
© Oxford University Press 2005 1

1 CATEGORY

Efficient Detection of Highly Mutated Annotations with Mutations
Overburdening Annotations Tool (MOAT)
Lucas Lochovsky1,*, Jing Zhang12 and Mark Gerstein1,2,3
1Department of XXXXXXX, Address XXXX etc.
1Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
2Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
3Department of Computer Science, Yale University, New Haven, Connecticut 06520, USA
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
High throughput sequencing of genetic disease patient genomes has
opened up the possibility of finding the precise causes of these dis-
eases, paving the way for more effective drug development for these
illnesses in the future. However, the analysis of this data has not
kept pace with the data’s production rate. Fast, efficient analysis is
necessary to meaningfully interpret this data and derive actionable
results. Here, we introduce the Mutations Overburdening Annota-
tions Tool (MOAT), a new computational tool designed to identify
functional annotations with a high mutation burden relative to the
surrounding genome. Such annotations may be potential driver ele-
ments in genetic disease. We release an implementation that offers
users two forms of mutation burden analysis through empirical per-
mutations, as well as serial and parallel versions of each form. We
also demonstrate MOAT’s capability for finding known noncoding
drivers in cancer variant data.
Availability: MOAT is available at […]

2 INTRODUCTION
High throughput sequencing of genetic disease cohorts has enabled
the identification of the molecular causes of these illnesses. This
data can be utilized to find the somatic single nucleotide variants
(SNVs) in each patient. However, due to the relatively high num-
ber of neutral variants in such patients’ genomes, it is not immedi-
ately apparent which variants are directly connected to the disease
phenotype. A common strategy for addressing this issue is to look
for genomic elements with a high accumulation of variants. By
modeling the factors that influence the stochastic mutation rate, the
elements that are more mutated than expected under the back-
ground model can be determined.

One means of detecting deviation from the expected background
mutation rate is to look for elements that have a high variant densi-
ty compared to the immediately surrounding genome. It is well
known that the background mutation rate varies widely across the
whole genome, and this rate is essentially confounded by numer-
ous genomic features. Our Mutations Overburdening Annotations

*To whom correspondence should be addressed.

Tool (MOAT) is designed to automatically overcome such con-
founding effect in a non-parametric way and compute the signifi-
cance of the mutation burden of any element.

MOAT simulates the local background distribution of somatic
mutations in the human genome by creating permutations of the
input variant set. In other words, given the number of samples and
variants in the input file, how would those variants be distributed
under the assumption that they arose solely due to background
mutation processes? To answer this question, MOAT calculates
new positions for each variant in the input data, accounting for
mutability factors in the local genome context. These permuted
variant sets enable comparison between the observed mutation
burden and the expected mutation burden.

MOAT offers users two types of permutation algorithm to empir-
ically assess the background mutation rate: MOAT-a (annotation
centric) and MOAT-v (variant centric). In the following sections,
we will describe the implementation of MOAT for parallel com-
puter systems, which enables highly efficient data size scalability.
This scalability is important for guaranteeing a reasonable running
time given the high computational intensity of the permutation
step.

3 METHODS
3.1 MOAT-a: Annotation-based Permutation
The parallel version of MOAT’s annotation-based permutation
algorithm, MOAT-a, is a C++ program that uses NVIDIA’s CUDA
language to instantiate parallel GPU threads, and divides the com-
putational workload across these threads. MOAT-a’s steps are
illustrated in Fig. 1. MOAT-a takes a list of variant calls and a list
of annotations as input, and iterates through the annotations, com-
puting the intersecting variant count per annotation. MOAT-a then
looks at the genome within a user-defined distance from the cur-
rent input annotation, and randomly places windows in this region
of length equal to the input annotation’s length. MOAT-a will find
the number of intersecting variants from the vfile that intersect
each of the random bins. These variant counts are compared to the
input annotation’s intersecting variant count. The input annota-

K.Takahashi et al.

2

tion’s p-value is defined as the percent of bins with a variant count
equal to or greater than the input annotation’s variant count.
Hence, the p-value represents the degree to which the input annota-
tion’s mutation burden is elevated relative to the local background.

MOAT-a’s operations are well suited for massively parallel
computing. Therefore, we adapted MOAT-a into a CUDA pro-
gram, which enables the acceleration of computation by utilizing

the thousands of stream processors found on graphics cards that are
ordinarily purposed for the rapid rendering of 3D graphics. For our
purposes, CUDA copies the variant and annotation data to an
NVIDIA Geforce GPU’s video memory, and performs thousands
of intersection calculations in parallel.

3.2 MOAT-v: Variant-based Permutation
MOAT-v’s variant-based permutation algorithm creates permuted
datasets by assigning new coordinates to each input variant within
the local genome region. These regions are fixed-width bins of a
user-defined length, with the exception of mappability blacklist
regions that include ENCODE consensus excludable regions, as
well as centromeres and telomeres.

As with MOAT-a, MOAT-v takes variants and annotations as
inputs (Fig. 1). MOAT-v will generate a permuted dataset by sub-
dividing the genome into bins of a user-defined size, and assigning
each bin’s variants new positions within the same bin. These new
positions are chosen such that the dinucleotide context of the origi-
nal variant is preserved. For example, if MOAT-v is given an input
variant that has a reference base G, and is adjacent to a C, then
MOAT-v gathers up every position in the same bin where GC
occurs in the reference, and selects one of these with uniform
probability. The selected position is the input variant’s coordinates
in the permuted dataset.

This process continues until n permutations have been generated.

At this point, MOAT-v will calculate n intersecting permuted vari-
ant counts for each of the input annotations. A p-value for each
annotation is determined based on the fraction of the n intersecting
permuted variant counts that are equal to or greater than the inter-
secting variant count derived from the original vfile variants.

Initial prototypes of the parallel version of MOAT-v used the
Nvidia CUDA framework, but the necessity of loading the refer-
ence genome sequence to preserve dinucleotide context in the per-
mutation step resulted in prohibitive memory requirements with
respect to the available GPU video RAM. As a result, MOAT-v
was instead written to parallelize its workflow across multi-core
CPUs using the OpenMPI framework. Under this arrangement, the
work of generating a single permutation is split by chromosome,
and each chromosome is assigned one of the available CPU cores.
Since each chromosome’s reference sequence is held in a separate
FASTA file, each core will load a separate file, ensuring no re-
source contention. When one core finishes a chromosome, it is
assigned the next chromosome that has not yet been assigned. This
continues until each chromosome has been processed, after which
the permuted variants are gathered and work begins on the next
permutation, or, if all the permutations are complete, p-values are
calculated.

4 RESULTS
4.1 MOAT-a

Table 1. Speed benchmark of MOAT-a (CPU and GPU versions) with
respect to the number of input annotations. Each time trial involved using
MOAT-a to generate 1000 permuted variant datasets. For large datasets, the
GPU version vastly outperforms the CPU version.

Annotation
set

Number of
annotations

CPU version
running time

GPU version
running time

Fold speedup of
GPU version

DRM ~14,000 7min 4min 1.75x
TSS ~200,000 49min 5min 9.80x
DHS ~3,000,000 11hr6min 7min 95.14x

We demonstrate the magnitude of the CUDA speedup by evaluat-
ing the running time of MOAT-a on datasets of various sizes, using
both the CPU and GPU versions to calculate the output. We took a
dataset of pan-cancer whole genome variant calls that includes 507
cancer genomes of various types from (Alexandrov, et al., 2013),
and 100 stomach cancer genomes from (Wang, et al., 2014), total-
ing ~7 million variants. We used 3 different annotation sets for our
evaluation, representing 3 different input sizes to demonstrate
MOAT-a’s scalability. These include the Distal Regulatory Mod-
ule (DRM) annotations from (Yip, et al., 2012), transcription start
site (TSS) annotations derived by taking the 100bp regions up-
stream of each GENCODE gene start (Harrow, et al., 2012), and
the Dnase I hypersensitive (DHS) sites from the ENCODE project
(Thurman, et al., 2012). These annotation sets represent 3 different
orders of magnitude in size: the DRM set spans ~14,000 annota-
tions, the TSS set spans ~200,000 annotations, and the DHS set
spans ~3 million annotations. We tested MOAT-a’s running time
on these 3 annotation sets with the number of random bins n =

Fig. 1. Schematic overview of MOAT. The input data consists of annotations
where the user wants to find significant mutation burdens as determined by
the variant set. Intersecting the variants with the annotations produces the
observed mutation counts. MOAT then follows one of two possible command
paths to generate a background mutation distribution to evaluate the signifi-
cance of each mutation burden. Each annotation is given a p-value in the
output.

Efficient Detection of Highly Mutated Annotations with Mutations Overburdening Annotations Tool (MOAT)

3

1000. the results of which are shown in Table 1. The performance
of the CPU and GPU versions are comparable, but it is clear that
for 3 million annotations, the CPU version’s runtime increases
considerably, while the GPU version never exceeds 10 minutes.
MOAT-a’s running time is not affected by the number of variants
(data not shown).

Due to the relative lack of verified noncoding regulatory ele-
ments associated with cancer, it is difficult to assess the accuracy
of MOAT’s predictions. Nevertheless, we demonstrate MOAT’s
usefulness for finding elevated mutation burdens in genomic ele-
ments by identifying highly mutated GENCODE transcription start
sites, promoters, and distal regulatory modules, using the afore-
mentioned pancancer variant dataset. TERT, which has well-
documented cancer-associated promoter mutations (Vinagre, et al.,
2013), was found to have two TSSes with significant mutation
burden (p-values: 0.01 and 0.03). After applying Bcnjamini-
Hochberg false discovery rate correction (Benjamini and
Hochberg, 1995) to the p-values, there were 201 promoters, 258
TSSes, and 35 DRMs with significant mutation burdens. These
may be used as a shortlist for investigating and validating individ-
ual variants’ associations with cancer.

4.2 MOAT-v
Using the same set of cancer variants used in the MOAT-a tests,
parallel MOAT-v’s running time was evaluated across multiple
CPU configurations to demonstrate the performance gains of the
OpenMPI implementation. MOAT-v in OpenMPI is set up to run
one master process on one of the available CPU cores, and use the
rest for worker processes. Hence, the program must be run with 3
cores to get two cores to process the work simultaneously, 4 cores
to get three cores to process the work simultaneously, etc. Table 2
represents the running time improvement relative to the number of
workers added. This improvement scales close to linear with the
number of workers, indicating that the load balancing between
each CPU core is very evenly divided, enabling significant time
savings when MOAT-v is run in parallel.

Table 2. Speed benchmark of MOAT-v with respect to the number of CPU
cores assigned worker processes. Each time trial involved using MOAT-v
to generate one permuted variant dataset using ~7 million input variants,
and 1,000,000-bp bins.

of worker CPU cores Running time Fold speedup

1 14hr54min 1.00x
2 7hr56min 1.88x
4 4hr31min 3.30x
8 2hr39min 5.62x

5 DISCUSSION
Finding the genetic basis of disease enables the development of
highly targeted therapies that promise to be far more effective than
previous therapies. The current wave of next generation sequenc-
ing of thousands of genomes has provided the data necessary to
find the precise phenomena responsible for the functional disrup-
tion that gives rise to disease phenotypes. Identification of genomic
elements with a high mutation burden is useful for narrowing down

the exact site of functional disruption. We introduce Mutations
Overburdening Annotations Tool (MOAT), a new software tool to
facilitate such analyses. We demonstrate the usefulness of this tool
for flagging putative noncoding cancer drivers, and provide a
GPGPU-accelerated version that dramatically increases the speed
of its mutation burden analysis. Given the demand for efficient,
meaningful analysis of genome sequence data that is now being
produced at very high rate, we consider MOAT’s provision of such
analysis for genetic disease drivers quite timely.

ACKNOWLEDGEMENTS
The quick brown fox jumps over the lazy dog. The quick brown

Funding: The quick brown fox jumps over the lazy dog. The quick
brown fox jumps over the lazy dog.

REFERENCES
Alexandrov, L.B., et al. Signatures of mutational processes in human cancer. Nature

2013;500(7463):415-421.

Benjamini, Y. and Hochberg, Y. Controlling the false discovery rate: a practical and

powerful approach to multiple testing. Journal of the Royal Statistical Society. Series

B (Methodological). 1995;57(1):289-300.

Gabriel, E., et al. Open MPI: Goals, concept, and design of a next generation MPI

implementation. Springer 2004:97-104.

Harrow, J., et al. GENCODE: the reference human genome annotation for The

ENCODE Project. Genome research 2012;22(9):1760-1774.

Nickolls, J., et al. Scalable parallel programming with CUDA. Queue 2008;6(2):40-

53.

Thurman, R.E., et al. The accessible chromatin landscape of the human genome.

Nature 2012;489(7414):75-82.

Vinagre, J., et al. Frequency of TERT promoter mutations in human cancers. Nature

communications 2013;4:2185.

Wang, K., et al. Whole-genome sequencing and comprehensive molecular profiling

identify new driver mutations in gastric cancer. Nature genetics 2014;46(6):573-582.

Yip, K.Y., et al. Classification of human genomic regions based on experimentally

determined binding sites of more than 100 transcription-related factors. Genome

biology 2012;13(9):R48.

