agilent BioAnalyzer 2200 TapeStation and samples with RINe>8 will 
converted to Illumina DNA sequencing libraries using Illumina “TruSeq Stranded Total RNA with Ribo-Zero 
Human” kits (Illumina #RS-122-2301) as we have for >300 samples from the PsychENCODE, and other projects.  
This is the sample library construction kit used by all of the PsychENCODE projects, which will enhance analyses 
across developmental time points and brain regions, for both Poly-A and nonPoly-A RNA molecules.  To 
increase throughput, decrease labor cost and improve consistency, we have automated this protocol on a 
Hamilton STARlet liquid handling robot, with an integrated thermocycler (TRobot, Biometra), which has yielded 
libraries of high quality and nearly identical insert size distributions and yields.  To minimize the number of 
batches, 24-48 samples will be run at a time.  The mass of the libraries will be determined with picoGreen (using 
STARlet) and the TapeStation, inconsistencies will be broken using KAPA Library Quantification, and equimolar 
pools of 12 libraries constructed.  Each pool will then sequenced in multiple flow cell channels on Illumina 
sequencers (one HiSeq2500, two HiSeq2000s) at SUNY with a single-end reads of 101bp, plus an index read, 
yielding a minimum of 40 million reads per library. 
 
C.3.5 ChIP-seq.  We propose to perform ChIP-Seq of H3K27Ac for 750 samples, CTCF of 24 samples and 4 
samples each for 100 Transcription Factors.  H3K27Ac and CTCF were chosen to provide consistency with the 
existing PsychENCODE data.  We have observed very little variation in CTCF peaks across samples, consistent 
with the high evolutionary conservation of insulators, however, if we observe greater variability in fetal brain, 
particularly across fetal age, we will increase the sample size accordingly.  We will perform ChIP according to the 
ENCODE best practices (Landt, Marinov et al. 2012), which were worked out, in part, in the Farnham and Myers 
laboratories.  For H3K27Ac and CTCF, ~400,000 cells will be processed for ChIP by crosslinking with 
formaldehyde, followed by isolation of nuclei, then sonicated using a Bioruptor 200-UCD (Diagenode, Sparta, 
NJ), and 10ng of the chromatin will be retained as an input control.  The rest of the chromatin from each dish will 
then be immunoprecipitated (IP) for H3K27Ac (Active Motif #39133) or CTCF (Cell Signaling Technology #3418, 
lot#1), and enrichment will be checked by qPCR and barcoded DNA sequencing libraries will be constructed 
using KAPA Hyper Prep Kit from KAPA Biosystems, Inc.  Library quality and quantity will be checked on an 
Agilent Bioanalyzer 2200 TapeStation.  Libraries will then be pooled and loaded onto flowcells for bridge 
amplification using an Illumina cBot.  Phi-X will be included in each channel to provide real-time QC during 
sequencing on HiSeq 2000/2500 sequencers.  Pools of barcoded libraries will then be sequenced with 
single-end reads of 50 bp and we will generate a minimum of 20 million uniquely mapped reads for each sample.  
Although sonicated input DNA will be saved from each sample, we propose to determine the sequence from only 
~2 of these.  As we have observed in our PsychENCODE project, we expect the data from the input controls will 
be very consistent across samples and plan to pool the reads and then use the combined data for input control 
for the entire set of samples.  In the unlikely event that the data are inconsistent across samples, we will 
sequence input controls for every one. 
 
For the ChIP-Seq of 100 TFs, we have chosen to assess 4 individuals to balance two competing goals.  On the 
one hand, we wish to analyze the largest number of TFs, but want comprehensive and accurate data. Because 
we are forgoing ChIP-seq technical replicates, testing multiple individuals provides an avenue to (albeit 
imperfectly) measure assay reproducibility, and provides robustness to potential outliers.  Further, testing 
multiple individuals will dramatically improve discovery of polymorphic elements (sites bound by a TF in a subset 
of people), which are abundant in human populations(Pickrell, Marioni et al. 2010, Pickrell, Pai et al. 2010).  With 
four individuals, we will capture ~95% of binding events that are present in 50% of individuals and most (~61%) 
events that exist in only 20%; eliminating even one individual would drop coverage of common polymorphic 
events considerably. As such, while using more than 4 brains would necessarily drop the number of TFs that we 
could assay (in a given budget), fewer individuals would reduce data quality and comprehensiveness.  The 
Myers and Farnham labs, and others, in the ENCODE Consortium have successfully performed ChIP-seq on 
antibodies to a total of 331 distinct TFs (encodeproject.org).  Rather than pre-selecting a list of specific TFs to 
test in each sample, we will follow a strategy that provides a universal dataset across all samples and flexibility 
over time to account for new antibodies that become available, knowledge gleaned from other groups and other 
projects, and intersections with other investigators that may be studying TF biology in relation to psychiatric 
diseases.  Furthermore, we will use the BrainSpan poly-A and initial total RNA-Seq data from this project to 
determine which TFs are most highly expressed during 10-24 PCW.  In a preliminary analysis of 96 adult brains 
from the Pritzker Brain Bank, we found 250 TFs that have a median expression of at least 2 FPKM (a threshold at 
which TFs typically become “chippable”) and 133 of these are highly expressed (>10 FPKM).  The tested set of 
100 TFs is likely to include RNA Polymerase 2 (“Pol2”), a core component of the machinery that binds to active 
promoters and generates transcripts; TAF1, a general TF enriched at promoters; and p300, a factor that binds to 
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enhancers.  TF ChIP-Seq will be performed with ENCODE best practices and the resulting libraries will be 
sequenced to a depth of 20-30 million mapped reads at HudsonAlpha. 
 
C.3.6 ATAC-seq.  ATAC-Seq will be performed in the laboratory of Dr. Crawford at Duke University, where the 
procedures are well-established(Crawford, Holt et al. 2004, Crawford, Davis et al. 2006, Crawford, Holt et al. 
2006, Birney, Stamatoyannopoulos et al. 2007, Boyle, Davis et al. 2008, Shibata and Crawford 2009, Song and 
Crawford 2010, Myers, Stamatoyannopoulos et al. 2011, Song, Zhang et al. 2011, Zhang, Wu et al. 2012), 
having generated over 500 DNase-seq and ATAC-seq libraries, and have successfully generated ATAC-seq 
from <20 mg of frozen brain tissue.  Pulverized tissue will be thawed in glycerol containing nuclear isolation buffer 
to stabilize structure(Zhang, Wu et al. 2012). After filtering out larger debris, nuclei are washed with RSB buffer 
and incubated with Tn5 transposase as part of the standard ATAC-seq protocol(Buenrostro, Giresi et al. 2013).  
We will include a small number of replicate experiments to ensure we pass strict QC standards used for 
ENCODE project.  ATAC-seq allows for longer sequencing read lengths, which will be helpful to identifying 
variants and chromatin QTLs. Libraries will be sent to SUNY Downstate for sequencing on and sequenced to a 
depth of 60-80 million reads. Any experiments that fail QC metrics will be repeated. 
 
C.3.7 Hi-C.  Since the first introduction of methods to study the three-dimensional chromosomal structure, 
extensive work has gone into both improving the efficiency and introducing changes that allow for 
high-throughput methods to study the interactions genome-wide. One such adaptation is in situ Hi-C, which 
allows for crosslinking, digestion, and ligation all to occur within the intact nucleus. In contrast, traditional Hi-C 
relies on the dilution of the cross-linked and digested material to prevent random ligation products. By performing 
these reactions within the intact nuclei, fragments that become ligated are also in close proximity within the 
nuclei.  As we have done in our PsychENCODE project, we will use an in situ Hi-C protocol (Rao, Huntley et al. 
2014) with a 4-cutter restriction enzyme (MboI) to generate high-resolution 3D genomic landscapes from fetal 
brain. Using ~3M cells per library, we generated two Hi-C libraries (one for schizophrenia patient, one for control) 
for our present PsychENCODE Project.  Each library was sequenced with ~900 million paried-end 100bp reads 
and QC’ed with HiCUP (Wingett, Ewels et al. 2015). We had a high percentage of paired reads; after removing 
duplicates we had 689M unique reads, of which 568M reads (82%) were properly paired, which exceeds the 50 
to 70% of paired reads reported by other groups.  Of these, 490M (86%) were valid pairs (not dangling ends, 
circularized, internal, re-ligation, contiguous sequence, wrong size); libraries with more than 50% of valid pairs 
are considered as good libraries.  For this project, we will use this same molecular protocol to generate 12 Hi-C 
libraries across the developmental window we are sampling.  Geschwind and colleagues have recently reported 
the results of the 3D genome structure from 17-18 PCW using Hi-C(Won, de la Torre-Ubieta et al. 2016).  We will 
extend these observations by examining the 3D genome structure in four time windows, 10-13, 14-18, 19-21 and 
22-24 PCWs, using 3 samples at each time point.  Sixty percent of the peaks between the Hi-C libraries made 
from the cortical plate and germinal zone overlapped in the Geschwind study, hence we have made the decision 
to increase our temporal resolution across the our sampling frame, at the expense of regional resolution, as little 
is known about the temporal dynamics of the 3D structure of the genome in early brain development. 
 
C.4 Aim 2.  Data processing and bioinformatics analysis. 
C.4.1 Data processing and analysis to identify fetal QTLs.  We will analyze all the generated data and 
integrate the genotype data with other data for QTL analysis. For doing this we will build on our considerable 
experience in ENCODE, modENCODE, 1000 Genomes, KBase, BrainSpan and PsychENCODE in doing 
integrative and comparative analysis. We will use the standardized RNA-seq processing pipelines including data 
organization, format conversion, and quality assessment which will then be run in large-scale on the PDC 

(Protected Data Cloud) to process the RNA-Seq data first. Specifically, we will employ STAR (Dobin, Davis et 
al. 2013) to uniquely align the filtered reads to their reference genome and RSEM (Li and Dewey 2011) to 
quantify expression profiles of each type of annotation entry retrieved from the latest release of the GENCODE 
project.  Additional quality control measures will be introduced to assess potential issues including sequencing 
error rate, ribosomal contamination, DNA contamination and gene coverage uniformity and the correlation 
between technical and/or biological replicates. 
 
We will use the ENCODE ChIP-seq data processing pipeline developed by both Gerstein lab and Zhiping 
Weng’s lab. This pipeline includes steps of quality assessment, trimming the contamination, alignment of the 
fastq files, peak calling and downstream analysis such as peak comparison, peak annotation, motif analysis and 
super-enhancers identification. The Gerstein lab developed PeakSeq (Rozowsky, Euskirchen et al. 2009), a 
versatile tool for identification of TF binding sites and a standard peak calling program used by the ENCODE and 
modENCODE consortia for ChIP-Seq datasets (Rozowsky, Euskirchen et al.). We will also use a new peak caller 
MUSIC (Harmanci, Rozowsky et al.) recently developed in Gerstein lab. MUSIC performs multiscale 



decomposition of ChIP signals to enable simultaneous and accurate detection of enrichment at a range of narrow 
and broad peak breadths. This tool is particularly applicable to studies of histone modifications and previously 
uncharacterized transcription factors, both of which may display both broad and punctate regions of enrichment. 
We have already implemented this pipeline to process ChIP-Seq data from both PsychENCODE and BrainSpan.  
 
Moreover, we have developed methods that integrate ChIP-seq, chromatin, conservation, sequence and gene 
annotation data to identify gene-distal enhancers based on our past experience in non-coding annotation, as part 
of our 10-year history with the ENCODE and modENCODE projects (Yip, Alexander et al.). We will develop a 
framework using matched filter to aggregate the signal of histone modifications on massively parallel reporter 
assays (MPRA) peaks flanking enhancers. The method will identify an enriched peak-trough-peak (“double 
peak”) signal at active enhancers in different ChIP-Seq experiments for various histone modifications.  We will 
combine the normalized matched filter scores from our different epigenetic marks (H3K27Ac and ATAC-Seq 
(similar to DHS) associated with active regulatory regions by the Roadmap Epigenomics Mapping, 
PsychENCODE project and the ENCODE Consortia, using a linear SVM. The normalized matched filter score for 
each epigenetic feature in a particular region will be scaled by its optimized weight and added together to form 
the discriminant function. The sign of the discriminant function will be used to predict whether a region is an 
enhancer. Features with larger weights (eg. H3K27Ac) are predicted to be more important in discriminating 
enhancers from non-regulatory regions in the model.  We will use the better enhancer definition provided by the 
Epigenome Roadmap (Leung, Jung et al. 2015, Roadmap Epigenomics, Kundaje et al. 2015, Ziller, Edri et al. 
2015), and more recently from ENCODE projects. In particular, we will develop a new machine learning 
framework that combines pattern recognition within the signal of various epigenomic features and transcription of 
enhancer RNA (eRNA, some of which, particularly the 1D-eRNA, which we will detect) with sequence-based 
features to predict active enhancers across different brain regions and other tissues in the Epigenome Roadmap 
project. The pattern within the signal of different epigenetic datasets will be computed from regulatory regions 
identified using different massively parallel assays and we will determine to what extent this pattern is conserved 
across a diverse set of tissues. This method will be used to predict fetal brain specific active enhancers based on 
H3K27Ac ChIP-Seq datasets generated as part of this grant, as well as ChIP-seq generated by the Epigenome 
Roadmap, ENCODE and present PsychENCODE projects. 
 

Moreover, we have implemented a standard eQTL analysis pipeline in Gerstein lab for our current 
PsychENCODE capstone projects where we are generating an eQTL map of adult frontal cortex using ~2,300 
samples from the PsychENCODE, CommonMind and GTEx projects, and genomic privacy paper (Harmanci and 
Gerstein). We will use this pipeline to identify various QTLs, including eQTLs for long RNAs, splicing QTLs, 
ChIP-QTLs and ATAC-QTLs, in early human brain development.  Genotypes will be imputed using the ricopili 
pipeline (Rapid Imputation Consortium Pipeline), in order to streamline quality control, genotype imputation, and 
statistical analysis of genome-wide single nucleotide polymorphism (SNP) data. Ricopili consists of four primary, 
independent modules: (1) pre-imputation data processing and quality control; (2) principal components analysis 
(PCA); (3) genotype imputation of untyped variants; and (4) post-imputation statistical analysis. Briefly, in the 
pre-imputation step, input genotype data (PLINK binary format) is reformatted for downstream analysis, and 
initial summaries of classic technical parameters (e.g. minor allele frequency, per-individual and per-site missing 
rates, case/control missingness, Hardy-Weinberg equilibrium) are produced. The second module consists of 
data filtering and relatedness testing, followed by PCA using EIGENSTRAT(Price, Patterson et al. 2006) to 
identify ancestry outliers and any detectable population substructure. Prior to imputation, SNP positions, 
identifiers, and alleles are aligned to the relevant reference genome 
assembly (using LiftOver), and genotype data is divided into overlapping 5 
megabase (Mb) segments (~1000) for subsequent, parallel haplotype 
pre-phasing and imputation using SHAPEIT2/IMPUTE2 (Delaneau, 
Marchini et al. 2011, Howie, Fuchsberger et al. 2012). We will use 1000 
Genome phase 3 as the general reference panel for imputation. We will 
also try the recently released HRC Reference Panel for imputation of rare 
SNPs. It is important to note that phasing/imputation is more difficult in 
persons of recent African ancestry, as their greater genetic diversity (and 
lower linkage disequilibrium) reduces the accuracy of haplotype 
estimation (Howie, Fuchsberger et al. 2012). Several alternative 
algorithms, including MaCH-admix (Liu, Li et al. 2013, Roshyara, Horn et 
al. 2016) offer improved imputation accuracy for admixed populations, and 
have previously been integrated into the ricopili pipeline. 
 
We will use Matrix eQTL and/or fastQTL package for eQTL analysis. The 
gene expression matrix will be normalized according to gender, Age, RNA Integrity Number (RIN) and library 

 

Figure 3 Predication of eQTL discovery 



preparation batch (LIB) for eQTL analysis. Probabilistic Estimation of Expression Residuals (PEER) factors, 
ancestry vectors, age and gender will be used as covariates input for Matrix eQTL/fastQTL. Based on our sample 
size, we will calculate both cis-eQTL and trans-eQTL. Finally we will correct for the multiple hypothesis tests of 
SNPs in LD for a given gene for eQTL analysis.  Using the data presented in the CommonMind Consortium 
paper (Fromer, Roussos et al. 2016), we expect to discover ~3.4M eQTLs (many will be in LD with each other, 
Figure 3). 
 
Similarly, QTLs for H3K27Ac and ATAC-Seq peaks (cQTLs; chromatin 
QTLs) will be evaluated using fastQTL, (Ongen, Buil et al. 2016) which 
utilizes a ß approximation of permutations to determine significance. 
Peaks will be normalized and regressed on SNP dosage in a 5 kb 
window, controlling for 10 PCs from PCA of peaks and ancestry PCs 
from PCA of SNP array data. Only the most significant SNP for each 
peak will be retained. To control for testing multiple peaks, we will apply 
the Storey and Tibshirani correction (Storey and Tibshirani 2001) to the 
ß approximated permutation P-values.  To date, we have performed 
cQTL analysis for ATAC-seq samples generated from 300 adult brain 
samples from controls and individuals, and have identified over 6,000 
cQTLs (Figure 4). 
 
Comparing cQTL & eQTLs.  eQTL analysis identifies variants associated with expression levels where each 
locus consists of multiple SNPs in high LD. For each eQTL, we will first determine whether any SNPs within that 
locus are contained within a regulatory element identified in the same sample. For each ATAC-associated eQTL, 
we will determine whether: (i) the regulatory element shows tissue- or individual-specific chromatin changes; (ii) 
the SNP in the regulatory element shows evidence of allelic imbalance; 
and (iii) the SNP within the regulatory element is a cQTL. These features 
provide evidence that a SNP might be causal for the linked expression 
changes. We will also test eQTL SNPs outside of regulatory elements for 
association with cQTL as they could suggest a mechanism for altering 
regulatory activity leading to expression change.  
 
Calling 3D Genome Structure from Hi-C data.  Hi-C data on fetal 
tissues will be processed using HiC-Pro (Servant, Varoquaux et al. 
2015), and HiCUP (Wingett, Ewels et al. 2015) pipeline tools, which map 
the raw reads, perform quality control analyses, normalize the interaction 
frequency, and identify valid pairs. HiCPlotter (Akdemir and Chin 2015) 
and HiTC (Servant, Lajoie et al. 2012) software programs will be used for 
plotting to produce normalized interaction frequency heatmaps. To call 
topologically associating domains and subdomains, Domain callers 
(Dixon, Selvaraj et al. 2012) and TopDom (Shin, Shi et al. 2016) 
programs will be used. For identification of significant interactions and 
differentially connected loopings, GOTHiC 
(http://bioconductor.org/packages/release/bioc/html/GOTHiC.html) and 
diffHiC (Lun and Smyth 2015) R packages will be used.  
 
C.4.2 Early brain expression dynamics from differentially 
expressed genes.  As mentioned above, gene expression in early brain development is very different from later 
in life.  As a further example of this, we dimensionally reduced all the BrainSpan and GTEx gene expression data 
using tSNE and plotted the first three dimensions (Figure 5). The red and orange samples correspond to the early 
developmental samples (i.e., prenatal samples in BrainSpan), and forms a separate cluster. The blue and cyan 
samples correspond to the infant and adult BrainSpan samples, and also were clustered together. The samples 
from other GTEx tissues also form specific clusters (in grey). This suggests that the early developmental 
samples share specific gene expression patterns, which is different from other brain developmental stages and 
tissues. Thus, we plan to discover the dynamics of gene expression in early brain development in this sub-aim. 
 
We have substantial experience in developing computational approaches to identify specific dynamic patterns of 
gene expression. We have developed a novel clustering algorithm, OrthoClust to simultaneously cluster 
multi-layer networks (Yan, Wang et al.). We applied OrthoClust to developmental gene expression datasets of 
worm (C. elegans) and fruitfly (D. melanogaster), and discovered the cross-species and species-specific gene 

 
Figure 4 cQTLs identified from psychENCODE 
ATAC-seq datasets generated from 300 brain 
samples 

 

Figure 5 Clustering tissue samples of 
BrainSpan and GTEx based on their similarity 
of gene expression over first three tSNE 
dimensions. The red and orange samples 
correspond to the early developmental 
samples (i.e., prenatal samples in BrainSpan), 
and form a separated cluster. The blue and 
cyan samples correspond to the infant and 
adult BrainSpan samples, and are clustered 
together. The samples from other GTEx 
tissues also form their specific clusters (grey 
clusters). 

http://bioconductor.org/packages/release/bioc/html/GOTHiC.html


co-expression modules (Figure 6). We also found the modular eigengenes, revealing the systematically gene 
expression and regulation dynamics during embryonic development. In 2016, we also developed another novel 
computational method, DREISS to identify the gene expression dynamics driven by internal and external 
regulatory networks (Wang, He et al.). In particular, we applied DREISS to the time-series gene expression 
datasets of C. elegans and D. melanogaster during their embryonic development (Figure 7). We analyzed the 
expression dynamics of the conserved, orthologous genes (orthologs), seeing the degree to which these can be 
accounted for by orthologous (internal) versus species-specific (external) TFs. We found that between two 
species, the orthologs have matched, internally driven expression patterns, but very different species-specific, 
externally driven ones. This is particularly true for genes with evolutionarily ancient functions (e.g. the ribosomal 
proteins), in contrast to those with more recently evolved functions (e.g., cell-cell communication). 
 
We plan to use the OrthoClust, for analyzing the co-expression networks in an integrated fashion by utilizing the 
orthology relationships of genes between fetal and adult stages (using the data from the ~2,300 sample 
PsychENCODE Capstone project) and comparison 
tissues (from GTEx and ENCODE) (Yan, Wang et al.), 
which is likely to identify differentially expressed 
genes in fetal brain versus adult brain and non-brain 
tissues. These genes can be the biomarkers for 
distinguishing different tissues. We will first normalize 
and correct the batch effects of the gene expression 
data using COMBAT (Johnson, Li et al.). We have 
developed a number of advanced methods for 
normalization, analysis, and comparison of RNA-seq 
profiles. In particular: 1) incRNA, a method that 
predicts novel ncRNAs using known ncRNAs of 
various biotypes as a training set (Lu, Yip et al. 2011); 
2) FusionSeq, a pipeline to detect transcripts that 
arise due to trans-splicing or chromosomal 
translocations (Sboner, Habegger et al. 2010, 
Pflueger, Terry et al. 2011); 3) IQSeq, a transcript 
isoform quantification tool that uses an EM algorithm 
to resolve the maximum likelihood expression level of 
individual transcript isoforms (Du, Leng et al. 2012); 4) 
Pseudo-seq which addresses the issue of 
quantification of pseudogene and repetitive region 
expression (Sisu, Pei et al. 2014); and 5) the 
Aggregation and Correlation Toolbox (ACT), which is 
a general purpose tool for comparing genomic signal 
tracks (Jee, Rozowsky et al. 2011). In addition, we 
contributed to the development of a classification and analysis scheme for “spike” event patterns in omics data 
with longitudinal profiles(Chen, Mias et al. 2012). 
 

After normalization, we then want to analyze the dynamic patterns of gene expression over our smapling window 
of early brain development. To identify these patterns, we will develop a new method/pipeline, called 
DynamBrains. For details, we will first identify the highly expressed genes (DEGs) during brain development and 
also across other tissues. The DEGs displaying very different expression levels at early stages are potentially 
regulated by early brain gene regulatory mechanisms. Because individual gene expression might be very noisy, 
we will further identify the systematic early brain expression patterns from gene co-expression network analysis. 
Specifically, we will construct a gene co-expression network in which genes are connected if they have high 
correlated expression profiles during brain development. We will cluster this network into gene co-expression 
modules using WGCNA. The eigengenes of gene co-expression modules thus represent the systematic 
developmental expression dynamic patterns. We will also analyze the enriched pathways and functions for each 
module, and associate them with the module’s eigengene. We will find modules (with associated gene 
expression signatures) enriched in fetal and adult brain. The modules whose eigengenes showing different 
pre-natal and post-natal expression are defined as early brain modules. The enriched pathways and functions of 
early brain modules are potentially related to the early brain development.   
 
C.4.3 Dynamic modeling of brain developmental gene regulatory networks by integrating adult data 
from GTEx, PsychENCODE, etc.  After finishing the fetal QTL analysis and discovering early brain expressed 
genes, we will perform integrative and comparative analysis of fetal gene and QTL and adult data from 

 

Figure 6 Cross-species gene co-expression network clustering. Left, 
human, worm and fly gene–gene co-association matrix; darker 
colouring reflects the increased likelihood that a pair of genes are 
assigned to the same module. A dark block along the diagonal 
represents a group of genes within a species. If this is associated 
with an off-diagonal block then it is a cross-species module (for 
example, a three-species conserved module is shown with a circle 
and a worm–fly module, with a star). However, if a diagonal block has 
no off-diagonal associations, then it forms a species-specific module 
(for example, green pentagon). Right, the Gene Ontology functional 
enrichment of genes within the 16 conserved modules is shown. GF, 
growth factor; nuc., nuclear; proc., processing. 



ENCODE, GTEx, CommonMind and PsychENCODE project. We will develop or use our existing tools to form 
further interrogative analysis to model and identify how eQTLs influence early brain gene expression via the 
gene regulatory networks. We will also build a comparison of fetal QTL and adult QTL maps.  
 
We have comprehensive experience integrating transcriptomic, metabolomics, and proteomic data. We 
integrated unknown metabolites, which can constitute as much as 50% of spectral features (Chen, Mias et al. 
2012), with transcriptomics profiles from different experimental conditions (Gianoulis, Griffin et al. 2012). By 
defining statistics to correlate the co-occurrence patterns of metabolites and genes we generated hypotheses 
about the identities of unannotated biosynthetic pathways. In addition, we have experience with the analysis of 
proteomic data and its integration with transcriptomics (Smith, Cheung et al. 2007, Wu, Hwang et al. 2007, 
Sboner, Karpikov et al. 2009, Kitchen, Rozowsky et al. 2014). This allowed us to identify previously 
uncharacterized proteins in a temporally and spatially resolved manner(Wu, Hwang et al. 2007). 
 

We also have made extensive use of 
machine-learning to generate models from integrated 
datasets. For example, we integrated ENCODE data 
on transcription factor (TF) binding, histone 
modifications, and target gene expression to establish 
regulatory relationships using a probabilistic model we 
named TIP (Target Identification from Profiles) 
(Cheng, Min et al. 2011). We identified potential 
enhancers from distal gene regions and we used 
these modules to quantify the relationship between TF 
binding and gene expression(Cheng and Gerstein 
2011, Cheng, Alexander et al. 2012, Consortium 
2012, Yan, Wang et al. 2014). We integrated these 
data types with protein-protein interaction and 
transcriptional regulation networks (Gerstein, Lu et al. 
2010, Cheng, Shou et al. 2011, Cheng, Yan et al. 
2011, Dong, Greven et al. 2012). This allowed us to 
group TFs into histone-sensitive and -insensitive 
classes that refined the prediction of gene-regulation 
targets and effects. Finally, we were able to build 
cross-organism integrative chromatin models (Yan, 
Wang et al.). 
 
We have extensively analyzed patterns of variation in 
non-coding regions, along with their coding targets 
(Mu, Lu et al. 2011, Gerstein, Kundaje et al. 2012, Yip, 
Cheng et al. 2012). We used metrics, such as 
diversity and fraction of rare variants, to characterize 
selection on various classes and subclasses of 
functional annotations (Mu, Lu et al.). In addition, we 
have also defined variants that are disruptive to a 
TF-binding motif in a regulatory region (Consortium). Further studies showed relationships between selection 
and protein network topology (for instance, quantifying selection in hubs relative to proteins on the network 
periphery (Johnson, Li et al. 2007, Khurana, Fu et al. 2013). In recent studies (Khurana, Fu et al. 2013, Fu, Liu et 
al. 2014), we have integrated and extended these methods to develop a prioritization pipeline called FunSeq. It 
identifies sensitive and ultra-sensitive regions (i.e., those annotations under strong selective pressure, as 
determined using genomes from many individuals from diverse populations). It then identifies potentially 
deleterious variants in many non-coding functional elements, including TF binding sites, enhancer elements, and 
regions of open chromatin corresponding to DNase I hypersensitive sites. It also detects their disruptiveness to 
TF binding sites (both loss-of and gain-of function events). Integrating large-scale data from various resources 
(including ENCODE and The 1000 Genomes Project) with cancer genomics data, our method is able to prioritize 
the known TERT promoter driver mutations, and it scores somatic recurrent mutations higher than those that are 
non-recurrent. Using FunSeq, we identified ~100 non-coding candidate drivers in ~90 WGS medulloblastoma, 
breast, and prostate cancer samples (Khurana, Fu et al.). Drawing on this experience, we are currently 
co-leading the ICGC PCAWG-2 (analysis of mutations in regulatory regions) group. 
 

 

Figure 7 DREISS: Using State-Space Models to Infer the Dynamics of 
Gene Expression Driven by External and Internal Regulatory Networks. 
(A) DREISS models temporal gene expression dynamics using 
state-space models in control theory. The “state” refers to the 
expressions for a large group of genes of interest, such as the worm-fly 
orthologous genes investigated here. The “control” refers to any other 
group of genes that contribute to gene expressions of the “state”, such 
as the species-specific TF studied here. (B) it then projects 
high-dimensional gene expression space to lower-dimensional 
meta-gene expression spaces using dimensionality reduction 
techniques. (C) it derives the effective state-space models for 
meta-genes so that model parameters can be estimated. (D) it then 
identifies the meta-gene expression dynamic patterns; i.e., canonical 
temporal expression trajectories driven by “state” (internal) and by 
“control” (external) based on the analytic solutions to estimated models. 
(E) it finally calculates the coefficients of genes for the dynamic patterns 
of linear transformations between genes and meta-genes. 



We will use the data generated in this project, combined with other projects like PsychENCODE, CommonMind, 
BrainSpan and GTEX dataset to expand our understanding of the molecular activity of cells in the human brain 
by identifying genes that predominantly express one allele and exploring the potential clinical relevance of such 
allelic imbalance, by examining the GWAS and sequencing data of the brain disorders.  We will focus on 
quantifying differences in transcription between maternal and paternal alleles using the matched genotype and 
RNA-sequence data available in the PsychENCODE dataset.  We will integrate similar analyses of allelic 
imbalance performed by our lab using the matched genotype and RNA-seq data produced by this grant, 
PsychENCODE and CommonMind project. We expect to be able to generalize results obtained from this grant 
using the 11 distinct cortical and 5 sub-cortical regions of the healthy adult human brain available in BrainSpan. 
Integrating data at this scale requires large amounts of RNA expression and matching genotype information from 
different cell-types, brain regions, developmental stages and/or tissues. To that end we will also incorporate data 
and results from the GTEx project in order to further broaden our survey of allelic imbalance to identify potentially 
brain-specific allelic effects.  Once compiled, this allelic survey of unprecedented resolution will be of substantial 
benefit to the wider research community. By integrating these large-scale projects data for meta-analysis, we will 
get have much larger sample size and enables more powerful analysis. Larger sample size will increase the 
number of cis-eQTLs could be detected and improve accuracy of trans-eQTL detection. Moreover, larger sample 
size will increase the possibility of discovering more allelic regions. We will also be able to conduct better 
analysis for Gender-Specific Gene Expression by using more sample size. 
 

It is known that gene regulatory factors work cooperatively, forming a complex regulatory circuit controlling gene 
expression. We developed Loregic, a general-purpose method to characterize the cooperatively of such 
regulatory factors (Wang, Yan et al. 2015). Finally, we will identify the gene regulatory logics using Loregic that 
drive the tissue types such as the biomarker genes associated with specific tissues (Huffman, Koves et al.). 
 
C.4.4 Integration with knowledge of the psychiatric diseases.  The enrichment of GWAS signals in 
regulatory elements has been reported in previous studies (Schizophrenia Working Group of the Psychiatric 
Genomics 2014, Andreassen, Thompson et al. 2015, Neale and Sklar 2015, Fromer, Roussos et al. 2016). In the 
BrainSpan project, we found signals for Schizophrenia, Bipolar disorders and Parkinson's disease are enriched 
in both developmental and adult brain regulatory elements in disease-specific patterns, but the same was not 
observed for Type 2 diabetes, Coronary artery disease (CAD) and Asthma.  To further investigate the enrichment 
pattern we observed, we will conduct an association analysis between regulatory elements, eQTLs and loci 
implicated through genome-wide association studies on several prevalent psychiatric diseases. We will use the 
fetal data in this grant and adult data with schizophrenia, bipolar disorder and autism spectrum disorders from 
PsychENCODE for this analysis.  We will use these data to compare the relative contribution of pre- and 
postnatal gene expression to signals in the GWAS, exome and WGS studies of the psychiatric disorders. We will 
try to identify eQTLs that could explain associations with psychiatric diseases. Previous studies showed that 
most of currently available eQTL maps do not yet provide enough power or developmental diversity to provide 
clear hypotheses for associations between eQTLs and psychiatric diseases. We will merge the GWAS signals 
with eQTL maps from our PsychENCODE Capstone projects combined with the fetal eQTL catalogues in this 
proposed grant. We expect that by using these two more powerful eQTL analysis we will be able to better 
understanding the eQTL associations with psychiatric diseases. 
 
C.5 Aim 3.  Provide an easy-to-use, web-based informatics framework for communication of the raw and 
computed data of this PsychENCODE project to other neuroscientists.   
This project, like the parent PsychENCODE Consortium will share information among consortium members and 
the broader research community through a website (www.psychENCODE.org) and a knowledge portal. The 
website will provide descriptive information about this and every project, news about the Consortium, and 
up-to-date information on tissue banks, protocols, and sample sizes. The knowledge portal, developed by the 
PsychENCODE Data Coordinating Center at Sage Bionetworks (synapse.org/ - !Synapse:syn2787333), is 
designed to provide a centralized environment for accessing data, protocols, and analytical output to enable 
collaboration among and beyond consortium members.  Data from this project will be released to the broader 
research community at yearly intervals, after sufficient QC of the data to ensure it is of high quality.  Access to 
this human data will be shared using a controlled access mechanism that complies with regulatory requirements 
and governance policies regarding protections of personal information.  We, like all PsychENCODE 
investigators, will ensure that data can be visualized through Genome Browsers such as the UCSC Genome 
Browser and/or IGV. 
 
C.6  Elements unique to this site (Yale University).  
The Yale site will consist of investigators in the labs of Mark Gerstein at Yale University, Zhiping Weng at the 
University of Massachusetts Medical School and Daifeng Wang at Stony Brook University to form a Data 

http://www.psychencode.org/
https://www.synapse.org/#!Synapse:syn2787333


Analysis Group. Dr. Gerstein’s lab will develop a number of standardized pipelines and quality control 
metrics,provide a platform and infrastructure for uniform processing of the data and running the pipelines and 
focus on the discovery of fetal brain specific genes, the aggregated quantitative trait locus (QTL) analysis, and 
integration of all data sets for meta-analysis. Dr. Weng's lab will support the enhancer analysis and annotating 
disease-associated enhancers and discovering functional genomic elements associated with psychiatric 
diseases using an integrative approach. Dr. Wang's lab will work on the analysis to identify early brain gene 
expression dynamics, gene co-expression network analysis, and model the gene regulatory networks driving 
early brain development. The bioinformatics group will give feedback to data production groups on data quality 
and support all groups for integrative data analysis. 
 
 
 
C.7  Timeline. 

 Year 1 Year 2 Year 3 Year 4 Year 5 

Samples 188 188 188 188  

Genotyped 188 188 188 188  

RNA-Seq 188 188 188 188  

H3K29Ac 188 188 188 188  

CTCF 6 6 6 6  

TF ChIP-Seq 100 100 100 100  

ATAC-Seq 188 188 188 188  

Hi-C 3 3 3 3  

Data Analyses +++ +++++ +++++ +++++ +++++ 
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sets without adjusting for batch effects. Methods have been proposed to filter batch effects from data, but 
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microarray studies are conducted using much smaller sample sizes, existing methods are not sufficient. 
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significant amounts of material and varying enzyme concentrations. We have developed a method 
(NOMe-seq) that uses a GpC methyltransferase (M.CviPI) and next generation sequencing to generate a 
high resolution footprint of nucleosome positioning genome-wide using less than 1 million cells while 
retaining endogenous DNA methylation information from the same DNA strand. Using a novel 
bioinformatics pipeline, we show a striking anti-correlation between nucleosome occupancy and DNA 
methylation at CTCF regions that is not present at promoters. We further show that the extent of 
nucleosome depletion at promoters is directly correlated to expression level and can accommodate 
multiple nucleosomes and provide genome-wide evidence that expressed non-CpG island promoters are 
nucleosome-depleted. Importantly, NOMe-seq obtains DNA methylation and nucleosome positioning 
information from the same DNA molecule, giving the first genome-wide DNA methylation and 
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 The decreasing cost of sequencing is leading to a growing repertoire of personal genomes. However, we 

are lagging behind in understanding the functional consequences of the millions of variants obtained from 
sequencing. Global system-wide effects of variants in coding genes are particularly poorly understood. It 
is known that while variants in some genes can lead to diseases, complete disruption of other genes, 
called 'loss-of-function tolerant', is possible with no obvious effect. Here, we build a systems-based 
classifier to quantitatively estimate the global perturbation caused by deleterious mutations in each gene. 
We first survey the degree to which gene centrality in various individual networks and a unified 'Multinet' 
correlates with the tolerance to loss-of-function mutations and evolutionary conservation. We find that 
functionally significant and highly conserved genes tend to be more central in physical protein-protein 
and regulatory networks. However, this is not the case for metabolic pathways, where the highly central 
genes have more duplicated copies and are more tolerant to loss-of-function mutations. Integration of 
three-dimensional protein structures reveals that the correlation with centrality in the protein-protein 
interaction network is also seen in terms of the number of interaction interfaces used. Finally, combining 
all the network and evolutionary properties allows us to build a classifier distinguishing functionally 
essential and loss-of-function tolerant genes with higher accuracy (AUC = 0.91) than any individual 
property. Application of the classifier to the whole genome shows its strong potential for interpretation of 
variants involved in mendelian diseases and in complex disorders probed by genome-wide association 
studies. 
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 Interpreting variants, especially noncoding ones, in the increasing number of personal genomes is 

challenging. We used patterns of polymorphisms in functionally annotated regions in 1092 humans to 
identify deleterious variants; then we experimentally validated candidates. We analyzed both coding and 
noncoding regions, with the former corroborating the latter. We found regions particularly sensitive to 
mutations ("ultrasensitive") and variants that are disruptive because of mechanistic effects on 
transcription-factor binding (that is, "motif-breakers"). We also found variants in regions with higher 
network centrality tend to be deleterious. Insertions and deletions followed a similar pattern to 
single-nucleotide variants, with some notable exceptions (e.g., certain deletions and enhancers). On the 
basis of these patterns, we developed a computational tool (FunSeq), whose application to ~90 cancer 
genomes reveals nearly a hundred candidate noncoding drivers. 
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 Allelic differences between the two homologous chromosomes can affect the propensity of inheritance in 

humans; however, the extent of such differences in the human genome has yet to be fully explored. Here 
we delineate allelic chromatin modifications and transcriptomes among a broad set of human tissues, 
enabled by a chromosome-spanning haplotype reconstruction strategy. The resulting large collection of 
haplotype-resolved epigenomic maps reveals extensive allelic biases in both chromatin state and 
transcription, which show considerable variation across tissues and between individuals, and allow us to 
investigate cis-regulatory relationships between genes and their control sequences. Analyses of histone 
modification maps also uncover intriguing characteristics of cis-regulatory elements and tissue-restricted 
activities of repetitive elements. The rich data sets described here will enhance our understanding of the 
mechanisms by which cis-regulatory elements control gene expression programs. 
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 A combination of genetic susceptibility and environmental perturbations appear to be necessary for the 

expression of schizophrenia. In addition, the pathogenesis of the disease is hypothesized to be 
neurodevelopmental in nature based on reports of an excess of adverse events during the pre- and 
perinatal periods, the presence of cognitive and behavioral signs during childhood and adolescence, and 
the lack of evidence of a neurodegenerative process in most individuals with schizophrenia. Recent 
studies of neurodevelopmental mechanisms strongly suggest that no single gene or factor is responsible 
for driving a highly complex biological process. Together, these findings suggest that combinatorial 
genetic and environmental factors, which disturb a normal developmental course early in life, result in 
molecular and histogenic responses that cumulatively lead to different developmental trajectories and the 
clinical phenotype recognized as schizophrenia. 
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 BACKGROUND: RNA-Seq is revolutionizing the way transcript abundances are measured. A key 

challenge in transcript quantification from RNA-Seq data is the handling of reads that map to multiple 
genes or isoforms. This issue is particularly important for quantification with de novo transcriptome 
assemblies in the absence of sequenced genomes, as it is difficult to determine which transcripts are 
isoforms of the same gene. A second significant issue is the design of RNA-Seq experiments, in terms of 
the number of reads, read length, and whether reads come from one or both ends of cDNA fragments. 
RESULTS: We present RSEM, an user-friendly software package for quantifying gene and isoform 
abundances from single-end or paired-end RNA-Seq data. RSEM outputs abundance estimates, 95% 
credibility intervals, and visualization files and can also simulate RNA-Seq data. In contrast to other 
existing tools, the software does not require a reference genome. Thus, in combination with a de novo 
transcriptome assembler, RSEM enables accurate transcript quantification for species without 
sequenced genomes. On simulated and real data sets, RSEM has superior or comparable performance 
to quantification methods that rely on a reference genome. Taking advantage of RSEM's ability to 
effectively use ambiguously-mapping reads, we show that accurate gene-level abundance estimates are 
best obtained with large numbers of short single-end reads. On the other hand, estimates of the relative 
frequencies of isoforms within single genes may be improved through the use of paired-end reads, 
depending on the number of possible splice forms for each gene. CONCLUSIONS: RSEM is an accurate 



and user-friendly software tool for quantifying transcript abundances from RNA-Seq data. As it does not 
rely on the existence of a reference genome, it is particularly useful for quantification with de novo 
transcriptome assemblies. In addition, RSEM has enabled valuable guidance for cost-efficient design of 
quantification experiments with RNA-Seq, which is currently relatively expensive. 
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 Imputation in admixed populations is an important problem but challenging due to the complex linkage 

disequilibrium (LD) pattern. The emergence of large reference panels such as that from the 1,000 
Genomes Project enables more accurate imputation in general, and in particular for admixed populations 
and for uncommon variants. To efficiently benefit from these large reference panels, one key issue to 
consider in modern genotype imputation framework is the selection of effective reference panels. In this 
work, we consider a number of methods for effective reference panel construction inside a hidden Markov 
model and specific to each target individual. These methods fall into two categories: identity-by-state 
(IBS) based and ancestry-weighted approach. We evaluated the performance on individuals from 
recently admixed populations. Our target samples include 8,421 African Americans and 3,587 Hispanic 
Americans from the Women' Health Initiative, which allow assessment of imputation quality for 
uncommon variants. Our experiments include both large and small reference panels; large, medium, and 
small target samples; and in genome regions of varying levels of LD. We also include BEAGLE and 
IMPUTE2 for comparison. Experiment results with large reference panel suggest that our novel 
piecewise IBS method yields consistently higher imputation quality than other methods/software. The 
advantage is particularly noteworthy among uncommon variants where we observe up to 5.1% 
information gain with the difference being highly significant (Wilcoxon signed rank test P-value < 0.0001). 
Our work is the first that considers various sensible approaches for imputation in admixed populations 
and presents a comprehensive comparison. 
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 We present an integrative machine learning method, incRNA, for whole-genome identification of 

noncoding RNAs (ncRNAs). It combines a large amount of expression data, RNA secondary-structure 
stability, and evolutionary conservation at the protein and nucleic-acid level. Using the incRNA model and 
data from the modENCODE consortium, we are able to separate known C. elegans ncRNAs from coding 
sequences and other genomic elements with a high level of accuracy (97% AUC on an independent 
validation set), and find more than 7000 novel ncRNA candidates, among which more than 1000 are 
located in the intergenic regions of C. elegans genome. Based on the validation set, we estimate that 
91% of the approximately 7000 novel ncRNA candidates are true positives. We then analyze 15 novel 
ncRNA candidates by RT-PCR, detecting the expression for 14. In addition, we characterize the 
properties of all the novel ncRNA candidates and find that they have distinct expression patterns across 
developmental stages and tend to use novel RNA structural families. We also find that they are often 
targeted by specific transcription factors ( approximately 59% of intergenic novel ncRNA candidates). 
Overall, our study identifies many new potential ncRNAs in C. elegans and provides a method that can be 
adapted to other organisms. 
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 In the human genome, it has been estimated that considerably more sequence is under natural selection 
in non-coding regions [such as transcription-factor binding sites (TF-binding sites) and non-coding RNAs 
(ncRNAs)] compared to protein-coding ones. However, less attention has been paid to them. To study 
selective pressure on non-coding elements, we use next-generation sequencing data from the recently 
completed pilot phase of the 1000 Genomes Project, which, compared to traditional methods, allows for 
the characterization of a full spectrum of genomic variations, including single-nucleotide polymorphisms 
(SNPs), short insertions and deletions (indels) and structural variations (SVs). We develop a framework 
for combining these variation data with non-coding elements, calculating various population-based 
metrics to compare classes and subclasses of elements, and developing element-aware aggregation 
procedures to probe the internal structure of an element. Overall, we find that TF-binding sites and 
ncRNAs are less selectively constrained for SNPs than coding sequences (CDSs), but more constrained 
than a neutral reference. We also determine that the relative amounts of constraint for the three types of 
variations are, in general, correlated, but there are some differences: counter-intuitively, TF-binding sites 
and ncRNAs are more selectively constrained for indels than for SNPs, compared to CDSs. After 
inspecting the overall properties of a class of elements, we analyze selective pressure on subclasses 
within an element class, and show that the extent of selection is associated with the genomic properties 
of each subclass. We find, for instance, that ncRNAs with higher expression levels tend to be under 
stronger purifying selection, and the actual regions of TF-binding motifs are under stronger selective 
pressure than the corresponding peak regions. Further, we develop element-aware aggregation plots to 
analyze selective pressure across the linear structure of an element, with the confidence intervals 
evaluated using both simple bootstrapping and block bootstrapping techniques. We find, for example, 
that both micro-RNAs (particularly the seed regions) and their binding targets are under stronger 
selective pressure for SNPs than their immediate genomic surroundings. In addition, we demonstrate 
that substitutions in TF-binding motifs inversely correlate with site conservation, and SNPs unfavorable 
for motifs are under more selective constraints than favorable SNPs. Finally, to further investigate 
intra-element differences, we show that SVs have the tendency to use distinctive modes and 
mechanisms when they interact with genomic elements, such as enveloping whole gene(s) rather than 
disrupting them partially, as well as duplicating TF motifs in tandem. 
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 Over the last few years, genetics research has made significant strides in identifying many risk factors for 

schizophrenia and bipolar disorder. These risk factors include inherited common single nucleotide 
polymorphisms, copy number variants, and rare single nucleotide variants, as well as rare de novo 
variants. For all variants, the common theme has been that of polygenicity, meaning that many small 
genetic risk factors influence risk in the population and that no gene or variant on its own has been shown 
to be fully deterministic of schizophrenia or bipolar. When taken together, biological themes that have 
emerged including the importance of synaptic function and calcium signaling. This has implications for 
our understanding of the biological underpinnings of these diseases. 
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 Half of prostate cancers harbor gene fusions between TMPRSS2 and members of the ETS transcription 

factor family. To date, little is known about the presence of non-ETS fusion events in prostate cancer. We 
used next-generation transcriptome sequencing (RNA-seq) in order to explore the whole transcriptome of 
25 human prostate cancer samples for the presence of chimeric fusion transcripts. We generated more 
than 1 billion sequence reads and used a novel computational approach (FusionSeq) in order to identify 



novel gene fusion candidates with high confidence. In total, we discovered and characterized seven new 
cancer-specific gene fusions, two involving the ETS genes ETV1 and ERG, and four involving non-ETS 
genes such as CDKN1A (p21), CD9, and IKBKB (IKK-beta), genes known to exhibit key biological roles 
in cellular homeostasis or assumed to be critical in tumorigenesis of other tumor entities, as well as the 
oncogene PIGU and the tumor suppressor gene RSRC2. The novel gene fusions are found to be of low 
frequency, but, interestingly, the non-ETS fusions were all present in prostate cancer harboring the 
TMPRSS2-ERG gene fusion. Future work will focus on determining if the ETS rearrangements in 
prostate cancer are associated or directly predispose to a rearrangement-prone phenotype. 
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 Understanding the genetic mechanisms underlying natural variation in gene expression is a central goal 

of both medical and evolutionary genetics, and studies of expression quantitative trait loci (eQTLs) have 
become an important tool for achieving this goal. Although all eQTL studies so far have assayed 
messenger RNA levels using expression microarrays, recent advances in RNA sequencing enable the 
analysis of transcript variation at unprecedented resolution. We sequenced RNA from 69 lymphoblastoid 
cell lines derived from unrelated Nigerian individuals that have been extensively genotyped by the 
International HapMap Project. By pooling data from all individuals, we generated a map of the 
transcriptional landscape of these cells, identifying extensive use of unannotated untranslated regions 
and more than 100 new putative protein-coding exons. Using the genotypes from the HapMap project, we 
identified more than a thousand genes at which genetic variation influences overall expression levels or 
splicing. We demonstrate that eQTLs near genes generally act by a mechanism involving allele-specific 
expression, and that variation that influences the inclusion of an exon is enriched within and near the 
consensus splice sites. Our results illustrate the power of high-throughput sequencing for the joint 
analysis of variation in transcription, splicing and allele-specific expression across individuals. 
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 While the majority of multiexonic human genes show some evidence of alternative splicing, it is unclear 

what fraction of observed splice forms is functionally relevant. In this study, we examine the extent of 
alternative splicing in human cells using deep RNA sequencing and de novo identification of splice 
junctions. We demonstrate the existence of a large class of low abundance isoforms, encompassing 
approximately 150,000 previously unannotated splice junctions in our data. Newly-identified splice sites 
show little evidence of evolutionary conservation, suggesting that the majority are due to erroneous splice 
site choice. We show that sequence motifs involved in the recognition of exons are enriched in the vicinity 
of unconserved splice sites. We estimate that the average intron has a splicing error rate of 
approximately 0.7% and show that introns in highly expressed genes are spliced more accurately, likely 
due to their shorter length. These results implicate noisy splicing as an important property of genome 
evolution. 
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 Population stratification--allele frequency differences between cases and controls due to systematic 

ancestry differences-can cause spurious associations in disease studies. We describe a method that 
enables explicit detection and correction of population stratification on a genome-wide scale. Our method 
uses principal components analysis to explicitly model ancestry differences between cases and controls. 
The resulting correction is specific to a candidate marker's variation in frequency across ancestral 
populations, minimizing spurious associations while maximizing power to detect true associations. Our 
simple, efficient approach can easily be applied to disease studies with hundreds of thousands of 
markers. 
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 The hypothesis that schizophrenia results from a developmental, as opposed to a degenerative, process 

affecting the cerebral cortex has become popular in current thinking about the disorder. While many of 
the data gathered in support of this hypothesis do not in themselves represent conclusive proof, an 
intriguing picture is emerging from a variety of research approaches. These approaches include the 
observation of minor physical anomalies, premorbid neuropsychological and social deficits, obstetrical 
complications, and exposure to adverse intrauterine events. Morphometric brain measurement 
techniques and neuropathological studies have perhaps provided more substantial support. 
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 The reference human genome sequence set the stage for studies of genetic variation and its association 

with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH 
Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for 
primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes 
generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA 
methylation and RNA expression. We establish global maps of regulatory elements, define regulatory 
modules of coordinated activity, and their likely activators and repressors. We show that disease- and 
trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically 
relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis 
of human disease. Our results demonstrate the central role of epigenomic information for understanding 
gene regulation, cellular differentiation and human disease. 
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 A variety of modern software packages are available for genotype imputation relying on advanced 

concepts such as pre-phasing of the target dataset or utilization of admixed reference panels. In this 
study, we performed a comprehensive evaluation of the accuracy of modern imputation methods on the 
basis of the publicly available POPRES samples. Good quality genotypes were masked and re-imputed 
by different imputation frameworks: namely MaCH, IMPUTE2, MaCH-Minimac, SHAPEIT-IMPUTE2 and 
MaCH-Admix. Results were compared to evaluate the relative merit of pre-phasing and the usage of 
admixed references. We showed that the pre-phasing framework SHAPEIT-IMPUTE2 can overestimate 
the certainty of genotype distributions resulting in the lowest percentage of correctly imputed genotypes 
in our case. MaCH-Minimac performed better than SHAPEIT-IMPUTE2. Pre-phasing always reduced 
imputation accuracy. IMPUTE2 and MaCH-Admix, both relying on admixed-reference panels, showed 
comparable results. MaCH showed superior results if well-matched references were available (Nei's GST 
</= 0.010). For small to medium datasets, frameworks using genetically closest reference panel are 
recommended if the genetic distance between target and reference data set is small. Our results are valid 
for small to medium data sets. As shown on a larger data set of population based German samples, the 
disadvantage of pre-phasing decreases for larger sample sizes. 
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 Chromatin immunoprecipitation (ChIP) followed by tag sequencing (ChIP-seq) using high-throughput 

next-generation instrumentation is fast, replacing chromatin immunoprecipitation followed by genome 
tiling array analysis (ChIP-chip) as the preferred approach for mapping of sites of transcription-factor 
binding and chromatin modification. Using two deeply sequenced data sets for human RNA polymerase II 
and STAT1, each with matching input-DNA controls, we describe a general scoring approach to address 
unique challenges in ChIP-seq data analysis. Our approach is based on the observation that sites of 



potential binding are strongly correlated with signal peaks in the control, likely revealing features of open 
chromatin. We develop a two-pass strategy called PeakSeq to compensate for this. A two-pass strategy 
compensates for signal caused by open chromatin, as revealed by inclusion of the controls. The first pass 
identifies putative binding sites and compensates for genomic variation in the 'mappability' of sequences. 
The second pass filters out sites not significantly enriched compared to the normalized control, 
computing precise enrichments and significances. Our scoring procedure enables us to optimize 
experimental design by estimating the depth of sequencing required for a desired level of coverage and 
demonstrating that more than two replicates provides only a marginal gain in information. 
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 We have developed FusionSeq to identify fusion transcripts from paired-end RNA-sequencing. 

FusionSeq includes filters to remove spurious candidate fusions with artifacts, such as misalignment or 
random pairing of transcript fragments, and it ranks candidates according to several statistics. It also has 
a module to identify exact sequences at breakpoint junctions. FusionSeq detected known and novel 
fusions in a specially sequenced calibration data set, including eight cancers with and without known 
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 Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, 

including common alleles of small effect that might be detected by genome-wide association studies. 
Here we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 
113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci 
that meet genome-wide significance, 83 of which have not been previously reported. Associations were 
enriched among genes expressed in brain, providing biological plausibility for the findings. Many findings 
have the potential to provide entirely new insights into aetiology, but associations at DRD2 and several 
genes involved in glutamatergic neurotransmission highlight molecules of known and potential 
therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. 
Independent of genes expressed in brain, associations were enriched among genes expressed in tissues 
that have important roles in immunity, providing support for the speculated link between the immune 
system and schizophrenia. 
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 Neurodevelopmental changes may underlie the brain dysfunction seen in schizophrenia. While advances 

have been made in our understanding of the genetics of schizophrenia, little is known about how 
non-genetic factors interact with genes for schizophrenia. The present analysis of genes potentially 
associated with schizophrenia is based on the observation that hypoxia prevails in the embryonic and 
fetal brain, and that interactions between neuronal genes, molecular regulators of hypoxia, such as 
hypoxia-inducible factor 1 (HIF-1), and intrinsic hypoxia occur in the developing brain and may create the 
conditions for complex changes in neurodevelopment. Consequently, we searched the literature for 
currently hypothesized candidate genes for susceptibility to schizophrenia that may be subject to 
ischemia-hypoxia regulation and/or associated with vascular expression. Genes were considered when 
at least two independent reports of a significant association with schizophrenia had appeared in the 
literature. The analysis showed that more than 50% of these genes, particularly AKT1, BDNF, CAPON, 
CCKAR, CHRNA7, CNR1, COMT, DNTBP1, GAD1, GRM3, IL10, MLC1, NOTCH4, NRG1, 
NR4A2/NURR1, PRODH, RELN, RGS4, RTN4/NOGO and TNF, are subject to regulation by hypoxia 
and/or are expressed in the vasculature. Future studies of genes proposed as candidates for 



susceptibility to schizophrenia should include their possible regulation by physiological or pathological 
hypoxia during development as well as their potential role in cerebral vascular function. 
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spanning three phyla, leveraging the completed annotations of the human, worm, and fly genomes, which 
we make available as an online resource. We find that pseudogenes are lineage specific, much more so 
than protein-coding genes, reflecting the different remodeling processes marking each organism's 
genome evolution. The majority of human pseudogenes are processed, resulting from a 
retrotranspositional burst at the dawn of the primate lineage. This burst can be seen in the largely uniform 
distribution of pseudogenes across the genome, their preservation in areas with low recombination rates, 
and their preponderance in highly expressed gene families. In contrast, worm and fly pseudogenes tell a 
story of numerous duplication events. In worm, these duplications have been preserved through selective 
sweeps, so we see a large number of pseudogenes associated with highly duplicated families such as 
chemoreceptors. However, in fly, the large effective population size and high deletion rate resulted in a 
depletion of the pseudogene complement. Despite large variations between these species, we also find 
notable similarities. Overall, we identify a broad spectrum of biochemical activity for pseudogenes, with 
the majority in each organism exhibiting varying degrees of partial activity. In particular, we identify a 
consistent amount of transcription ( approximately 15%) across all species, suggesting a uniform 
degradation process. Also, we see a uniform decay of pseudogene promoter activity relative to their 
coding counterparts and identify a number of pseudogenes with conserved upstream sequences and 
activity, hinting at potential regulatory roles. 
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Wang, D., et al. (2016). "DREISS: Using State-Space Models to Infer the Dynamics of Gene Expression Driven 
by External and Internal Regulatory Networks." PLoS Comput Biol 12(10): e1005146. 
 Gene expression is controlled by the combinatorial effects of regulatory factors from different biological 

subsystems such as general transcription factors (TFs), cellular growth factors and microRNAs. A 
subsystem's gene expression may be controlled by its internal regulatory factors, exclusively, or by 
external subsystems, or by both. It is thus useful to distinguish the degree to which a subsystem is 
regulated internally or externally-e.g., how non-conserved, species-specific TFs affect the expression of 
conserved, cross-species genes during evolution. We developed a computational method (DREISS, 
dreiss.gerteinlab.org) for analyzing the Dynamics of gene expression driven by Regulatory networks, 
both External and Internal based on State Space models. Given a subsystem, the "state" and "control" in 
the model refer to its own (internal) and another subsystem's (external) gene expression levels. The state 
at a given time is determined by the state and control at a previous time. Because typical time-series data 
do not have enough samples to fully estimate the model's parameters, DREISS uses dimensionality 
reduction, and identifies canonical temporal expression trajectories (e.g., degradation, growth and 
oscillation) representing the regulatory effects emanating from various subsystems. To demonstrate 
capabilities of DREISS, we study the regulatory effects of evolutionarily conserved vs. divergent TFs 
across distant species. In particular, we applied DREISS to the time-series gene expression datasets of 
C. elegans and D. melanogaster during their embryonic development. We analyzed the expression 
dynamics of the conserved, orthologous genes (orthologs), seeing the degree to which these can be 
accounted for by orthologous (internal) versus species-specific (external) TFs. We found that between 
two species, the orthologs have matched, internally driven expression patterns but very different 
externally driven ones. This is particularly true for genes with evolutionarily ancient functions (e.g. the 
ribosomal proteins), in contrast to those with more recently evolved functions (e.g., cell-cell 
communication). This suggests that despite striking morphological differences, some fundamental 
embryonic-developmental processes are still controlled by ancient regulatory systems. 
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 The topology of the gene-regulatory network has been extensively analyzed. Now, given the large 

amount of available functional genomic data, it is possible to go beyond this and systematically study 
regulatory circuits in terms of logic elements. To this end, we present Loregic, a computational method 
integrating gene expression and regulatory network data, to characterize the cooperativity of regulatory 
factors. Loregic uses all 16 possible two-input-one-output logic gates (e.g. AND or XOR) to describe 
triplets of two factors regulating a common target. We attempt to find the gate that best matches each 
triplet's observed gene expression pattern across many conditions. We make Loregic available as a 
general-purpose tool (github.com/gersteinlab/loregic). We validate it with known yeast 
transcription-factor knockout experiments. Next, using human ENCODE ChIP-Seq and TCGA RNA-Seq 
data, we are able to demonstrate how Loregic characterizes complex circuits involving both proximally 
and distally regulating transcription factors (TFs) and also miRNAs. Furthermore, we show that MYC, a 
well-known oncogenic driving TF, can be modeled as acting independently from other TFs (e.g., using 
OR gates) but antagonistically with repressing miRNAs. Finally, we inter-relate Loregic's gate logic with 
other aspects of regulation, such as indirect binding via protein-protein interactions, feed-forward loop 
motifs and global regulatory hierarchy. 
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 Recent research on schizophrenia has demonstrated that in this disorder the brain is not, strictly 

speaking, normal. The findings suggest that nonspecific histopathology exists in the limbic system, 
diencephalon, and prefrontal cortex, that the pathology occurs early in development, and that the 
causative process is inactive long before the diagnosis is made. If these findings are valid and not 
epiphenomena, then the pathogenesis of schizophrenia does not appear to fit either traditional metabolic, 
posttraumatic, or neurodegenerative models of adult mental illness. The data are more consistent with a 
neurodevelopmental model in which a fixed "lesion" from early in life interacts with normal brain 
maturational events that occur much later. Based on neuro-ontological principles and insights from 
animal research about normal brain development, it is proposed that the appearance of diagnostic 



symptoms is linked to the normal maturation of brain areas affected by the early developmental 
pathology, particularly the dorsolateral prefrontal cortex. The course of the illness and the importance of 
stress may be related to normal maturational aspects of dopaminergic neural systems, particularly those 
innervating prefrontal cortex. Some implications for future research and treatment are considered. 
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 Three-dimensional physical interactions within chromosomes dynamically regulate gene expression in a 

tissue-specific manner. However, the 3D organization of chromosomes during human brain development 
and its role in regulating gene networks dysregulated in neurodevelopmental disorders, such as autism or 
schizophrenia, are unknown. Here we generate high-resolution 3D maps of chromatin contacts during 
human corticogenesis, permitting large-scale annotation of previously uncharacterized regulatory 
relationships relevant to the evolution of human cognition and disease. Our analyses identify hundreds of 
genes that physically interact with enhancers gained on the human lineage, many of which are under 
purifying selection and associated with human cognitive function. We integrate chromatin contacts with 
non-coding variants identified in schizophrenia genome-wide association studies (GWAS), highlighting 
multiple candidate schizophrenia risk genes and pathways, including transcription factors involved in 
neurogenesis, and cholinergic signalling molecules, several of which are supported by independent 
expression quantitative trait loci and gene expression analyses. Genome editing in human neural 
progenitors suggests that one of these distal schizophrenia GWAS loci regulates FOXG1 expression, 
supporting its potential role as a schizophrenia risk gene. This work provides a framework for 
understanding the effect of non-coding regulatory elements on human brain development and the 
evolution of cognition, and highlights novel mechanisms underlying neuropsychiatric disorders. 

 

Wu, L., et al. (2007). "Global Survey of Human T Leukemic Cells by Integrating Proteomics and Transcriptomics 
Profiling." Molecular &amp; Cellular Proteomics 6(8): 1343-1353. 
  

Yan, K. K., et al. (2014). "OrthoClust: an orthology-based network framework for clustering data across multiple 
species." Genome Biol 15(8): R100. 
 Increasingly, high-dimensional genomics data are becoming available for many organisms.Here, we 

develop OrthoClust for simultaneously clustering data across multiple species. OrthoClust is a 
computational framework that integrates the co-association networks of individual species by utilizing the 
orthology relationships of genes between species. It outputs optimized modules that are fundamentally 
cross-species, which can either be conserved or species-specific. We demonstrate the application of 
OrthoClust using the RNA-Seq expression profiles of Caenorhabditis elegans and Drosophila 
melanogaster from the modENCODE consortium. A potential application of cross-species modules is to 
infer putative analogous functions of uncharacterized elements like non-coding RNAs based on 
guilt-by-association. 
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 We performed computational reconstruction of the in silico gene regulatory networks in the DREAM3 

Challenges. Our task was to learn the networks from two types of data, namely gene expression profiles 
in deletion strains (the 'deletion data') and time series trajectories of gene expression after some initial 
perturbation (the 'perturbation data'). In the course of developing the prediction method, we observed that 
the two types of data contained different and complementary information about the underlying network. In 
particular, deletion data allow for the detection of direct regulatory activities with strong responses upon 
the deletion of the regulator while perturbation data provide richer information for the identification of 
weaker and more complex types of regulation. We applied different techniques to learn the regulation 
from the two types of data. For deletion data, we learned a noise model to distinguish real signals from 



random fluctuations using an iterative method. For perturbation data, we used differential equations to 
model the change of expression levels of a gene along the trajectories due to the regulation of other 
genes. We tried different models, and combined their predictions. The final predictions were obtained by 
merging the results from the two types of data. A comparison with the actual regulatory networks 
suggests that our approach is effective for networks with a range of different sizes. The success of the 
approach demonstrates the importance of integrating heterogeneous data in network reconstruction. 
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 BACKGROUND: Transcription factors function by binding different classes of regulatory elements. The 

Encyclopedia of DNA Elements (ENCODE) project has recently produced binding data for more than 100 
transcription factors from about 500 ChIP-seq experiments in multiple cell types. While this large amount 
of data creates a valuable resource, it is nonetheless overwhelmingly complex and simultaneously 
incomplete since it covers only a small fraction of all human transcription factors. RESULTS: As part of 
the consortium effort in providing a concise abstraction of the data for facilitating various types of 
downstream analyses, we constructed statistical models that capture the genomic features of three 
paired types of regions by machine-learning methods: firstly, regions with active or inactive binding; 
secondly, those with extremely high or low degrees of co-binding, termed HOT and LOT regions; and 
finally, regulatory modules proximal or distal to genes. From the distal regulatory modules, we developed 
computational pipelines to identify potential enhancers, many of which were validated experimentally. We 
further associated the predicted enhancers with potential target transcripts and the transcription factors 
involved. For HOT regions, we found a significant fraction of transcription factor binding without clear 
sequence motifs and showed that this observation could be related to strong DNA accessibility of these 
regions. CONCLUSIONS: Overall, the three pairs of regions exhibit intricate differences in chromosomal 
locations, chromatin features, factors that bind them, and cell-type specificity. Our machine learning 
approach enables us to identify features potentially general to all transcription factors, including those not 
included in the data. 
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 Models derived from human pluripotent stem cells that accurately recapitulate neural development in 

vitro and allow for the generation of specific neuronal subtypes are of major interest to the stem cell and 
biomedical community. Notch signalling, particularly through the Notch effector HES5, is a major pathway 
critical for the onset and maintenance of neural progenitor cells in the embryonic and adult nervous 
system. Here we report the transcriptional and epigenomic analysis of six consecutive neural progenitor 
cell stages derived from a HES5::eGFP reporter human embryonic stem cell line. Using this system, we 
aimed to model cell-fate decisions including specification, expansion and patterning during the ontogeny 
of cortical neural stem and progenitor cells. In order to dissect regulatory mechanisms that orchestrate 
the stage-specific differentiation process, we developed a computational framework to infer key 
regulators of each cell-state transition based on the progressive remodelling of the epigenetic landscape 
and then validated these through a pooled short hairpin RNA screen. We were also able to refine our 
previous observations on epigenetic priming at transcription factor binding sites and suggest here that 
they are mediated by combinations of core and stage-specific factors. Taken together, we demonstrate 
the utility of our system and outline a general framework, not limited to the context of the neural lineage, 
to dissect regulatory circuits of differentiation. 
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