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An overarching objective of our study is to leverage ENCODE data in order to provide novel 

insights and resources for cancer research. We aim integrate ENCODE and cancer genomic data 

to gain a more comprehensive understanding of the non-coding elements involved in oncogenesis, 

their associated linkages to protein-coding genes and the background mutation rates therein, and 

the global regulatory nature of TFs in the context of matched tumor-normal cell lines. The recent 

ENCODE data release provides a rich source of information for investigating questions both in 

basic biology and human disease. In large part, this wealth of information derives from the multiple 

genomic annotations provided across multiple cell lines. In addition to providing new opportunities, 

however, the very richness of this data provides considerable challenges in terms of data 

integration and organization. In addition to the complexity of this data resource, our analyses relies 

on an array methodologies, the details for which are difficult to include within the main text of this 

paper. As such, the purpose of this Supplementary document is to provide a clear and organized 

reference to support and explain the datasets, pipelines, and analyses associated with this study. In 

addition to supplementary text, supplementary figures and tables provide additional information 

not included in the main figures. 

Our study is broadly organized into 4 main parts: a description of the assays, the construction 

of enhancer-target gene linkages, the workflow for variant prioritizing key genomic features 

associated with cancer, and concluding remarks. This supplement is presented in roughly a parallel 

fashion to the main text. The supplement is also connected to main text through the major results 

presented in the form of main text figures – captions associated with main text figures point to 

relevant sub-sections within the supplement. We have written our study in roughly a hierarchical 

fashion, and aim to present data and results (including predications) in an organized way. The main 
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text lies at the top of this hierarchy, and synthesizes everything in a broad fashion. It refers to more 

detailed descriptions of our methods and datasets, as provided in the supplement. 

Part 1 provides in-depth documentation of the ENCODE data we use, along with the 

subsidiary steps (including ENCODE data processing, enhancer and enhancer-target predictions, 

and extended gene definitions). Part 2 provides details on our recurrence analyses. Part 3 provides 

in-depth discussions and data regarding our TF network construction and analyses. Part 4 aims to 

expand on our expression aggregation analysis. Finally, Part 5 deals with the validation of 

prioritized SNVs. 

1 Details about data summary from ENCODE 

1.1 Summary of the cancer-related encyclopedia companion resource 

Mutations associated with cancer have been well characterized in a many key oncogenes and 

tumor suppressors. However, the overwhelming bulk of mutations in cancer genomes – 

particularly those discovered from the recent large-scale cancer genomics initiatives – lie within 

non-coding regions. Whether these mutations drive cancer development or progression, or simply 

emerge as byproducts of genomic instability remains an open question. Newly-released data from 

the ENCODE Consortium can help address this question by providing comprehensive 

characterization of non-coding genomic elements, as well as by linking such elements to well-

known cancer associated genes.  

Here, we endeavor to provide a companion resource to the main ENCODE encyclopedia by 

building a “cancer related encyclopedia companion” resource. The main encyclopedia is oriented 

toward breath of the annotations to describe elements over hundreds of cell lines. In contrast, we 

focus on top cell lines with a wide variety of profiles available. Most of these cell lines are 
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associated with cancers of the blood, liver, lung, cervix, and breast. We show that these cell lines 

can be used to provide a better understanding of oncogenesis, and we provide a resource for 

interpreting the wealth of mutational and transcriptional profiles produced by the cancer 

community. We summarized our efforts in Figure S 1-1. This encyclopedia companion mainly 

provides three layer of resource: 1) Data provision: carefully collected and de-duplicated signal 

tracks from various experimental assays both within and outside ENCODE; 2) pairing cell lines 

and datasets to cancer types; 3) Detailed Annotations: enhancers and their gene linkages, tissue 

specific and generalized networks, network hierarchies, rewiring status, gene expression regulating 

potentials, predicted mutation rates, and motif identifications. 

[[JZ2PDM: figure S 1-1 to be updated]] 
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Figure S 1-1 Summary of the resources in cancer related encyclopedia companion 
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1.2 Detailed annotation of TFs 

In this study, we collected a total of 344 transcription related factors and abbreviate them all 

as TFs in the main text for simplicity. For our main analyses, we further classified them into four 

major classes: 282 sequence-specific TFs, which bind DNA at particular motifs to regulate gene 

expression; 16 general TFs, which comprise that segment of the cell’s transcriptional machinery 

that complexes with DNA; 19 chromatin-associated TFs, which comprise complexes that bind to 

and remodel chromatin; and 27 co-factors, which support the function of other TFs, do not directly 

bind DNA, and do not belong to another class.  Detailed classification was given in supplementary 

Table1.  

We further extracted 68 common TFs between K562 and GM12878, annotated in Table S 1-1. 

We searched the COSMIC Cancer Gene census \cite{15188009} and an authoritative list of cancer 

genes by Vogelstein et al. \cite{23539594} to identify TFs associated with cancer. We further 

listed whether a TF has been reported to regulate the ABL gene or BCR-ABL transcript, or the 

BCR-ABL KEGG pathway \cite{18287706}, because of the dominant role this fusion gene plays 

in CML and K562 \cite{3023859, 12476301}.  

Table S 1-1 Detailed annotations of 68 common TF in K562 and GM12878 

TF Class FAMILY TF in 
COSMIC  

TF in 
Vogelstein 

Targets
ABL 

Targets BCR-
ABL pathway 

 Targets 
Vogelstein 

gene 

ATF3 TFSS bZIP 0 0 1 1 1 

BCLA
F1 

TFSS bZIP 0 0 0 1 1 

BHLH
E40 

TFSS HLH 0 0 0 0 0 

CBX5 chrom
atin 

 
0 0 0 0 0 

CEBP
B 

TFSS bZIP 0 0 0 1 1 

CEBP
Z 

TFSS bZIP 0 0 0 0 0 

CHD1 chrom
atin 

Homeod
omain 

0 0 0 0 0 
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CHD2 chrom
atin 

Homeod
omain 

0 0 0 0 0 

CTCF TFSS ZNF 1 0 0 1 1 

E2F4 TFSS wHTH 0 0 0 1 1 

EGR1 TFSS ZNF 0 0 0 1 1 

ELF1 TFSS ETS 0 0 0 1 1 

ELK1 TFSS ETS 0 0 0 0 0 

EP300 gener
al 

 
1 1 1 1 1 

ETS1 TFSS ETS 0 0 0 1 1 

ETV6 TFSS ETS 1 0 0 0 0 

EZH2 chrom
atin 

 
1 1 0 0 0 

FOS TFSS bZIP 0 0 0 1 1 

GABP
A 

TFSS ETS 0 0 0 0 0 

HDGF TFSS 
 

0 0 0 0 0 

IKZF1 TFSS ZF-C2H2 1 0 0 0 0 

JUNB TFSS bZIP 0 0 0 0 0 

JUND TFSS bZIP 0 0 0 1 1 

MAFK TFSS bZIP 0 0 1 1 1 

MAX TFSS HLH 1 0 0 1 1 

MAZ TFSS HLH 0 0 0 0 0 

MEF2
A 

TFSS MADs-
box 

0 0 0 0 0 

MLLT
1 

TFSS 
 

1 0 0 0 0 

MTA2 TFSS ZF-GATA 0 0 0 0 0 

MXI1 TFSS HLH 0 0 0 1 0 

MYC TFSS HLH 1 0 0 1 1 

NBN TFSS 
 

1 0 0 0 0 

NFE2 TFSS bZIP 0 0 0 1 0 

NFYA TFSS CBF-
NFY 

0 0 0 1 1 

NFYB TFSS CBF-
NFY 

0 0 0 1 1 

NR2C
2 

TFSS NR 0 0 1 1 1 

NRF1 TFSS bZIP 0 0 1 1 1 

PML cofact
or 

 
1 0 0 0 0 

POLR
2A 

gener
al 

 
0 0 0 0 0 

POLR
3G 

gener
al 

 
0 0 0 0 0 

RAD2
1 

chrom
atin 

 
1 0 1 1 1 
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RCOR
1 

TFSS MYB 0 0 0 0 0 

REST TFSS ZNF 0 0 0 1 1 

RFX5 TFSS wHTH 0 0 0 0 1 

SIN3A gener
al 

 
0 0 0 1 1 

SIX5 TFSS Homeod
omain 

0 0 0 1 1 

SMAD
5 

TFSS MH1 0 0 0 0 0 

SMC3 chrom
atin 

 
0 0 1 1 1 

SP1 TFSS ZNF 0 0 0 1 1 

SPI1 TFSS ETS 0 0 0 1 1 

SRF TFSS MADs-
box 

0 0 0 1 1 

STAT
5A 

TFSS STAT 0 0 0 0 0 

SUZ1
2 

chrom
atin 

ZNF 1 0 0 1 1 

TAF1 gener
al 

 
0 0 0 1 1 

TARD
BP 

TFSS 
 

0 0 0 0 0 

TBL1
XR1 

cofact
or 

 
1 0 0 0 0 

TBP gener
al 

 
0 0 0 0 1 

UBTF TFSS HMG 0 0 0 0 0 

USF1 TFSS HLH 0 0 0 1 1 

USF2 TFSS HLH 0 0 1 1 1 

YBX1 TFSS CSD 0 0 0 0 0 

YY1 TFSS ZNF 0 0 0 1 1 

ZBED
1 

TFSS ZNF 0 0 0 0 0 

ZBTB
33 

TFSS ZNF 0 0 1 1 1 

ZBTB
40 

TFSS ZNF 0 0 0 0 0 

ZNF1
43 

TFSS ZNF 0 0 0 0 0 

ZNF2
74 

TFSS ZNF 0 0 1 1 1 
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1.3 Matching of ENCODE cell lines to major cancer types 

Despite the comprehensive catalog of functional characterization assays in ENCODE, 

integrating its associated data into cancer research remains challenging for two main reasons. First, 

cancer is such a heterogeneous disease that it is necessary to use data from optimally-matched cell 

lines. ENCODE is imperfect for such analysis. We observe that there are only loosely matched 

tumor-normal pairs for some cancer types, and most cell lines lack data from certain experimental 

assays (Fig 1A). Therefore, it is necessary to create biologically relevant tumor-normal pairs, as 

well as to develop appropriate algorithms to learn from sub-optimally matched data. The second 

challenge arises as a result of the heterogeneous nature of the raw data from various experimental 

assays. The data must undergo de-duplication, unified processing, and proper normalization before 

accurate large-scale integration can be achieved. Here we endeavor to match the ENOCDE data to 

most relevant cancer types. A detailed matching summary has been summarized in Table S 1-2. 

The key feature of the ENCODE annotation is that it relies on a wide variety of diverse assays. 

Admittedly, some of the matchings in Table S 1-2 are imperfect. These samples are not as accurate 

as if one directly did these assays on tissue from a patient. However, it's not possible, at least at 

this moment, to do such a wide variety of assays on actual tissue, so we still believe that this 

matching provides a valuable opportunity for large scale data integration to interpret cancer 

genome. 
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Table S 1-2. Summary of cell line and cancer type matching 

Cancer Type Abbreviation ENCODE cell line 

Breast BRCA 

Tumor MCF-7 

Normal MCF-10A 

Liver LIHC 

Tumor HepG2 

Normal Liver 

Lung LUAD 

Tumor A549 

Normal IMR-90 

Blood CML[ CLL/AML] 

Tumor K562 

Normal GM12878 

Cervix CESC Tumor HeLa-S3 

Wherever possible, we have matched each ENCODE cancer cell line with a data-rich 

ENCODE normal cell line that derives from the same cell-type as the cancer. Exact matching was 

not possible with K562: the cancer cell-line derives from a myeloid cell, but there is no data-rich 

noncancerous myeloid cell included in ENCODE. GM12878 is a data-rich ENCODE cell-line that 

derives from a closely related lineage, the lymphoid lineage. Supporting this choice, we 

determined that of all non-cancerous cell-lines among uniformly processed Roadmap Epigenome 

and GTEX cell-lines provided by Roadmap Epigenome, GM12878 has the highest Spearman 

correlation with K562 from expression data, as shown in Figure S 1-2. Hence, we used GM12878 

as a rough pair for K562. 

 Figure S 1-2 Expression correlations with K562 from many other cell lines 
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MCF-7 is the most studied human breast cancer cell line, which has been reported by nearly 

25,000 scientific publications \cite{25828948}. It is a human cell line from a pleural effusion 

derived from a breast carcinoma \cite{4357757}. MCF7 is one of a very few cell lines that express 

substantial levels of estrogen receptor (ER) that widely used to mimic ER-positive invasive human 

breast cancers. It is also a stable cell line for understanding intracellular binding constants, 

transport mechanism and defining DNA binding sites of ER in target genes \cite{25828948}. 

Besides, T47D is another ER-positive cell line derived from pleural effusion that has been widely 

used to study breast cancer \cite{228940}.  Unlike MCF-7, it is mutant for the tumor suppressor 

gene TP53 \cite{8562478}.  

MCF10A is a human breast epithelial cell line that most commonly used in vitro model for 

studying normal breast cell function and transformation \cite{26147507}. It derived from human 

benign fibrocystic mammary tissue and spontaneously immortalized, which is not tumorigenic and 
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dose not express ER \cite{1975513; 26147507}. Numerous studies have utilized both MCF7 and 

MCF10A cell lines to facilitate the development of breast cancer treatment and therapy, via 

comparing differential response of these two cell lines under multiple experimental settings. One 

study characterized distinct dynamic behaviors of MCF7 and MCF10A cells in ultrasonic field, 

and determined a specific frequency of ultrasound for induction of cell ablation with minimum 

cytotoxicity \cite{26241649}. Similarly, another study illustrated that silver nanoparticles are 

effective photothermal agents by comparing the differential response of MCF7 and MCF10A 

\cite{25144821}. Additionally, the MCF10A cell line was used to represent healthy cells to 

determine the level of safety of the use of one compound, in comparison with MCF7 and MDA-

MB-231 cell lines \cite{27668797}. 

However, one recent study challenged MCF10A as a representative model for normal 

mammary cells and demonstrated that this cell line exhibit some phenotypes and expression 

profiles that have not been observed in mammary gland tissues \cite{26147507}. But the paper 

also mentioned that whether MCF10A cells represent a suitable model for human mammary 

epithelial cells warrants further investigation.  In any case, given the wealth of ENCODE data on 

MCF-7 and the breast cancer’s status as one of the most frequent cancers, we consider the pairing 

of MCF-7 and MCF-10A worthwhile so that breast cancer can be included in our analysis though 

we cannot exclude differences between these lines being due to different ER status or other 

differences unrelated to malignant transformation.  Inclusion of T47D as another breast cancer cell 

line, adds to this analysis. 

A549 is a carcinomic lung epithelial cell line \cite{9743595} and IMR90 is a normal lung 

fibroblast cell line \cite{841339}. Lung fibroblasts and lung epithelial cells are closely related cell 

types, and conversion between these cell types is common and meaningful in tumor cells and 
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normal cells \cite{26560033,12189386}. Lung fibroblasts like IMR90, are mesenchymal cells that 

arise in embryologic development subsequent to epithelial to mesenchymal transition (EMT). The 

dedifferentiation of mesenchymal cells into secondary epithelial tissue following mesenchymal to 

epithelial transition (MET) is also observed and is best characterized in kidney development 

\cite{10508232}. It has been postulated that the dedifferentiation and metastasis of epithelial lung 

cancer cells, may occur through EMT and/or MET \cite{20533280,18376396, 

19759262,19010860}. Such a process has been observed in other cancers \cite{12189386}. Indeed, 

exposure of A549 epithelial cells to chemotherapeutic agents or TGF-B, causes differentiation to 

a mesenchymal phenotype, and EMT is thought to play a role in chemotherapeutic resistance of 

lung adenocarcinoma \cite{18599154,16123809}. These cellular relationships support the utility 

of a tumor normal comparison between A549 cancer cells and IMR90 normal cells. 

1.4 Normal to Tumor cell line matching using replication timing data. 

It is well known that replication timing significantly affect the mutational landscape in both 

germline and normal cells \cite{24598232}. We also made a genome-wide correlation of 

replication timing data (excluding ChrX and ChrY to avoid gender differences) between the cancer 

cell lines and several candidate normal cell types. Results are listed in Figure S 1-3. As expected, 

the best matching normal data for K562 and HepG2 are Hepatocytes and Erythroid progenitors. 

However, we also noticed that replication timing data in A549 and MCF-7 shows the highest 

correlation with those in Mesenchymal Stem cells and Splanchnic mesorderm. However, our 

proposed matching normal cell lines, such as like IMR-90 for A549, still showed decent correlation 

in terms of their replication timing profiles. 
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Figure S 1-3. Comparison of several Tumor cell lines with normal ones with replication timing data 

 

1.5 Summary of data from each experimental assay from ENCODE 

We have integrated uniformly processed and quality-controlled datasets from ENCODE and 

Roadmap Epigenomics Mapping Consortium (REMC) to build one of the most comprehensive 

representation of how functional regulatory elements interplay in human genome. All dataset used 

in the analysis were mapped to a standardized version of the GRCh37 (hg19) reference human 

genome. We used ENCODE dataset that were submitted and released up to October 31st, 2016 

(Oct 2016 freeze). 

1.5.1 Collection of RNA-seq data 

1.5.2 Preprocessing of Repli-seq data 

The raw signal of 90 Repli-seq data sets for 15 different tissue or cell lines were downloaded 

from the ENCODE data portal (link here). For each tissue/cell line, in cell cycle phases G1, S1, 

S2, S3, S4, and G2, newly replicated DNA positions were analyzed by massively parallel 

sequencing were sequenced \cite{21957152}. Simiar to \cite{21957152}, we added up the signal 

https://www.encodeproject.org/matrix/?type=Experiment&assay_title=Repli-seq&y.limit=
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strength in 1mb bins by comparing the (G1 + S1) with the (S4 + G2) datasets by measuring the 

inverse tangent (arctangent) for each data point \cite{20359321}.  

1.5.3 Deduplication of CHIP-seq data 

We collected 1,040 TF ChIP-seq experiments released for ENCODE. There are 888 released 

TF ChIP-seq experiments for ENCODE 2. We used a subset of 801 experiments that either had no 

treatment or ethanol treatment only. There were 570 TF ChIP-seq experiments released for 

ENCODE 3, which had no treatment. 

For a common TF target in top-tier cell lines, ENCODE has multiple of the same experiments 

from different labs. We carefully de-duplicated dataset by selecting one TF ChIP-seq experiment 

per each sample by the following prioritization scheme. When ENCODE 3 experiment was 

available, it was prioritized over ENCODE 2 experiment. When there was the same type of 

experiments were done by different labs, we prioritized using the following order determined by 

the total number of ChIP-seq experiments deposited on ENCODE: stanford, haib, broad, usc, uw, 

uta, uchicago, hms, yale. We removed epitope-tagged experiment if endogenous antibody was 

available. After deduplication, there are 860 unique TF ChIP-seq experiments. 

1.6 External data 

We deeply integrated our ENCODE functional characterization data with data from external 

cohorts to interpret cancer genome. Specifically, we downloaded both expression and WGS data 

from external cohorts. 
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1.6.1 Expression data from external Cohort 

All TCGA expression, methylation and mutation data were downloaded from GDAC firehose 

(http://gdac.broadinstitute.org) with data version of 2016_01_28. For cancer types with normal 

control samples profiled, the expression values of each gene are subtracted with the average value 

of all normal controls. For cancer types without any normal samples profiled, the expression 

profile of each gene is transformed to zero mean and unit deviation (see Figure S 1-4). The DNA 

methylation values are also normalized in the same way as RNA-Seq data, according to the 

availability of normal control samples in each cancer type. For copy number alteration (CNA), 

GDAC firehose doesn’t provide standardardized data and we downloaded the data matrix from 

cBioportal with data version of 2016_10_20 (http://www.cbioportal.org). 

 

1.6.2 WGS data 

2709 WGS samples were collected for 5 cancer types (BRCA, LAML, LUAD, LIHC, UCEC). 

 

Figure S 1-4 Schemetics of RNA-seq 
data processing 

http://www.cbioportal.org)/
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1.7 An Ensemble to predict enhancers and their gene linkages  

In contrast to previous approaches to enhancer annotations (many of which use only histone 

modification and chromatin accessibility data \cite{22373907}), we proposed an ensemble method 

to accurately pinpoint active enhancers and link them to protein coding genes. It composes three 

computational pipelines (CASPER, ESCAPE, and JEME) to integrate tens of datasets from six 

different experimental assays, including ChIP-Seq, DNase-Seq, STARR-Seq (CapSTARR-Seq), 

RNA-seq, ChIA-pet, and Hi-C for higher accuracy. The overall schematic has been summarized 

into Figure S 1-5. 

For the enhancer prediction part, our scheme combines large-scale STARR-seq experimental 

data with computational predictions based on pattern recognitions of histone marks (Figure S 1-5). 

Here we developed two pipelines CASPER and ESCAPE for each of them. Eventually we 

assemble results from these two pipelines for accurate enhancer identification. Enhancer targets 

were then predicted using JEME and further pruned by the Hi-C results. 
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Figure S 1-5 Overall schematic of enhancer and gene linkage prediction by large scale data 
integration 

 

 

1.7.1 Enhancer prediction Pipeline based on ChromAtin Shape PattErn 

Recognizer (CASPER) 

We first developed a framework to impute enhancer regions across the genome through 

aggregated signals of epigenetic features. The unprecedented large number of massively parallel 
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reporter assays (MPRA) has demonstrated that regulatory regions are generally depleted of histone 

proteins while regions around it tends to contain histone proteins with certain post-translational 

modifications \cite{26072433}. This characteristic is revealed in many ChIP-Seq experiments as 

enriched peak-trough-peak (double peak) signal at the distal regulatory regions for many activating 

histone marks. A supervised machine-learning model is well suited to identify this pattern. 

For each histone modification, we aggregated the ChIP-Seq signals around STARR-seq 

identified peak regions. The two maxima in each region is aligned, interpolated and smoothened 

before averaged to generate meta profile. An additional flipping step was applied to maintain the 

asymmetry of the two maxima since it might be associated with the directionality of transcription. 

The meta profile is then used to scan the whole genome to find matched patterns through a shape-

matching filter. A 10-fold cross validation is performed to assess the accuracy of prediction 

through this method. In predicting active STARR-Seq peaks, H3K27ac is the most accurate feature 

for predicting active regulatory regions (AUROC=0.92). Other features including H3K4me1, 

H3K4me2 also achieved high performance. 

To achieve higher accuracy, we further developed an ensemble method to combine the 

normalized pattern-matching result from several different epigenetic marks with linear SVM 

(Figure S 1-5). This include ChIP-Seq signals for H3K27ac, H3K4me1, H3K4me2, H3K4me3, 

H3K9ac and DHS signals associated with active regulatory regions. The ChIP-Seq data is available 

through ENCODE Consortia (https://www.encodeproject.org) and Roadmap Epigenomics 

(http://www.roadmapepigenomics.org). The integrated model performs better than each of the 

individual histone marks, and different integration methods perform similarly. We use linear SVM 

to assemble the signals to form a discriminant function, where the sign of the result value is used 

https://www.encodeproject.org/matrix/?type=Experiment)
about:blank
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to predict whether a specific region is an enhancer. The resultant enhancers have been summarized 

in Table S 1-3. 

Table S 1-3 Number of enhancers predicted by histone-shape based method 

 

 
 
  
 

 

 

 

 

 

1.7.2 Enhancer prediction by EnhancerS Peak CAlling PipEline from STARR-

seq (ESCAPE) 

The whole-genome STARR-seq was performed using a protocol conceptually similar to the 

previously published STARR-seq technique that was done in the Drosophila melanogaster genome 

\cite{23328393}. The CapSTARR-seq is a variant of STARR-seq technique which combines 

STARR-seq with genome capturing technology \cite{25872643}. In brief, the genomic DNA from 

each cell line was fragmented into ~500 bp by sonication and built into plasmid library, which was 

named as screening library. The screening library was subjected for Next Generation Sequencing. 

We verified the sequence complexity and genome coverage of screening libraries, which were then 

 GM2878 HepG2 K562 MCF7 

Number of Enhancers 45202 61005 45801 59827 

Figure S 1-6 schematic of shape based enhancer prediction method 
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transfected into GM12878, K562 or MCF7 cells by electroporation. After 24 hours of transfection, 

the plasmid-specific mRNA was purified, reverse transcribed and PCR amplified. The PCR 

products, which are the so-called STARR-seq libraries, were subjected to sequencing. Both 

screening library and STARR-seq libraries were sequenced as 100 bp paired-end on the Illumina 

HiSeq 2500/4000 platforms. The general workflow of the MCF7 CapSTARR-seq is similar to the 

whole-genome STARR-seq, however, we captured ~10,000 DNase I hypersensitivity sites (a total 

length of 9.7 Mb) from fragmented genomic DNA to build the screening library. Compared to the 

published STARR-seq work, we'd like to note the following innovation and improvement: (1) We 

significantly increased the complexity of the screening libraries to ensure comprehensive coverage 

to the human genome; (2) We significantly increased the electroporation scale and efficiency to 

maximize the size of screening library that got into the cells; (3) We introduced an extra 

multiplexing step to minimize the bias introduced by PCR duplicates. For the capture based assay 

for MCF-7 cell line, total of 10,825 target regions consisting of 9,825 candidate enhancer regions 

Figure S 1-7 flowchart of capture EnhancerSeq target region selection procedure 
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and 1,000 negative control regions were selected tested for regulatory potential. Candidate 

enhancer regions were selected based on DHS peaks excluding both 1kb upstream and downstream 

of TSS. Negative control regions were selected from 500 randomly selected regions and 500 non-

E2-responsive DHS regions. Details of the selection procedure can be found in Figure S 1-6. (L. 

Ma et al for GM12878 and K562 whole-genome STARR-seq; S. Yu et al for MCF7 CapSTARR-

seq, in preparation). Candidate enhancer regions were primed and inserted into 3’ UTR. 

Schematics of the experimental procedure can be found in Figure S 1-6. 

 

1.7.2.1 Whole genome Enhancer-seq data processing  

To uniformly process the data from whole genome and capture-based EnhancerSeq assays, 

we developed a new analysis pipeline named ESCAPE (Figure S 1-9). The pipeline is tailored for 

optimally processing the output from EnhancerSeq experiments. The output from an EnhancerSeq 

experiment is two datasets for each cell line. First is screen library that contains the sequencing of 

plasmids from which the enrichment is performed. This screen library serves as a control in the 

Figure S 1-8 Capture STARR-seq experiment design 
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EnhancerSeq analysis. Second is the actual enhancer-seq enriched sequencing data that contains 

the actual enhancer signal. We have removed low quality reads and mapped them using BWA 

version 0.7.12 \cite{19451168}. We have used the reference genome from 1000 Genomes 

Project’s decoy genome\cite{20981092}. ESCAPE then removes the reads with mapping quality 

lower than 20 and removes PCR duplicates and estimates fragment length distribution using cross-

correlation between the strands (Figure S 1-10). Then the enhancer-seq signal tracks are generated 

and library and performed peak calling. The Enhancer-Seq signal shows lower fold change 

characteristics compared to ENCODE ChIP-Seq datasets (Figure S 1-10). 

Figure S 1-9 Schematic of ESCAPE pipeline 

 

For peak calling, ESCAPE uses the following strategy: First the peak candidates are identified. 

For the whole genome assay, ESCAPE uses a multiscale decomposition based peak calling 

strategy \cite{25292436}. For this, we have decomposed the signal using smoothing filters with 

lengths varying between 100 and 2000 base pairs. The filtering can be summarized with following 

formula: 

𝑥𝑖
𝑠 = median ({�̃�𝑎}𝑎∈[𝑖−

𝑙𝑠
2 ,𝑖+

𝑙𝑠
2]

) , 𝑙𝑠  ∈ ( 𝑙𝑠𝑡𝑎𝑟𝑡, ⌊𝑙𝑠𝑡𝑎𝑟𝑡×𝜎⌋,⋯ , 𝑙𝑒𝑛𝑑) 
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where 𝑥𝑖
𝑠 is the 𝑖𝑡ℎ signal level at scale decomposition 𝑠. The smoothing window length is 𝑙𝑠. 

Then we identified the local minima in the smoothed signal profiles and used these as possible 

enriched regions. For this, ESCAPE first estimates the derivative at each point:  

𝑑𝑥𝑖
𝑠 = (𝑥𝑖

𝑠 − 𝑥𝑖−1
𝑠 ) 

where 𝑑𝑥𝑖
𝑠 is the derivative of the smoothed signal 𝑥𝑖

𝑠. The local extrema are found as the 

points where the derivative flips its sign: 

𝐼𝑚𝑖𝑛 = {𝑖 | 𝑑𝑥𝑖
𝑠 < 0, 𝑑𝑥𝑖−1

𝑠 > 0} 

𝐼𝑚𝑎𝑥 = {𝑖 | 𝑑𝑥𝑖
𝑠 > 0, 𝑑𝑥𝑖−1

𝑠 < 0} 

where 𝐼𝑚𝑖𝑛 and 𝐼𝑚𝑎𝑥 are the sets of positions of minima and maxima of 𝑥𝑖
𝑠, respectively. The 

scale specific candidate enriched regions of 𝑥𝑖
𝑠  are identified as the regions between the 

consecutive minima. The multiscale decomposition approach identifies enriched regions at 

different length scales that correspond to punctate features like enhancers. Then, ESCAPE 

computes the fold change on each peak candidate as the ratio of total signal in the enhancer-seq 

signal and screening library signal. We refer to this as 𝐹𝐶: 

𝐹𝐶 =
∑ 𝑥𝑖

𝑠𝑒
𝑖=𝑠

∑ 𝑦𝑖
𝑠𝑒

𝑖=𝑠

 

where 𝑦𝑖
𝑠 represents the value of screening library signal profile at position 𝑖. For capture 

based assay, ESCAPE uses a more focused analysis to identify candidate peak regions. For each 

capture region, ESCAPE selects a bins size that balances the peak calling sensitivity and specificity. 

To set a threshold for the fold change to select candidate peaks, we exchanged screening library 

and enhancer-seq and we computed the fold change on the candidate peaks, which we refer to as 

𝐹𝐶𝑟𝑎𝑛𝑑𝑜𝑚: 
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𝐹𝐶𝑟𝑎𝑛𝑑𝑜𝑚 =
∑ 𝑦𝑖

𝑠𝑒
𝑖=𝑠

∑ 𝑥𝑖
𝑠𝑒

𝑖=𝑠

 

These fold change scores serve as a random distribution of fold change scores. We use this 

distribution for selecting a fold change threshold. For a 𝐹𝐶 threshold fc, we estimated the false 

discovery rate as the ratio of number of peaks that for which 𝐹𝐶𝑟𝑎𝑛𝑑𝑜𝑚 > fc and the number of 

peaks for which 𝐹𝐶 > fc. We set the FDR threshold at 0.1% and filtered the peaks that do not 

satisfy the 𝐹𝐶 threshold selected using this FDR threshold. For capture based assay, ESCAPE 

uses the candidate enriched regions with top 10% 𝐹𝐶 values. 

Figure S 1-10. Whole genome Enhancer-Seq signal enrichment properties 
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1.7.3 Enhancer Target prediction 

1.7.3.1 Enhancer Gene linkage prediction using JEME 

Enhancer targets were predicted using JEME (Joint Effect of Multiple Enhancers, Cao et al., 

under review), which involves two main steps (Figure S 1-12). In the first step, the transcript levels 

around each transcription start site (TSS) in 49 ENCODE and Roadmap Epigenomics cell lines 

(Table S 1-4) were modeled based on histone modification data at nearby enhancers without 

requiring any known enhancer-target pairs as examples. Specifically, for each enhancer feature 𝑖 

the expression level 𝑦 of a TSS is modeled as 𝑦 = 𝑎𝑖0 + ∑ 𝑎𝑖𝑗𝑗 𝑥𝑖𝑗, where the summation is over 

all enhancers 𝑗 within 1Mbp from the TSS, and 𝑥𝑖𝑗 is the value of feature 𝑖 of enhancer𝑗. The 

Figure S 1-11 Capture STARR-Seq experiment properties 
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coefficients 𝑎𝑖𝑗 of the enhancers are learned by LASSO, which minimizes the regression error over 

all samples while selecting a small number of enhancers to have non-zero coefficients. The features 

considered include H3K4me1, H3K27ac and H3K27me3 (A separate model involving only the 

latter two features was built when constructing the enhancer-target network in MCF7 since 

H3K4me1 data were unavailable). 

In the second step, single-enhancer error terms were first computed. Specifically, an error term 

is computed to check how much the expression 𝑦𝑘 of the TSS in sample k can be explained by 

considering each feature 𝑖 of each enhancer 𝑗, i.e.,𝑒𝑖𝑗𝑘 = |𝑦𝑘 − (𝑎𝑖0 + 𝑎𝑖𝑗𝑥𝑖𝑗𝑘)|, where 𝑥𝑖𝑗𝑘 is the 

value of feature 𝑖 of enhancer 𝑗 in sample 𝑘 and 𝑎𝑖0 and 𝑎𝑖𝑗 are the coefficients learnt in the first 

step. These error terms were then combined with genomic distance and cell-line-specific data (i.e. 

the levels of histone modifications across the enhancer, the TSS and the window between them in 

sample 𝑘) to predict the enhancers that regulate a TSS in a particular cell line using a Random 

Forest model. The parameter values of these second-level models were learned from published 

ChIA-PET data from K562 and MCF7 cell lines. A 5-fold cross-validation procedure was used to 

evaluate the accuracy of the predicted enhancer-target pairs. The model was then applied to those 

samples without ChIA-PET data. 

Table S 1-4 The 49 ENCODE and Roadmap Epigenomics cell lines used to construct enhancer-
target networks by JEME 

Data source Cell lines 

ENCODE GM12878, HepG2, K562, MCF7 

Roadmap Epigenomics 

E003,E004,E005,E006,E007,E011,E012,E013,E016,E037, 

E038,E047,E050,E055,E056,E058,E059,E061,E062,E065, 

E066,E071,E079,E084,E085,E087,E094,E095,E096,E097, 
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E098,E100,E104,E105,E106,E109,E112,E113,E114,E117, 

E119,E120,E122,E127,E128 

 

 



 35 

1.7.3.2 Enhancer gene linkage pruning using Hi-C data 

Enhancer target predictions are further filtered by using Hi-C data. Contact maps of individual 

chromosomes (in 5kb bins) for both K562 and GM12878 cell lines were obtained from (Rao et al. 

Cell 2014). MCF7 contact maps (40kb) were obtained from (Barutcu et al. Genome Biol. 2015). 
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Element (i,j) in a contact map represents the frequency of interactions between genomic loci i and 

j. For all possible (i,j), we used the tool Fit-Hi-C to estimate the statistical significance the contact 

frequency based on the coverage of the loci as well as their genomic distance (Ay Ges. Res. 2014) 

and kept the interactions with q-value<0.1. We then used the list of significant loci to filter the 

enhancer-target predictions. Only enhancer-gene pairs in which enhancer and gene are respectively 

belong to a pair of significantly interacting loci are kept for further analysis. 

1.8 Extended gene neighborhood generation 

Here we generated the extended gene neighborhoods by combing the coding region with the 

key non-coding proximal and distal regulatory elements together for a joint mutation burdening 

quantification. Details of the schematic is given in Figure S 1-13. 

Figure S 1-13 Schematic of extended gene definition 
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1.9 TF/RBP networks 

1.9.1 TF network 

[JZ2DL: to be added here] 

1.9.2 RBP network 

[JZ2Peng: Please add something here how the RBP network was built] 
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2 Details about recurrence analysis 

2.1 Variant calling 

2.1.1 Germline  

We called germline single nucleotide variants (SNVs) for a set of 88 liver cancer samples 

(Table 1) that were whole genome DNA sequenced at the Beijing Genomics Institute (BGI) 

Shenzhen for a mutation analysis published in [ref: PMID 23788652]. The authors made the raw 

sequence data available in FASTQ format from the European Nucleotide Archive (ENA) under 

accession ERP001196. We downloaded these files and conducted a germline variant calling 

procedure in accordance with the Broad Institute’s Best Practices for read-to-variant workflows 

(https://software.broadinstitute.org/gatk/best-practices/index.php). Read alignments were 

generated using the Burrows-Wheeler Aligner (BWA v0.7.15; http://bio-bwa.sourceforge.net/), 

using the BWA-MEM algorithm. After that, we proceeded with preprocessing for variant calling, 

including cleaning out duplicate reads using Picard tools (MarkDuplicates tools v2.6.0), and base 

recalibration with the Genome Analysis Tookit (GATK; v3.6.0). Variant calls for individual 

samples were derived with the GATK HaplotypeCaller, followed by joint genotyping with the 

GenotypeGVCFs tool. The final variant set was subjected to standard quality filtration in 

accordance with the standard configuration of the GATK VariantFiltration tool. Each step was 

performed on the Mt Sinai Minerva scientific compute cluster, and utilized hundreds of CPU cores 

per compute step. Table S 2-1 summarizes the distribution of germline variant calls per sample. 

 

 
 

 

https://software.broadinstitute.org/gatk/best-practices/index.php)
http://bio-bwa.sourceforge.net/)
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Table S 2-1 List of cancer whole genome DNA sequence data obtained for variant calling 

Cancer type 
Number of 

samples 
Median number of 

variants per sample 
Source 

Liver - germline 88 XXX 
BGI Shenzhen (Kan 

et al. 2013) 

Liver - somatic 88 XXX 
BGI Shenzhen (Kan 

et al. 2013) 

Breast 116 8485 TCGA 

Lung 197 83,402 TCGA 

Chronic lymphocytic 

leukemia (CLL) 
150 XXX ICGC 

 

2.1.2 Somatic 

In addition to the aforementioned liver cancer samples, we obtained the BAM files for 116 

Breast Invasive Carcinoma whole genomes, and 197 lung cancer whole genomes (147 Lung 

Adenocarcinoma, 50 Lung Squamous Cell Carcinoma). Furthermore, BAM files corresponding to 

150 chronic lymphocytic leukemia (CLL) whole genomes were obtained from the International 

Cancer Genome Consortium (ICGC) via the European Genome-Phenome Archive (EGA). 

Somatic variant calls were derived from the Broad Institute’s Mutect (v1.1.4) and Strelka (v1.0.15). 

This variant calling compute was performed on the Mt Sinai Minerva scientific compute cluster, 

and utilized hundreds of CPU cores per compute step. Table S 2-2 summarizes the distribution of 

somatic variant calls per sample. 

 

Table S 2-2 Summary of distribution of variant calls per cancer sample 

Cancer Type Summary statistics of variants per sample 

Min 1st Qu Median Mean 3rd Qu Max 
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Liver - germline XXX XXX XXX XXX XXX XXX 

Liver - somatic XXX XXX XXX XXX XXX XXX 

Breast 1898 5779 8485 13,290 14,370 294,100 

Lung 159 40,490 83,400 229,200 295,000 2,127,000 

Chronic lymphocytic leukemia (CLL) XXX XXX XXX XXX XXX XXX 

 

2.2 Local context effect significantly affect local mutation rate (JZ) 

We observed that BMR is significantly associated with local context effect in all cancer types 

up to several orders, which largely contributes to the mutation rate heterogeneity. Details are given 

in Figure S 2-1. For example, the average pooled mutation rate ranges from 2.92e-03 to 1.58e-04 

(1.8 fold). The observed mutation has been plotted in the following radial plot for each cancer type. 

In general, G/C positions are more prone to mutations as compared to A/T positions, but the local 

context effect within G/C positions still has strong effect (2.40e-04 and 2.40e-04 vs. 1.21e-03 and 

1.20e-03). In addition, we also observed that the local context effect varies significantly across 

multiple cancer types. Hence, it is important to separate cancer types during the BMR estimation 

process. 
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2.3 Local mutation rates are highly correlated with many genomic features 

Consistent with previous literatures, we observed huge mutation heterogeneity over the 

genome for all 3mers in all cancer types \cite{23770567}. As seen in Figure S 2-2, the mutation 

Figure S 2-1 Local context severely confounds BMR in multiple cancer types 
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rate changes significantly over different region of the genome (large region of each violin bar) and 

over different local contexts. 

Figure S 2-2 violin plot of estimated mutation rate over local context and genomic locations in 
all four cancer types 

 

It is well-known that the somatic mutational process is affected by various external effects, 

such as replication timing and chromatin status. We also observed this phenomenon in many 

cancer types. For example, the normalized pooled mutation rates in the 1mb bins are given in 

Figure S 2-3 chromosome 11. It correlated replication timing data quite well. On the contrary, it 

has negative correlation with both RNA-Seq and DHS signal in liver cancer. Hence, it is important 

to correct BMR against the confounding effects from these external genomic features. 
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We systematically explored the effect of multiple genomic features including replication 

timing, DHS, WGBS, RNA-seq and Hi-C and their correlation with the overall mutation rate in 

multiple cancer types is given in Figure S 2-4. For example, in breast cancer, the correlation of 

replication timing and mutation rate ranges from 0.4673 to 0.5474, while correlation from DHS 

signals ranges from -0.4162 to -0.1806. However, we observed an increased correlation of 

mutation rates to these features in liver cancer (0.5943 to 0.7378 for replication timing and -0.5781 

to -0.3337 for DHS, details in Table S 2-3). Hence it is important to correct the effect of external 

features in a cancer specific way to achieve better burden analysis. 

 

Table S 2-3 summary of correlation of mutation rate at 1mb bins with different external features 
in multiple cancer types 

  BRCA CLL LUAD LIHC 

repTime Min 0.467300058 0.410292073 0.589242196 0.594308714 

repTime Median 0.493598234 0.4637348 0.67495952 0.642464943 

Figure S 2-3 example of external effects on Local mutation rate 
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repTime Max 0.547374543 0.504968332 0.715431489 0.737831334 

RNA Min -

0.276898241 

-

0.284573043 

-

0.419458551 

-

0.397504844 

RNA Median -

0.126228292 

-

0.114417754 

-

0.181953795 

-

0.162453668 

RNA Max -

0.019998871 

-

0.019088747 

-

0.027760515 

-

0.021616959 

HiC Min -

0.258214534 

-

0.240053286 

-

0.355389238 

-

0.388864195 

HiC Median -

0.124167655 

-

0.047070425 

-

0.144698057 

-

0.114903485 

HiC Max 0.190402416 0.274050935 0.283105375 0.31333984 

WGBS Min -

0.391201031 

-

0.379756186 

-

0.560373539 

-

0.572058872 

WGBS Median -0.28162047 -

0.321745409 

-

0.442804565 

-

0.503776857 

WGBS Max -

0.250846402 

-0.28621958 -0.35169477 -0.37209731 

DHS Min -

0.416168532 

-

0.406787562 

-

0.576209738 

-

0.578067199 

DHS Median -

0.321014839 

-

0.344702489 

-

0.480339053 

-

0.502492181 

DHS Max -

0.180644113 

-

0.262259514 

-

0.276360875 

-

0.333674803 

Histone Min -

0.525809902 

-

0.487246457 

-

0.703446634 

-

0.658923263 

Histone Median -0.35312576 -

0.376874169 

-

0.533489718 

-

0.517573323 

Histone Max 0.567295147 0.527731502 0.74483745 0.717959133 

 

 



 45 

Figure S 2-4 correlation of mutation rate and external features across multiple cancer types 

 
 

2.4 Background mutation rate estimation and P value calculation 

Here we proposed a regression based somatic mutation recurrence analysis in cancer. The 

schematic of this method is shown in Figure S 2-5. 
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Figure S 2-5 Schematic of the recurrence analysis 
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2.4.1 Covariate data collection  

We collected uniformly processed and non-redundant set of confounding genomic features 

across different cell types from both ENCODE to build the master covariate matrix that were used 

to correct for the background mutation rate (BMR). To ensure that the covariate matrix is not 

affected by processing bias and artifacts, we manually curated the dataset to have processed in the 

latest uniform processing pipeline and de-duplicated signal tracks from either untreated or ethanol-

treated experiments. To build a covariate matrix, we then averaged the signal over specified 1mb 

bin size. 

2.4.2 Covariate table creation  

We aim to provide effective training of our model that is convenient for users. Different from 

the calibrated training data selection mentioned in \{cite 23770567}, we divided the whole genome 

into bins with fixed length, such as 1mb, 100kb, 50kb, etc. Only autosomal chromosomes and 

chromosome X were included in our analysis to remove the gender imbalance in mutation data or 

covariates.  

Repetitive regions on human genome are known to generate artifacts in high throughput 

sequencing analysis mainly due to their low mappability. We downloaded the mappability 

consensus excludable table used in the ENCODE project from 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/wgEncodeD

acMapabilityConsensusExcludable.bed.gz. Any fixed length bins that overlap with this table 

would be removed from the training process. We also downloaded the gap regions of hg19 from 

the UCSC genome browser, which include gaps from telomere, short_arm, heterochromatin, 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDacMapabilityConsensusExcludable.bed.gz
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDacMapabilityConsensusExcludable.bed.gz
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contig, and scaffold. The fixed length bins that intersect with these gap regions were also removed 

in our analysis. 

All the bigWig files generated in step one were used to calculate the average signal using the 

bigWigAverageOverBed tool for each fixed length bin we generated above. In the end, we 

summarized all the covariates values in each bin into a covariate table, with 475 columns indicating 

different features and rows representing different training bins. 

2.5 PCA analysis of the covariate matrix 

It has been reported that many genomic signal tracks demonstrate noticeable correlations 

across features and tissues. The heatmap of the pearson correlation of the 475 features have been 

given in Figure S 2-6. We observed strong correlations among the used features. For example, 

Pearson correlation of colors ranges from -0.874 to 0.998 at the 1mb bins.  
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Hence we first centered and scaled the covariate matrix 𝑋 and then performed PCA on it to 

obtain �́�. Then the cumulative proportion of variance explained by the PCs was given in Figure S 

2-7. As expected, there is lots of redundancy in the covariate table. The first PC may explain as 

much as 47.41% of variance, while the 2nd PC explains an additional 13.19%. And it takes up to 

28 and 169 PCs to capture 90% and 99% of variance (details in Figure S 2-7). 

Figure S 2-6 Heatmap of feature correlations 
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We also calculated the Pearson correlation of PC 𝑗 with mutation counts in cancer type 𝑑 as 

𝜌𝑗
𝑑. Then the absolute correlation value |𝜌𝑗

𝑑| were averaged over different cancer types as 𝜌�̂� to 

rank the PCs. The top 20 PCs with highest 𝜌�̂� were selected and boxplot for each of the PCs was 

given in Error! Reference source not found.. 

Figure S 2-8. Boxplot of Pearson correlations of top PCs to mutation counts data in different 
cancer types  

Figure S 2-7 Summary of feature PCA analysis 
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2.6 Training model details 

First we divide the whole genome into bins with fixed length 𝑙. In this stage, 𝑙 is usually large, 

such as 1 Mb. Any bins overlapping either of the two blacklist regions are removed. Then, 381 

features are extracted from both REMC and ENCODE, and the average signal in the bins is 

calculated. We let 𝑥𝑖,𝑗 denote the average signal strength for the 𝑖𝑡ℎ bin and 𝑗𝑡ℎ covariate, where 

𝑖 = 1,⋯ , 𝑛 and 𝑗 = 1,⋯ ,𝑚. 

Suppose there are 𝑑 = 1,⋯ , 𝐷 different diseases (or disease types) in the collected WGS data, 

and 𝑠 = 1,⋯ , 𝑠𝑑 unique samples, for example different patients, for each disease (or disease type 

such as liver cancer or lung cancer) 𝑑. Let 𝑦𝑖
𝑑,𝑠

 and  𝜆𝑖
𝑑,𝑠

 denote the observed mutation count and 

rate for the 𝑖𝑡ℎ bin defined above for sample 𝑠 in disease 𝑑. In previous efforts, scientists assume 

that mutation rate 𝜆𝑖
𝑑,𝑠

 is constant across different regions of the human genome, samples, and 
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diseases, so they have that 𝜆𝑖
𝑑,𝑠 ≜ 𝜆  for ∀ 𝑖, 𝑑, 𝑠. Hence 𝑦𝑖

𝑑,𝑠
 follows a Poisson distribution with 

the probability mass function (PMF) given in equation (1). 

                                    (1) 

However, somatic genomes are highly heterogeneous because mutation rates vary 

considerably among various diseases, samples, and regions of the same genome, severely violating 

the assumption in equation (1). As a result, fitting of 𝑦𝑖
𝑑,𝑠

 is usually very poor because 

overdispersion is often observed \cite{26304545}. Simply assuming a constant mutation rate will 

generate numerous false positives. Instead, in our model we assume that different 𝜆𝑖
𝑑,𝑠

 are random 

variables that follow a Gamma distribution with probability density function (PDF) 
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                                    (2),  

where 𝑐𝑖
𝑑 > 0 and 𝜐𝑖

𝑑 > 0. In equation (2), 𝑐𝑖
𝑑  and 𝜐𝑖

𝑑  are the shape and scale parameters 

respectively. Assume that 𝜆𝑖
𝑑 = ∑ 𝜆𝑖

𝑑,𝑠𝑠𝑑
𝑠=1  is the overall mutation rate from all samples in bin 𝑖 of 

disease 𝑑. Its distribution can be readily obtained through convolution as  
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If we let 𝑦𝑖
𝑑 = ∑ 𝑦𝑖

𝑑,𝑠𝑠𝑑
𝑠=1  represent the total mutation counts in region 𝑖  from all disease 

samples, 𝑑, then the conditional distribution of 𝑦𝑖
𝑑 given 𝜆𝑖

𝑑 can be written as 

P yi
d li

d( ) =
li
d( )
yi
d

exp -li
d( )

yi
d( )!

                                         (4). 

By integrating (3) into (4), the marginal distribution of 𝑦𝑖
𝑑  can be denoted as a negative 

binomial distribution ([15], page 50 in [16]).  
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Equation (5a) is the PDF of a negative binomial distribution with 𝐸(𝑦𝑖
𝑑) = 𝑠𝑑𝑐𝑖

𝑑𝜐𝑖
𝑑  and 

𝑉𝑎𝑟(𝑦𝑖
𝑑) = 𝑠𝑑𝑐𝑖

𝑑𝜐𝑖
𝑑(1 + 𝜐𝑖

𝑑). To better interpret (5a), we define 𝜐𝑖
𝑑 = 𝜇𝑖

𝑑𝜎𝑖
𝑑 and 𝑠𝑑𝑐𝑖

𝑑 = 1/𝜎𝑖
𝑑. 

Then equation (5a) can be rewritten as (5b). 

p
Yi
d yi

d mi
d ,s i

d( ) =
1

1+s i

dmi
d

æ

èç
ö

ø÷

1
s i
d G yi

d + 1
s i

d

æ

èç
ö

ø÷

G 1
s i

d

æ

èç
ö

ø÷
G yi

d +1( )

s i

dmi
d

1+s i

dmi
d

æ

èç
ö

ø÷

yi
d

            (5b) 

The mean and variance of 𝑦𝑖
𝑑  from (5b) can be described as 𝜇𝑖

𝑑  and 𝜇𝑖
𝑑  (1 + 𝜇𝑖

𝑑𝜎𝑖
𝑑) 

respectively. Our model in equation (5b) is convenient due to its explicit interpretability. First, it 

assumes that the individual mutation rates are heterogeneous by modeling 𝜆𝑖
𝑑,𝑠

 as i.i.d. Gamma 

distributed random variables. Unlike the constant mutation rate assumption where 𝑉𝑎𝑟(𝑦𝑖
𝑑) =

𝐸(𝑦𝑖
𝑑), our model captures the extra variance of 𝑦𝑖

𝑑 due to population heterogeneity. Our model 

in (5b) also clearly separates the two main parameters 𝜇𝑖
𝑑  and 𝜎𝑖

𝑑  with physically interpretable 

meanings: the mean and overdispersion, respectively. Here a larger 𝜎𝑖
𝑑 indicates a more severe 

degree of overdispersion, which is usually due to larger differences in mutation rates. 

After modeling 𝑦𝑖
𝑑 with a negative binomial distribution, we then estimate the local mutation 

rate by correcting the covariate matrix 𝑿 described above. Again 𝑥𝑖,𝑗 denotes the average signal 

strength in the 𝑖𝑡ℎ bin and 𝑗𝑡ℎ covariate, where 𝑖 = 1,⋯ , 𝑛 and 𝑗 = 1,⋯ ,𝑚. Because the genomic 

features in the covariate matrix are highly correlated and may introduce multicollinearity if directly 

used in regression, we first apply principal component analysis (PCA) to matrix 𝑿. We define 𝑿′ 

to be the covariate matrix after PCA and 𝑥𝑖,𝑗
′  as each element in 𝑿′.  
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A generalized regression scheme is used here. Suppose 𝑔1 and 𝑔2 are two link functions. We 

then use linear combinations of covariate matrix 𝑿′ to predict the transformed mean parameter, 

𝜇𝑖
𝑑, and overdispersion parameter, 𝜎𝑖

𝑑, as 

                    (6). 

Here we use a log link function for both 𝑔1 and 𝑔2, so the regression model in (6) is a negative 

binomial regression. Note that 𝑿 contains 381 genomic features in all available tissues. In the 

following analysis, we use all features to run the regression in (6) to achieve better performance. 

The GAMLSS package in R is used to estimate the parameters in (6) as �̂�0
𝑑 ,⋯ , �̂�𝑚

𝑑 , �̂�0
𝑑 , ⋯ , �̂�𝑚

𝑑 . 

Generally, there are biological reasons to explain how 𝜇𝑖
𝑑 changes with covariates. For example, 

single-stranded DNA in the later replicated regions usually suffers from accumulative damage 

resulting in larger 𝜇𝑖
𝑑 . It is more difficult to interpret such a relationship with 𝜎𝑖

𝑑 . Hence, we 

simplify equation (6) by assuming 𝜎𝑖
𝑑 is constant in our real data analysis. In order to separate the 

local context effect, we separate the 64 local 3 mers to train 642 parameter during the training 

process. 

 

2.7 Testing details 

Suppose there are 𝐾 regions to be tested. We use the local mutation rate to evaluate the 

mutation burden. For the 𝑘𝑡ℎ target region (𝑘 = 1,⋯ , 𝐾), one way of calculating the covariates is 

to extend it into length 𝑙 (illustrative figure given in Fig. S2). Then we calculate the average signal 

for feature 𝑗 as 𝑥𝑘,𝑗 , 𝑗 = 1,⋯𝑚 for this extended bin, and after PCA projection let 𝑥𝑘,𝑗
′  represent 

the value for the 𝑗𝑡ℎ PC.  The local mutation parameters �̂�𝑘
𝑑 and 𝜎𝑘

𝑑 in the extended bin for the 𝑘𝑡ℎ 

target region can be calculated as 
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                        (7). 

In real data analysis, the length of the 𝑘𝑡ℎ test region 𝑙𝑘 is much shorter than the length of the 

training bins (up to 1Mb). Hence �̂�𝑘
𝑑 needs to be adjusted by a factor of 𝑙𝑘/𝑙. Then 𝜎𝑘

𝑑 and the 

adjusted �̂�𝑘
𝑑 can be used to calculate the disease specific P value, 𝑝𝑘

𝑑. This above scheme is usually 

computationally expensive because there are usually millions of target regions to be tested. 

Therefore, we also propose an approximation method alternatively to replace the optimal �̂�𝑘
𝑑 and 

𝜎𝑘
𝑑 in our analysis. In order to separate the local context effect, we separate the 64 3mers and run 

individual regression models for each 3mer.  

The negative binomial model mentioned in equation (5) can effectively control the false 

positives when there is huge overdispersion. However, the negative side on (5) is that when there 

is little heterogeneity among patients and heterogeneity over different regions of the genome can 

be completely removed by regressing against the external features, estimation in (7) might fail. In 

other words, it cannot handle the non over-dispersed data well. In order to solve this problem, we 

first use Poisson regression which assumes equal mean and variance. Then we run a test using the 

method mentioned in \cite{Regression-based tests for overdispersion in the Poisson model} for 

the following hypothesis: provided the regression function is correctly specified and ordinary least 

squares parameter estimates are consistent, whether variance is equal to the mean. Specifically, we 

assume 𝐻0: 𝑣𝑎𝑟(𝑦𝑖
𝑑) = 𝜇𝑖

𝑑 , and the alternative hypothesis is 𝐻0: 𝑣𝑎𝑟(𝑦𝑖
𝑑) = 𝜇𝑖

𝑑 + 𝛼𝑔(𝜇𝑖
𝑑). In 

particular, we tested whether 𝛼 = 0. When this test for Poisson regression fails, we swich to 

negative binomial regression for better fitting. During the implementation stage, we used the AER 

package in R (the dispersiontest function) to run this test. We provided the summary of estimated 

overdispersion parameter in multiple cancer types in Figure S 2-9. It clearly shows that different 
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cancer types and local 3mers has distinct overdispersion status. In CLL, the overdispersion 

parameters ranges from 0.8285 to 0.9784, indicating Poisson regression models for all 3mers are 

enough during the training process. However, in breast cancer, the overdispersion parameter 

ranges from 0.8130 to 3.0760. 8 out of the 64 3mers need to use the negative binomial models to 

handle the extra variance. 

Figure S 2-9 summary of estimated overdispersion parameter in multiple cancer types 

 

The performance of the model is given in Figure S 2-10. We observed that in all cancer types, 

using more features significantly improves the BMR estimation precision. However, in order to 

avoid overfitting, we first run regression using projected PCs on the feature matrix, and then all 

PCs with adjusted P value greater than 0.05 will be removed during the training process. 
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Figure S 2-10. performance of BMR model training using different number of parameters. 

 

Sometimes it is necessary to analyze several related diseases (or disease types) to provide a 

combined P value. One typical example is in pan-cancer analysis.  In the above section, we 



 58 

calculated the P value for disease/disease type 𝑑 as 𝑝𝑘
𝑑 for test region 𝑘. Fisher’s method can be 

used to combine these P values. Specifically, the test statistic is 

 
Tk = -2 ln pk

d( )
d=1

D

å ∼ c 2 2D( )                                      (8).    

Here 𝑇𝑘 follows a centered chi-square distribution with 2𝐷 degrees of freedom, where 𝐷 is 

the total number of diseases/disease types. The final P value, 𝑝𝑘, can be calculated from 𝑇𝑘. 

2.8 P value summaries 

To check the distribution of P values vs. the theoretical ones, the Q-Q plots were given in 

Figure S 2-11 to Figure S 2-13. 

Figure S 2-11. Q-Q plots of P values for CLL. 

 



 59 

Figure S 2-12 Q-Q plots of P values for BRCA 
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Figure S 2-13 Q-Q plots of P values for LIHC 
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3 Details about TF network rewiring analysis 

3.1 Rewiring analysis based on direct counts 

3.1.1 TF-gene linkage 

We evaluated the rewiring of TF to gene linkages between normal and cancerous cells. To 

define TF rewiring between cell types, we first defined TF-gene regulatory network in each cell 

type using simple count based target gene linkage. We used two different methods that examine 

TF to gene linkages based on their proximities to the TSS. For TSS-based method, we simply used 

2,500bp upstream and downstream of transcription start site (TSS) based on Gencode v19 

annotation as a boundary for proximal regulatory region. On average, 33.5% of TF ChIP-seq peaks 

fell into promoter region (See Suppl. Result table S2). We defined a target gene linkage if TF 

ChIP-seq peak was found within the boundary. However, we discovered, in Gencode annotation, 

there were numbers of genes that have more than 50 alternative TSS, which gave these genes unfair 

advantages of having more target gene linkages than others since their proximal regulatory regions 

can span up to 250kbp. Therefore, we selected one canonical TSS for each gene based on the total 

number of aggregated ENCODE TF ChIP-seq peaks. While this method is far from perfect, we 

believe this is the best method to capture the high-level TF network rewiring and quantify 

epigenetics changes around TSS while minimizing artifacts when counting all TSSs from all 

possible alternative transcripts. 

In addition to TSS-based TF-gene linkages, we used target identification from profiles (TIP) 

method that quantitatively measures the regulatory relationships between TFs and target genes to 

define a subset of the full TF-gene network. For each TF, TIP model builds a characteristic, 

averaged profile of binding around the TSS and then uses this to weight the sites associated with 
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a given gene, providing a continuous-valued 'regulatory' score relating each TF and potential target 

\cite{ PMID: 22039215 }.  We used false discovery rate of 0.1 for cutoff. Since TIP uses narrower 

promoter definition than TSS-based method, we defiend TIP-based network as a subnetwork of 

TSS-based network. 

3.1.2 Full regulatory network, merged network, and network rewiring 

To build a complete TF-gene network, both promoter-based linkages and enhancer target 

based linkages were merged into one. For more information about enhancer target based linkages, 

please refer to section 1.7.3. Two versions of full regulatory networks were constructed; one larger 

network by concatenating TSS-based network and enhancer-based network and another 

subnetwork by concatenating TIP-based network and enhancer-based network. In addition, we 

built a merged network by combining all available ENCODE tissue types. 

Figure S 3-1. Network rewiring schematics 
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Rewiring of edges between TF and target genes were compared in normal and tumor cells as 

shown in Figure S 3-1. If a target gene linkage was found in normal but lost in tumor, the edge 

was marked as loss edge. Similarly, if a target gene linkage was found only in tumor, it was labeled 

gain edge, and for edges found in both, they were labeled common or retained edges 

3.1.3 Rewiring score 

To quantify rewiring events, we first calculated rewiring score for each regulators (TFs). The 

fraction of the number of gain, loss, and common edges to the number of fully connected network 

edges, where all available TF nodes are fully connected with all available gene targets in the whole 

network was used to calculate the raw rewiring score. 

𝑛fully-connected = 𝑛TF ∗ 𝑛gene − 1 

𝑟𝑆𝑐𝑜𝑟𝑒TF =

𝐺in + 𝐺out
𝐿in + 𝐿out

|
𝐺in + 𝐺out
𝐿in + 𝐿out

|
∙
(𝐺in + 𝐺out + 𝐿in + 𝐿out)

𝑛fully-connected
 

𝑟𝑆𝑐𝑜𝑟𝑒normalized =
𝑟𝑆𝑐𝑜𝑟𝑒𝑇𝐹

max
𝑎𝑙𝑙

(𝑟𝑆𝑐𝑜𝑟𝑒TF)
 

 

The rewiring score, rScore, after taking normalization over the maximum rScore, was used 

to rank the TF from the gainer to loser. 

3.1.4 Clustering of rewired TFs 

Based on the fraction of gained, lost, and retained edges with respect to the total number of edges 

for each TF, rewired TFs were clustered into three groups using kmeans clustering. Hartigan-Wong 

algorithm with 10 iterations were used \cite{ Hartigan, J. A. and Wong, M. A. (1979). A K-means 
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clustering algorithm. Applied Statistics 28, 100–108. }. Figure S 3-2 shows the clustering result 

for rewired TFs between K562 and GM12878. NFE2 and RCOR1 were identified as one of the 

strongest member of gained group, CTCF was identified as a member of common group, and 

YBX1 was identified as a member of loss group. 

Figure S 3-2 Kmeans clustering of rewired TFs in K562 and GM12878 
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3.2 Rewiring analysis based on mixed membership algorithm  

We use mixed membership algorithm to investigate the rewiring changes between GM12878 

and K562 cell lines (Figure S 3-3). TF-target matrix (M x V) is converted from enhancer and TSS 

regulatory network, where M is the number of TF and V is the number of unique target genes for 

all TFs. Each row represents a target gene of a TF i=1,2,…, M. The regulatory pattern of each TF 

is comprised of K latent communities. Each community includes contributions from N target gene 

and N varies for different TF. 

The target gene of TF 𝑤𝑖 , �⃗⃗� = 〈𝑤𝑖,1
𝑣 , 𝑤𝑖,2

𝑣 , … , 𝑤𝑖,𝑛
𝑣 〉 and = 1 means target, 0 means non-target. 

The observation denote TF  𝑖 , target gene 𝑗  with status 𝑣 .  Similarly 𝑍𝑖,𝑗,𝑣  is the community 

distribution of each target gene 𝑗 for TF 𝑖 with status 𝑣. 𝛽(𝑀×𝑉) denotes the probability of target 

gene 𝑗 belong community 𝑘, which is parameter of multinomial distribution. 𝜃𝑖 each  and denote 

the distribution of communities for TF 𝑖. 𝜃 ~ Dirichlet(𝛼), where 𝛼 is the super-parameter of 𝜃. 

 

 

Figure S 3-3 Schematic of gene community based rewiring analysis 
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When inferring the latent gene community model, we are most interested in the communities’ 

parameter 𝛽, the Dirichlet parameter 𝛼 and the latent community distribution 𝜃 of TF. So the key 

is to find the posterior distribution of latent variables. 

Variational EM algorithm (implemented using mixedMem R package) is used to infer the 𝛼 

and 𝜃 as described in \cite{Blei et al., 2003, Erosheva et al., 2004}. However, computational 

benefits of EM lead to optimization uncertain and make it easily converge to local maxima. We 

have no priori knowledge for the 𝜃 and 𝛼, which is impossible to use near plausible value to find 

reasonable optimum. To hack this, we repeat multiple times (100) and use median of rewiring 

changes from all the non-early stops simulation to represent the most optimal regulatory changes 

of TF. One example of the 𝜃 distribution was given in Figure S 3-4. 
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The rewiring of TF regulation is defined by the changes of distribution in K gene communities 

using 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 = √∑ [√𝑞𝐾562,𝑖,𝑗
3 − √𝑞𝐺𝑀12878,𝑖,𝑗

3 ] 3∗∗
𝑖,𝑗

3
, where 𝑞𝑖  is the distribution of 

communities for TF 𝑖. 

 

Figure S 3-4. Example of 𝜃 distribution difference in tumor and normal cell lines 
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3.3 Patient survival analysis based on TF activities 

In this analysis, we systematically calculated TF activity in 6 different AML datasets using 

the ENCODE ChIP-seq data. 292 ChIP-seq experiments from K562 (231 TFs) and 120 ChIP-seq 

experiments from GM12878 (101 TFs) were used to generate TF binding weight profiles from the 

TIP output. Specifically, the binding score of a TF to each gene (outputted by the TIP algorithm) 

was z-transformed and a one-sided z-test was carried out to generate p-values corresponding to 

each TF-gene binding interaction. P-values were -log10-transformed and trimmed at -10 or 10. 

Weight profiles were re-scaled by subtracting each value in a TF weight profile by the minimum 

and dividing by the range so that all values fell between 0 and 1. These weight profiles were used 

as input into the BASE algorithm to calculate TF activity scores for AML patient samples derived 

from the following gene expression datasets: 

 

GEO -- GSE37642 (GPL_96) (Herold, n=422) 

NCI caArray -- willm-0019 (Wilson n=170) 

GEO -- GSE14468 (Wouters, n=526)  

 

Survival analysis was performed for each TF to identify those that were significantly associated 

with AML patient mortality. Namely, the TF’s iRASs (activity scores) across patient samples were 

used as the independent variable in a Cox proportional hazards model. A hazard ratio <1 indicates 

that a TF’s activity is associated with favorable prognosis and a hazard ratio of >1 indicates that a 

TF’s activity is associated with unfavorable prognosis in AML patient samples. Since a separate 

model was fit to each TF’s iRASs, p-values corresponding to the hazard ratios were adjusted for 

multiple hypothesis testing by using the Benjamini-Hochberg correction procedure.  
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In the results, we report the HR, P-value, and Adjusted P-value for each TF and their 

association with patient survival in each of the 3 AML gene expression datasets. The column 

labeled “number_datasets_significant_P005” indicates the number of datasets in which the TF’s 

activity was observed to be significantly associated with AML patient prognosis at P<0.05. In 

particular, the EZH2, STAT1, and NR2C2 TFs were found to be significantly associated with 

prognosis in all 3 datasets. 15 other TFs were found to be significant in 2 datasets. 

3.4 Target gene analysis 

To evaluate the effect and extent of TF-gene network rewiring, target gene’s expression and 

epigenetic changes were evaluated for genes that have gained and lost edges between normal and 

tumor samples. For expression, we used RESM quantification of ENCODE DCC uniformly 

processed long polyA RNA-seq and averaged TPM values over all available replicates. For 

DNase-seq, histone ChIP-seq, and methylation features, we further processed from fold 

enrichment signal tracks as follows.  We averaged the fold enrichment signal across 200bp 

upstream and downstream of the unique TSS, the same canonical TSS site used define proximal 

TF-gene linkage. For all expression, DNase-seq, histone ChIP-seq, and methylation feature was 

expressed as log2 ratio between tumor to normal samples. To avoid division by zero error, 

pseudocount of 0.0001 was added to each feature. 

3.5 Co-binding analysis 

[JZ2GG&Jason&DC] 

4 Details about expression aggregation analysis 

[JZ2Peng: Please re-organize this part] 
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4.1 TCGA data collection 

All TCGA expression, methylation and mutation data were downloaded from GDAC firehose 

(http://gdac.broadinstitute.org) with data version of 2016_01_28. For cancer types with normal 

control samples profiled, the expression values of each gene are substracted with the average value 

of all normal controls. For cancer types without any normal samples profiled, the expression 

profile of each gene is transformed to zero mean and unit deviation. The DNA methylation values 

are also normalized in the same way as RNASeq data, according to the availability of normal 

control samples in each cancer type. For copy number alteration (CNA), GDAC firehose doesn’t 

provide standardardized data and we downloaded the data matrix from cBioportal with data 

version of 2016_10_20 (http://www.cbioportal.org). 

 

 

 

 

4.2 Regulatory network construction from ChIPSeq and eCLIP data 

For regulatory analysis, we only considered transcription factors (TF), chromatin regulators 

(CR), and RNA binding proteins (RBP). In total, there are 978 TF/CR ChIPSeq profiles and 159 

Figure S 4-1 Schematic of RNA-seq normalization 

http://gdac.broadinstitute.org/
http://www.cbioportal.org)/
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RBP eCLIP profiles downloaded from ENCODE DCC until Janurary 4th, 2017 

(https://www.encodeproject.org).   

All ChIP-seq and eCLIP peak scores are linearly scaled into range (0,1). The regulatory score 

between TF peaks and gene promoters were built with “connect_host” commands from RABIT 

package following an exponential decay model (Figure S 4-2 a). The regulatory score between 

RBPs and genes were built through counting eCLIP peaks within gene 3’UTR regions (Figure S 

4-2 b). The following steps were made to construct the network. a) For ChIP-seq data, A regulatory 

potential score is calculated between each pair of ChIP-seq peak and gene TSS by multiplying the 

ChIP-seq intensity score with an exponential decay score exp(-A*Distance) of their distance 

between. The coefficient A is set as log(2)/10K, so that a binding peak 10K bps away from gene 

TSS will decay by 50%. For each gene TSS, if there are several peaks of a TF nearby, we merged 

their regulatory potential scores by noisy-or: . (b) For eCLIP data, only binding peaks over gene 

3’UTR regions were considered for possible regulatory role of transcript stability. For each gene 

3’UTR region, if there are several peaks of a RBP, we merged their regulatory potential scores by 

noisy-or operation. All regulatory potential scores stay within range (0,1). 

 

https://www.encodeproject.org)/
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ChIPSeq and eCLIP profiles were excluded from further analysis if the total sum of regulatory 

scores across all human genes are less than 100. All general TFs including Pol2 and Pol3 were 

excluded from further analysis. For certain TF, there exists many ChIP-seq profiles profiled in 

different conditions. We run a hierarchical clustering among all of its ChIP-seq profiles and cut 

the hierarcical tree at correlation distance of 0.2. Only profiles in the largest cluster are used for 

further analysis. The final size of regulatory networks constructed are shown in Table S 4-1. For 

each data type, column “Profile” represents the number of experimental profiles (ChIP-seq or 

eCLIP) that passed our quality controls. Column “Regulator” represents the number of regulators 

(TF, CR or RBP) analyzed. Column “Condition” represents the number of experimental conditions 

Figure S 4-2. Regulatory network construction 
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included in profiles. Column “Target” represents the total number of human genes profiled as 

targets of analyzed regulators. 

Table S 4-1. Statistics of regulatory networks. 

 Profile Regulator Condition Target 

ChIPSeq 762 496 44 21348 

eCLIP 159 112 2 14593 

 

In order to systematically search for transcription factors (TF) that drive tumor specific gene 

expression patterns, we used a previously developed integration framework RABIT (Regression 

Analysis with Background InTegration, http://rabit.dfci.harvard.edu). In the RABIT framework, 

for a given TF ChIP-seq binding profile, candidate target genes are identified by weighting the 

number of binding sites by their distance to the transcription start site (TSS) of each gene. For a 

given eCLIP RBP binding profile, candidate genes are identified through searching the binding 

sites within the gene 3’UTR regions. RABIT uses three steps to identify TFs (or RBPs) that drive 

tumor specific gene expression patterns at both the individual tumor level and the whole cancer 

type level. In Step one, RABIT screens for TFs that significantly affect the gene expression 

patterns in each tumor, and select the most relevant ChIP-seq (or eCLIP) profile if multiple profiles 

exists for the same regulator. In Step two, RABIT further selected a subset of TFs among those 

screened in Step one to achieve an optimized model error. In Step three, RABIT investigates how 

well the public ChIP-seq profiles can capture the active TF targets in each cancer type, and clean 

up insignificant TFs. The final output of RABIT framework is a set of TFs or RBPs that shape the 

tumor-specific expression patterns at individual tumor level in each cancer type.  
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Based on ENCODE ChIPSeq data and TCGA profiles, we applied RABIT framework to 

identify transcription factors (TF) whose target genes are differentially regulated in cancer. The 

fractions of patients with TF targets differentially regulated are shown. Only TFs with targets 

differentially regulated in over 40% patients in at least two cancer types are included and results 

were summarized into Figure S 4-3. We further extracted those TF with stronger signals to shown 

in Figure 4. Except the well-known MYC targets showing consistent up-regulation pattern across 

multiple cancer types, we also found novel TFs such as ZNF687 to be strongly up-regulated in 

breast and prostate cancer (star in Figure S 4-3). In addition, the breast tumors were further 

classified into sub types according to PAM50 classification and ER status to show the scores 

predicted by RABIT for each sub type by boxplots. We further checked in each TCGA cancer type, 

the fractions of patients detected with different types of ZNF687 alterations (Figure S 4-4 b). 

 

 

 

 

Figure S 4-3 Heatmap of TF activities in multiple cancer types 
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SUB1 was also predicted to be significantly associated with expression changes in multiple 

tumor types in Figure 4. Here we have listed the full predictions in all cancer types for SUB1. In 

each cancer type, the association between SUB1 expression and SUB1 regulatory activity 

predicted by RABIT was tested through t-test in linear regression. Only significant associations 

above FDR threshold 0.05 are shown in Table S 4-2. 

Table S 4-2 Correlation between SUB1 expression and target activity 

Cancer Coef Stderr t-value p-value 

THCA 4.79 0.46 10.46 9.03E-23 

OV 4.47 0.61 7.37 1.53E-12 

LUAD 2.87 0.46 6.22 3.25E-09 

PRAD 2.9 0.48 6.02 4.56E-09 

HNSC 2.61 0.46 5.72 2.73E-08 

KIRP 3.6 0.63 5.73 5.66E-08 

GBM 2.93 0.54 5.47 2.60E-07 

LIHC 3.22 0.64 5.02 1.18E-06 

BLCA 3.21 0.66 4.83 3.91E-06 

LUSC 2.8 0.66 4.25 6.39E-05 

KIRC 1.91 0.5 3.83 1.62E-04 

STAD 2.16 0.57 3.76 2.14E-04 

ESCA 1.67 0.54 3.09 2.34E-03 

Figure S 4-4 The potential role of ZNF687 in cancer 
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UCEC 1.47 0.52 2.84 5.28E-03 

KICH 1.64 0.58 2.8 6.71E-03 

5 Variant prioritization 

The description of the regulatory network and mutation recurrence analysis provide a way to 

prioritize key genomic features associated with cancer. The we proposed a step-wise scheme to 

prioritize the SNVs for small scale validations. First, we start by searching for key regulators that 

frequently rewired, locate in network hubs or on top of the network hierarchy, or significantly 

drive expression changes in cancer. We then prioritize functional elements that are associated with 

top regulators, undergo large regulatory and chromatin changes, or (most importantly) are highly 

mutated in tumors. Finally, on a nucleotide level, we can pinpoint impactful SNVs for small-scale 

functional characterization by their ability to disrupt or create specific binding sites, or which occur 

in positions of particularly high conservation or chromatin changes. 

5.1.1 Motif analysis using MotifTools (D-score) 

To prioritize the variant within high-confidence enhancer sets, we first searched for recurrent 

non-coding variants or multiple non-coding variant occurring in a known TF motif. However, we 

could not find any somatic variants that are either recurrent or recurrent within a TF motif (Figure 

S 5-1). 

 Figure S 5-1 Variant prioritization scheme based on Enhancer-seq 
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Alternatively, we prioritized somatic variants based on its motif breaking power, or D-score, 

where D stands for disruptive-ness or deleterious-ness. Motif disruption score was calculated based 

on the difference between sequence specificities of reference to alternative sequence. 

motif-scoreref = −10 ∙ log10(p-valueref) 

motif-scorealt = −10 ∙ log10(p-valuealt) 

D-score (Disruptive-ness or Deleterious-ness) 

= motif-scoreref − motif-scorealt 
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= −10 ∙ log10 (
p-valueref

p-valuealt
) 

Positive D-score denotes a variant is decreasing the likelihood of TF to bind the motif (motif-

break), and negative D-score denotes a variant is increasing the likelihood of TF to bind the motif 

(motif-gain). For assessing D-score, uniform nucleotide background were assumed 

(A:C:G:T=1:1:1:1), and the p-value threshold of 1e-3 was used. For position weight matrix (PWM), 

JASPAR TF profiles (2016 core non-redundant vertebrates, 

http://jaspar.genereg.net/html/DOWNLOAD/JASPAR_CORE/pfm/nonredundant/pfm_vertebrat

es.txt) were used, and variants that affect multiple TF binding profiles were averaged over all D-

scores. More details about the tool and code can be found in https://github.com/hoondy/MotifTools. 

 

 

Somatic variants were further prioritized using conservation score (high positive GERP score). 

 

Figure S 5-2 Schematic of Motiftool output 

http://jaspar.genereg.net/html/DOWNLOAD/JASPAR_CORE/pfm/nonredundant/pfm_vertebrates.txt
http://jaspar.genereg.net/html/DOWNLOAD/JASPAR_CORE/pfm/nonredundant/pfm_vertebrates.txt
https://github.com/hoondy/MotifTools
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Table S 5-1 validated mutations in MCF-7 and luciferase assay tested region 

 

 

5.2 Experiment Details SNV validation 

Each regulatory region (both wild and mutant types) was separately synthesized. Enhancer 

regions were designed in such a fashion where based on the candidate SNV site, 250bp upstream 

and 250bp downstream was included for each enhancer region. These regions were then cloned 

into the pGL4.23[luc2/minP] vector (Promega, Cat# E841A). Each candidate region was placed 

upstream of the minP promoter to determine the effect of each putative enhancer region on 

luciferase expression. 100ng of each candidate construct and 100ng of Nano-luc control was co-

transfected into MCF7 cells (5,000 cells per well in DMEM media containing 10% FBS and 1% 

Penicillin-Streptomycin antibiotic) using the Lipofectamine 3000 reagent (Thermo Fisher, Cat# 

L3000001) according to manufacturer’s instructions. Cells were incubated for 48 hrs before 

reading the luciferase signal using Promega Nano-Glo luciferase kit (Promega, Cat# N1521) 

according to manufacturer’s instructions. 

 

SAMPLE CHR POS REF ALT TEST_START TEST_END NOTE 

Sample01 chr16 85604242 C G 85603992 85604491 issue with plasmid isolation 

Sample02 chr21 27541982 G A 27541732 27542231   

Sample03 chr8 21541726 A G 21541476 21541975 issue with plasmid isolation 

Sample04 chr17 38474408 C G 38474158 38474657  
Sample05 chr20 43971343 G C 43971093 43971592  
Sample06 chr7 1598567 C T 1598317 1598816  
Sample07 chr20 58563412 C T 58563162 58563661  
Sample08 chr7 150759483 C G 150759233 150759732  
Sample09 chr7 5596005 T G 5595755 5596254  
Sample10 chr6 134700462 G T 134700212 134700711  
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The raw data of the experiment have been listed at Table S 5-2 and Table S 5-3. 

Table S 5-2. Details of SNV replication technical replicate 1 

 

Normal 
Rep 1 

Normal 
Rep 2 

Normal 
Rep 3 

Mutant 
Rep 1 

Mutant 
Rep 2 

Mutant 
Rep 3 

Background 831 388 416 2623 1296 1065 

2 7698 5193 6893 161889 132344 179837 

4 587863 778963 603304 465322 408546 460135 

5 10281 16083 17192 40103 63770 48912 

6 39090 20019 23419 7614 6760 4959 

7 15039 18873 13468 57945 47666 59931 

8 117702 115358 150245 189131 295907 247173 

9 26775 30804 34042 58424 104433 27587 

10 21705 22249 17162 107077 31005 76174 

Empty 61423 87225 46835 774 789 1111 

Background 562 1461 748 4582 967 473 

Background 238 500 395 857 635 921 

 

 

Table S 5-3 Details of SNV replication technical replicate 2 

 

Mutant 
Rep 1 

Mutant 
Rep 2 

Mutant 
Rep 3 

Normal 
Rep 1 

Normal 
Rep 2 

Normal 
Rep 3 

Background 11852 13823 14402 15111 13245 9858 

2 1922952 1854116 1882977 2326518 1637299 1927383 

4 1969924 1947206 2088052 1606057 1133593 1246025 

Candidate	
region

Nano-luc
control

Vectors Co-transfection 48	hrs incubation

minPenhancer luciferase

minP luciferaseenhancer

pGL4.23	control

pGL4.23	mutant

Luciferase	
measurement

MCF7	cells

Figure S 5-3. Schematic of SNV validation  
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5 1396532 1408962 1879464 2110566 1890350 1594218 

6 1756884 1798060 1859447 1825321 1597249 1658538 

7 1884514 2197614 2393865 2124074 1385636 1888050 

8 1695866 1711603 1488882 2405882 1487463 1516048 

9 1715909 1943040 1916404 2058790 1385673 1241105 

10 1771446 1498757 2030086 1736458 985080 1237019 

Empty 2575562 2699389 2494020 22537 10758 6625 

Background 12437 14855 12235 7338 4629 2613 

Background 3835 4041 4182 2990 1698 1009 
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