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ABSTRACT 
High throughput sequencing of genetic disease patient genomes has 
opened up the possibility of finding the precise causes of these dis-
eases, paving the way for more effective drug development for these 
illnesses in the future. However, the analysis of this data has not 
kept pace with the data’s production rate. Fast, efficient analysis is 
necessary to meaningfully interpret this data and derive actionable 
results. Here, we introduce the Mutations Overburdening Annota-
tions Tool (MOAT), a new computational tool designed to identify 
functional annotations with a high mutation burden relative to the 
surrounding genome. Such annotations may be potential driver ele-
ments in genetic disease. We release an implementation that offers 
users two forms of mutation burden analysis through empirical per-
mutations, as well as serial and parallel versions of each form. We 
also demonstrate MOAT’s capability for finding known noncoding 
drivers in cancer variant data. 
Availability: MOAT is available at […] 

2 INTRODUCTION  
High throughput sequencing of genetic disease cohorts has enabled 
the identification of the molecular causes of these illnesses. This 
data can be utilized to find the somatic single nucleotide variants 
(SNVs) in each patient. However, due to the relatively high num-
ber of neutral variants in such patients’ genomes, it is not immedi-
ately apparent which variants are directly connected to the disease 
phenotype. A common strategy for addressing this issue is to look 
for genomic elements with a high accumulation of variants. By 
modeling the factors that influence the stochastic mutation rate, the 
elements that are more mutated than expected under the back-
ground model can be determined. 

One means of detecting deviation from the expected background 
mutation rate is to look for elements that have a high variant densi-
ty compared to the immediately surrounding genome. It is well 
known that the background mutation rate varies widely across the 
whole genome, and this rate is essentially confounded by numer-
ous genomic features. Our Mutations Overburdening Annotations 
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Tool (MOAT) is designed to automatically overcome such con-
founding effect in a non-parametric way and compute the signifi-
cance of the mutation burden of any element. 

MOAT simulates the local background distribution of somatic 
mutations in the human genome by creating permutations of the 
input variant set. In other words, given the number of samples and 
variants in the input file, how would those variants be distributed 
under the assumption that they arose solely due to background 
mutation processes? To answer this question, MOAT calculates 
new positions for each variant in the input data, accounting for 
mutability factors in the local genome context. These permuted 
variant sets enable comparison between the observed mutation 
burden and the expected mutation burden. 

MOAT offers users two types of permutation algorithm to empir-
ically assess the background mutation rate: MOAT-a (annotation 
centric) and MOAT-v (variant centric). In the following sections, 
we will describe the implementation of MOAT for parallel com-
puter systems, which enables highly efficient data size scalability. 
This scalability is important for guaranteeing a reasonable running 
time given the high computational intensity of the permutation 
step.  

3 METHODS 
3.1 MOAT-a: Annotation-based Permutation 
The parallel version of MOAT’s annotation-based permutation 
algorithm, MOAT-a, is a C++ program that uses NVIDIA’s CUDA 
language to instantiate parallel GPU threads, and divides the com-
putational workload across these threads. MOAT-a’s steps are 
illustrated in Fig. 1. MOAT-a takes a list of variant calls and a list 
of annotations as input, and iterates through the annotations, com-
puting the intersecting variant count per annotation. MOAT-a then 
looks at the genome within a user-defined distance from the cur-
rent input annotation, and randomly places windows in this region 
of length equal to the input annotation’s length. MOAT-a will find 
the number of intersecting variants from the vfile that intersect 
each of the random bins. These variant counts are compared to the 
input annotation’s intersecting variant count. The input annota-
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tion’s p-value is defined as the percent of bins with a variant count 
equal to or greater than the input annotation’s variant count. 
Hence, the p-value represents the degree to which the input annota-
tion’s mutation burden is elevated relative to the local background. 

MOAT-a’s operations are well suited for massively parallel 
computing. Therefore, we adapted MOAT-a into a CUDA pro-
gram, which enables the acceleration of computation by utilizing 

the thousands of stream processors found on graphics cards that are 
ordinarily purposed for the rapid rendering of 3D graphics. For our 
purposes, CUDA copies the variant and annotation data to an 
NVIDIA Geforce GPU’s video memory, and performs thousands 
of intersection calculations in parallel. 

3.2 MOAT-v: Variant-based Permutation 
MOAT-v’s variant-based permutation algorithm creates permuted 
datasets by assigning new coordinates to each input variant within 
the local genome region. These regions are fixed-width bins of a 
user-defined length, with the exception of mappability blacklist 
regions that include ENCODE consensus excludable regions, as 
well as centromeres and telomeres. 

As with MOAT-a, MOAT-v takes variants and annotations as 
inputs (Fig. 1). MOAT-v will generate a permuted dataset by sub-
dividing the genome into bins of a user-defined size, and assigning 
each bin’s variants new positions within the same bin. These new 
positions are chosen such that the dinucleotide context of the origi-
nal variant is preserved. For example, if MOAT-v is given an input 
variant that has a reference base G, and is adjacent to a C, then 
MOAT-v gathers up every position in the same bin where GC 
occurs in the reference, and selects one of these with uniform 
probability. The selected position is the input variant’s coordinates 
in the permuted dataset. 

 
This process continues until n permutations have been generated. 

At this point, MOAT-v will calculate n intersecting permuted vari-
ant counts for each of the input annotations. A p-value for each 
annotation is determined based on the fraction of the n intersecting 
permuted variant counts that are equal to or greater than the inter-
secting variant count derived from the original vfile variants. 

Initial prototypes of the parallel version of MOAT-v used the 
Nvidia CUDA framework, but the necessity of loading the refer-
ence genome sequence to preserve dinucleotide context in the per-
mutation step resulted in prohibitive memory requirements with 
respect to the available GPU video RAM. As a result, MOAT-v 
was instead written to parallelize its workflow across multi-core 
CPUs using the OpenMPI framework. Under this arrangement, the 
work of generating a single permutation is split by chromosome, 
and each chromosome is assigned one of the available CPU cores. 
Since each chromosome’s reference sequence is held in a separate 
FASTA file, each core will load a separate file, ensuring no re-
source contention. When one core finishes a chromosome, it is 
assigned the next chromosome that has not yet been assigned. This 
continues until each chromosome has been processed, after which 
the permuted variants are gathered and work begins on the next 
permutation, or, if all the permutations are complete, p-values are 
calculated. 

4 RESULTS 
4.1 MOAT-a 

Table 1. Speed benchmark of MOAT-a (CPU and GPU versions) with 
respect to the number of input annotations. Each time trial involved using 
MOAT-a to generate 1000 permuted variant datasets. For large datasets, the 
GPU version vastly outperforms the CPU version. 

Annotation 
set 

Number of 
annotations 

CPU version 
running time 

GPU version 
running time 

Fold speedup of 
GPU version 

DRM ~14,000 7min 4min 1.75x 
TSS ~200,000 49min 5min 9.80x 
DHS ~3,000,000 11hr6min 7min 95.14x 
 
We demonstrate the magnitude of the CUDA speedup by evaluat-
ing the running time of MOAT-a on datasets of various sizes, using 
both the CPU and GPU versions to calculate the output. We took a 
dataset of pan-cancer whole genome variant calls that includes 507 
cancer genomes of various types from (Alexandrov, et al., 2013), 
and 100 stomach cancer genomes from (Wang, et al., 2014), total-
ing ~7 million variants. We used 3 different annotation sets for our 
evaluation, representing 3 different input sizes to demonstrate 
MOAT-a’s scalability. These include the Distal Regulatory Mod-
ule (DRM) annotations from (Yip, et al., 2012), transcription start 
site (TSS) annotations derived by taking the 100bp regions up-
stream of each GENCODE gene start (Harrow, et al., 2012), and 
the Dnase I hypersensitive (DHS) sites from the ENCODE project 
(Thurman, et al., 2012). These annotation sets represent 3 different 
orders of magnitude in size: the DRM set spans ~14,000 annota-
tions, the TSS set spans ~200,000 annotations, and the DHS set 
spans ~3 million annotations. We tested MOAT-a’s running time 
on these 3 annotation sets with the number of random bins n = 

Fig. 1. Schematic overview of MOAT. The input data consists of annotations 
where the user wants to find significant mutation burdens as determined by 
the variant set. Intersecting the variants with the annotations produces the 
observed mutation counts. MOAT then follows one of two possible command 
paths to generate a background mutation distribution to evaluate the signifi-
cance of each mutation burden. Each annotation is given a p-value in the 
output. 
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1000. the results of which are shown in Table 1. The performance 
of the CPU and GPU versions are comparable, but it is clear that 
for 3 million annotations, the CPU version’s runtime increases 
considerably, while the GPU version never exceeds 10 minutes. 
MOAT-a’s running time is not affected by the number of variants 
(data not shown). 

Due to the relative lack of verified noncoding regulatory ele-
ments associated with cancer, it is difficult to assess the accuracy 
of MOAT’s predictions. Nevertheless, we demonstrate MOAT’s 
usefulness for finding elevated mutation burdens in genomic ele-
ments by identifying highly mutated GENCODE transcription start 
sites, promoters, and distal regulatory modules, using the afore-
mentioned pancancer variant dataset. TERT, which has well-
documented cancer-associated promoter mutations (Vinagre, et al., 
2013), was found to have two TSSes with significant mutation 
burden (p-values: 0.01 and 0.03). After applying Bcnjamini-
Hochberg false discovery rate correction (Benjamini and 
Hochberg, 1995) to the p-values, there were 201 promoters, 258 
TSSes, and 35 DRMs with significant mutation burdens. These 
may be used as a shortlist for investigating and validating individ-
ual variants’ associations with cancer. 

4.2 MOAT-v 
Using the same set of cancer variants used in the MOAT-a tests, 
parallel MOAT-v’s running time was evaluated across multiple 
CPU configurations to demonstrate the performance gains of the 
OpenMPI implementation. MOAT-v in OpenMPI is set up to run 
one master process on one of the available CPU cores, and use the 
rest for worker processes. Hence, the program must be run with 3 
cores to get two cores to process the work simultaneously, 4 cores 
to get three cores to process the work simultaneously, etc. Table 2 
represents the running time improvement relative to the number of 
workers added. This improvement scales close to linear with the 
number of workers, indicating that the load balancing between 
each CPU core is very evenly divided, enabling significant time 
savings when MOAT-v is run in parallel. 

Table 2. Speed benchmark of MOAT-v with respect to the number of CPU 
cores assigned worker processes. Each time trial involved using MOAT-v 
to generate one permuted variant dataset using ~7 million input variants, 
and 1,000,000-bp bins. 

# of worker CPU cores Running time Fold speedup 

1 14hr54min 1.00x 
2 7hr56min 1.88x 
4 4hr31min 3.30x 
8 2hr39min 5.62x 
 

5 DISCUSSION 
Finding the genetic basis of disease enables the development of 
highly targeted therapies that promise to be far more effective than 
previous therapies. The current wave of next generation sequenc-
ing of thousands of genomes has provided the data necessary to 
find the precise phenomena responsible for the functional disrup-
tion that gives rise to disease phenotypes. Identification of genomic 
elements with a high mutation burden is useful for narrowing down 

the exact site of functional disruption. We introduce Mutations 
Overburdening Annotations Tool (MOAT), a new software tool to 
facilitate such analyses. We demonstrate the usefulness of this tool 
for flagging putative noncoding cancer drivers, and provide a 
GPGPU-accelerated version that dramatically increases the speed 
of its mutation burden analysis. Given the demand for efficient, 
meaningful analysis of genome sequence data that is now being 
produced at very high rate, we consider MOAT’s provision of such 
analysis for genetic disease drivers quite timely. 
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