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Abstract 
The functional genomics data is emerging as a valuable resource for personalized medicine. Although 

one might think that the functional genomics data is safe to share, the extent to which they leak 

sensitive information is not well studied. Here, we show that the signal profiles, which are often publicly 

shared, for several functional genomics data types can cause concerns for privacy. Genome-wide signal 

profiles represent measurements of genome-wide activity at each genomic position. For example, in an 

RNA sequencing based assay, the signal profile is generated by counting the number of reads at each 

genomic position and represents the transcriptional activity at each position. We show that there is 

significant leakage from the signal profiles of a number of sequencing based functional assays including 

RNA-seq, ChIP-Seq. We demonstrate that an adversary can predict indels and structural variants, and 

use those to accurately identify an individual among a large pool of individuals in a linking attack. We 

also propose a metric to measure the accuracy of genotyping the deletion variants using signal profiles. 

To show the practicality of linking attacks through signal profiles, we present several outlier based 

genomic deletion genotyping methods that lead to accurate linking attacks. We finally present a novel 

and effective anonymization procedure for protection of signal profiles against genotype prediction 

based linking attacks. Given that several consortia, for example GTex and TCGA, publicly share signal 

profiles for personal functional genomics data; our results point to a critical source of sensitive 

information leakage, which can be potentially protected by our anonymization technique.  

1. Introduction 
Individual privacy is emerging as an important aspect of biomedical data science. A deluge of genetic 

data is being generated with the Cancer Moonshot Project[1], Precision Medicine Initiative[2, 3], and 

UK100K[4, 5] from hundreds of thousands, if not millions, of individuals. Moreover, there is much effort 

to make genetic data more prevalent in the standard of care[6]. This will increase personal genomic data 

storage in healthcare providers. Leakage of the genetic information creates many privacy concerns, e.g. 

genetic predisposition to diseases may bias insurance companies.  

The initial studies on genomic privacy has focused on protecting the identities of participants in the early 

genetic profiling and genotype-phenotype association studies[7, 8]. These focused on whether an 
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individual’s genetic information can be used to reliably predict whether they participated to a certain 

cohort of individuals in a genetic study. We refer to these scenarios as detection of a genome in a 

mixture. In this arena, the differential privacy[9] has been proposed as a theoretically optimal formalism 

that can fulfill the privacy requirements such that the probability that any individual’s participation can 

be identified made arbitrarily small. In addition, the cryptographic approaches have proven useful for 

privacy-aware analysis of genomic datasets albeit with high requirements of computational 

resources[10, 11].  

The decrease in cost of DNA sequencing technologies has substantially increased[12] the number and 

size of available genomic data and has made genomic data much more practically available to hospitals, 

research institutes, and to individuals. This increase will render the genomic linking attacks much more 

relevant[13–15]. In a nutshell, the linking attacks are based on cross-referencing and matching of two or 

more datasets that are released independently. Some of the datasets contain personal identifying 

information, e.g. names or addresses, while others contain sensitive information, e.g. health 

information. The immediate consequence of the cross-referencing is that the sensitive information in 

one dataset gets linked to the identifying information in another dataset, which in turn breaches privacy 

of individuals whose sensitive phenotypes are revealed. The risks behind linking attacks are becoming 

high in the recent years because the personal data is generated at exceedingly high pace and these 

information are independently released and maintained. A rather challenging aspect of linking attacks is 

that risk assessment is complicated because one dataset that is currently deemed safe to release may 

become a target for linking attacks when another dataset is released in the future, i.e., a dataset that 

seems safe to release now may become vulnerable to a linking attack next year. 

A well-known example of linking attacks is the Netflix Prize Competition[13]. In this competition, a 

training dataset was released by the movie rental company Netflix, which was to be used for training 

new automated movie rating algorithms. The dataset was anonymized by removing names. Although 

the dataset seemed safe to share at the time, two researchers have shown that this training dataset can 

be linked to a seemingly independent database of the Internet Movie Database (IMDb). The linking 

revealed movie preferences and identities of many Netflix users. We believe that similar scenarios will 

be a major route to breaches in individual genomic privacy and these must be studied well to enable  

privacy-aware data sharing approaches. 

There are two major aspects of genomic privacy that are not well addressed in the previous studies. 

Firstly, although it is well known that the major portion of individual genomic polymorphism is structural 

variants, deletion, insertion, translocation, and transversion of large chunks of DNA sequence, these did 

not receive much attention in the debate of genomic privacy[16]. The structural variants can have much 

larger effects on the molecular phenotypes (like gene expression) than SNPs simply because they effect 

a much larger portion of the genome. Secondly, functional genomics data is not in center of the most 

studies. Especially the newer functional genomics datasets based on sequencing assays, like RNA-

Seq[17] and ChIP-Seq[18] are very rich sources of information that can lead to leakage of individual 

characterizing information. In general, the raw sequenced reads from these experiments are not shared 

because of privacy concerns. The reads are used to create the genome-wide signal profiles by piling 

them up along the genome. The signal profiles represent the activity at each genomic position and are 

therefore fundamental in the analysis of any type of genome-wide functional assay. It is generally 

assumed that the signal profiles are mostly void of sensitive information and they are publicly shared, 

for example by the ENCODE Project[20], Roadmap Epigenome Mapping Consortium[21], and GTex[22, 
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23]. Although one might think that these signal profiles are safe to share, there has been no study that 

systematically analyzed the information leakage in these datasets.  

In this paper, we analyze the sensitive individual characterizing information leakage from the signal 

profiles of several sequencing based functional genomics datasets. By signal profile, we refer to the 

signal generated by counting the number of reads that overlap with each nucleotide on the genome. 

Although the signal tracks do not contain any explicit sequence information, an adversary can utilize 

signal processing techniques to detect the large and small structural variants. The most notable of these 

variants are the small and large deletions. For example, many methods have been developed to identify 

genomic deletions and duplications from the DNA-sequencing read depth signal [24, 25]. On the other 

hand, detection of structural variants from functional genomics datasets is not well-studied. The main 

reason for this is the dynamic and non-uniform nature of the signal profiles of functional genomics 

experiments, unlike DNA-sequencing signal profiles that uniformly cover the genome. For example, 

RNA-seq[17] and ChIP-seq[18] signal profiles concentrate mainly on the exonic regions and promoters of 

the genome, respectively. Moreover, these experiments are generally done in combination. This is 

important because although each experiment assays a different type of genome-wide activity, pooling 

the signal profiles can bring enough power to an adversary for genotyping structural variants and 

performing a successful linking attack.  

The paper is organized as following: We first present the general scenario of linking attacks that utilize 

signal profiles. We next propose a new metric for quantifying the extent to which genotypes of small 

and large deletion variants can be estimated using functional genomics signal profiles. In combination 

with information content of the deletion variants, we use this new metric for evaluating the extent of 

characterizing information leakage from functional genomics datasets. We next present several practical 

instantiations of linking attacks that utilizes deletion variant genotype prediction using outlier signal 

levels. Finally, we focus on protection of the signal profiles against linking attacks. We present a novel 

signal processing methodology for anonymizing a signal profile. We show that it is effective in 

decreasing the predictability of deletion variant genotypes from signal profiles. The source code for 

linking attacks and anonymization can be downloaded from privaseq2.gersteinlab.org. 

2. Results 

2.1. Linking Attack Scenario 
Figure 1 summarizes the linking attack scenario. The attack has two steps. The first step is genotyping of 

the deletion variants, which is illustrated in Figures 1a. The adversary has access to a genome-wide 

signal profile dataset for a sample of individuals. This dataset is assumed to be shared publicly after the 

names of the individuals are removed. This dataset stores, for each individual, a genome-wide signal 

profile, for example RNA-seq, or ChIP-Seq data. In addition, the dataset contains sensitive information 

about each individual, for example the HIV status of each individual. In this scenario, we also assume 

that the adversary has access to a panel of genomic structural variant loci. For each individual, she (we 

assume the adversary is a female) utilizes the signal profile and genotypes the deletions. After the 

genotyping, the adversary builds a data matrix with the predicted genotypes. We refer to this scenario, 

where the adversary has access to a reference panel of structural variants, as linking based on 

“genotyping only”. The second scenario, illustrated in Fig 1b, is very similar except that the adversary 

does not have access to the panel of structural variants but discovers the panel of structural variants 

from the signal profiles. She then uses the signal profiles to genotype the SVs in this de-novo discovered 
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SV panel. We refer to this scenario as linking based on “joint discovery and genotyping”. After the 

genotyping, the genotyped SV matrix includes, for each individual, the predicted SV genotypes, and also 

the sensitive information about HIV status.  

The second step of the linking attack is linking of the genotyped SV dataset and the SV genotype dataset. 

The SV genotype dataset is assumed to contain identifying information about individual’s identities. We 

assume that this dataset was either leaked or stolen. The adversary first compares her genotyped SV 

panel to the SV panel of the genotype dataset. For example, she may overlap the loci of the SVs in two 

panels. After the matching of the SVs in the two panels, she compares the genotypes of the matching 

SVs in two datasets. She uses this comparison to cross-reference the individuals in two datasets and find 

the individuals that best match to each other with respect to genotype match distance, i.e., links the 

individuals in two datasets. The results are used to link the genotype samples to the phenotype samples 

and the HIV status of genotype samples are revealed to the adversary (the matched columns in the final 

linked matrix). 

In the analysis below, we are focusing on the small and large deletion variants. So we assume that the 

adversary focuses only on the deletion variants in the panel of SVs that she uses for performing the 

attacks. 

2.2. Information Content and Correct Predictability of Structural Variant Genotypes 
In order to assess the correct predictability of SV genotypes, we propose using a measure named 

genome-wide predictability of SV genotypes, denoted by 𝜋𝐺𝑊, from signal tracks. The predictability 

measures how accurately an SV genotype can be estimated given the signal profile (Methods Section). 

The predictability of the genotype of a structural variant is the conditional probability of the variant 

genotype given the signal profile. By this definition, the predictability only depends on the genomic 

signal levels of an individual and how well they can be used to predict genotypes. In principle, the 

genome-wide predictability is computed for each individual independent from other individuals. 

Therefore the genome-wide predictability of a variant from signal profile is independent of the 

population frequency of the variant.   

Other than the predictability, an important measure in the linking attacks is the information content 

each SV genotype supplies. We utilize a previously proposed metric termed individual characterizing 

information (ICI) to quantify the information content of each SV. This measure gives higher weight to the 

genotypes that have low population frequency and vice versa. For a given variant genotype, ICI 

measures how much information it supplies for pinpointing an individual in a population. As we 

discussed above, the genome-wide predictability is independent of the population frequency of the 

variants. Therefore the adversary can utilize genome-wide prediction approaches and predict rare 

variant genotypes to gain high ICI and characterize individuals very accurately. This is one of the major 

differences between genome-wide prediction approach and the sample-wide prediction[14] based 

approach (Supplementary Fig 1). 

2.3. Linking Attacks using RNA-Seq Signal Profiles 
We first focus on predictability of short deletions using RNA-seq signal profiles (Fig 1b). By small 

deletions, we refer to deletions smaller than 10 base pairs. The basic observation is that each deletion is 

manifested as an abrupt dip in the signal profile. The discovery and genotyping of a deletion relies on 

detecting these dips in the signal profiles. The genome-wide predictability (𝜋𝐺𝑊) of the small deletions 
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quantifies how well the adversary can identify the dips from the signal profile (Methods Section). We 

first estimated the genome-wide predictability for the panel of short deletions in 1000 Genomes Project 

using the RNA-seq expression signal profiles from the GEUVADIS project. Figure 2a,b show 𝜋𝐺𝑊 vs ICI for 

short deletions. There is a substantial number of deletions that have much higher predictability 

compared to a randomized dataset where the signal profile is randomized with respect to location of 

deletions. There are also many more variants with very high ICI (on the order of 5-6 bits) with high 

predictability (greater than 80% predictability). 

In order to present practicality of small deletion predictability and information content, we propose an 

instantiation of a linking attack where we utilize outlier signal levels in the signal profiles for discovery 

and genotyping of the small deletions. As we explained, the genotyping of deletions are based on 

detecting the abrupt dips in the signal profile. In order to detect these dips in the signal profile, the 

adversary utilizes a quantity we term self-to-neighbor signal ratio, denoted by 𝜌[𝑖,𝑗], that measures the 

extent of the dip in the signal as the fraction of signal on the interval and the signal in the neighborhood, 

𝜌[𝑖,𝑗] =
Average signal within [𝑖, 𝑗]

Average signal within neighborhood of [𝑖, 𝑗]
. 

The genomic regions with low 𝜌[𝑖,𝑗] values point to intervals tend to have dips in them. For each 

individual, the prediction method sorts the short deletions with respect to self-to-neighbor signal ratio 

and assigns homozygous genotype to a number of deletions with smallest self-to-neighbor signal ratio 

(Methods Section). The adversary then compares these genotyped deletions to the genotype dataset 

and identifies the individual whose deletion genotypes that are closest to the predicted genotypes. 

Using this genotyping strategy, we simulated an attack to link GEUVADIS signal profile dataset to the 

1000 Genomes genotype dataset. We used the panel of deletions from the 1000 Genomes Project. In 

order to minimize the bias on the deletion panel, we used the deletions with minor allele frequency 

greater than 1% in this analysis. Also, we extended the genotype dataset by re-sampling 1000 Genomes 

deletion dataset and created genotype data for 10,000 simulated individuals. In the genotyping only 

scenario, the linking is perfectly accurate when the adversary utilizes more than 40 deletions (Fig 2c). In 

the scenario where the adversary performs joint discovery and genotyping, the linking accuracy is 

maximized (around 60%) when the attacker utilizes the top 50 deletion candidates in linking (Figure 2d).  

In the previous analysis, the sample set used for discovery of deletion panel and RNA-seq sample set are 

matching, i.e. 1000 Genomes individuals. This may introduce a bias in linking because the SV genotype 

dataset may contain rare indels which may also be in the panel of deletions. This would make it trivial to 

link some of the individuals. To get around this bias, we studied linking attack where signal profile 

dataset is generated by the GTex Project Consortium [22, 23] and the panel of small deletions is the 

deletion set generated by the 1000 Genomes Project. This way, the SVs in the panel are identified in 

1000 Genomes individuals while the linking is performed for the individuals in GTex Project datasets. In 

other words, the deletion panel is discovered in a sample set that is totally independent of the sample 

set that the adversary is linking. In this scenario, the adversary is linking the signal profile dataset to the 

genotype dataset that is obtained from the GTex Project. With this setup, we first computed 𝜋𝐺𝑊 versus 

ICI for the deletions and observed that there is substantial enrichment of deletions that have high 

predictability with high ICI compared to randomized datasets (Fig 3a). We also instantiated the linking 

attack using the previously presented extremity based approach. In the instantiation, we first evaluated 

the attack based on genotyping only scenario. In this scenario, the linking accuracy is close to 100% 
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using a relatively small number of variants, i.e., 20 variants (Fig 3c). An interesting observation is that 

when the attacker increases the number of variants used in the attack, the linking accuracy decreases. 

This is caused by the fact that the additional variants after the 20 variants are incorrectly genotyped and 

decrease the accuracy of linking. In simple terms, the additional variants act as noise and decrease 

linking accuracy. 

Following this, one question that arises is whether the adversary can assign reliability score to the linked 

individuals. We used whether first distance gap (Methods Section) is suitable for evaluating the 

reliability of linkings. This is important because when the overall linking accuracy is low, e.g. smaller than 

50%, unless the attacker has a systematic way of selecting correct linkings, there is not high risk. As a 

test case, we focused on the linking where the adversary uses 200 deletions where the overall linking 

accuracy is 35%. Figure 3d shows the sensitivity and specificity with changing first distance gap metric. 

The adversary can link 10% of the individuals with perfect specificity and 20% of the individuals are 

linked with around 90% specificity. Figure 3d also shows the average sensitivity and specificity over 100 

random selections of the linkings. As expected, the specificity is always around 35% and average 

sensitivity is also always smaller than first distance gap based selection of linkings. 

2.4. Linking Attacks using ChIP-Seq Signal Profiles 
We next focused on predictability versus ICI of large deletions, which are longer than 1000 base pairs. In 

this analyses, we utilize the ChIP-Seq signal profiles. Several recent studies have generated individual 

level epigenomic signal profiles through ChIP-Seq experiments [27–29]. These studies aimed at revealing 

how the genetic variation interacts with the epigenomic signals, mainly the histone modifications. These 

datasets are very convenient for our study because majority of the individuals have matching structural 

variant genotype information in the 1000 Genomes Project. The histone modifications are especially 

useful for identifying deletion genotypes because some of them cover a large portion of the genome, 

which is useful for predicting deletion genotypes. In addition, the histone modification ChIP-Seq signals 

create different profiles such that they can be complementary to or overlapping with each other.  It is 

worth nothing that although we are focusing on the predictability of large deletion genotypes from ChIP-

Seq profiles, this does not mean that the small deletions are not detectable in the ChIP-Seq dataset. In 

fact, the small deletion genotyping based linking attack we presented in the previous section can be 

applied to ChIP-Seq signal profiles as it is.  

We use these personalized epigenomic signal profiles for quantifying how much characterizing 

information leakage they provide. For any individual where there are multiple histone mark ChIP-Seq 

signals, we pool the signal profiles and compute several features for each large deletion. These are then 

used for quantifying information leakage (Methods Section). First we computed 𝜋𝐺𝑊 versus ICI using the 

panel of large deletions in 1000 Genomes Project. Figure 4a,b show 𝜋𝐺𝑊 versus ICI for the large 

deletions from the 1000 Genomes. We use the personal epigenome profiling ChIP-Seq datasets 

presented in studies by Kasowski et al and Kilpinen et al (Methods Section). Similar to the small deletion 

analysis, it can be seen that for both datasets there are many large deletions with high predictability and 

high ICI.  

We next focused on instantiating linking attacks using ChIP-Seq profiles. We again utilize a variant of the 

outlier based genotyping in the linking attack. The genotyping of the panel of large deletions is done as 

follows. The average ChIP-Seq signal on each deletion is computed and the variants are sorted with 

respect to their average signal in increasing order. The deletions with smallest ChIP-Seq signal are 
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assigned homozygous deletion genotype. For the deletions with assigned genotypes, we identified the 

individual in the genotype dataset (from the 1000 Genomes project) whose genotypes match closest to 

the assigned genotypes. We repeated this linking attack with different number of windows and 

computed the accuracy of linking (Methods Section). Figure 4c shows the accuracy of linking attack 

based on genotyping only scenario, where the adversary is assumed to have access to the large deletion 

panel from 1000 Genomes. The linking accuracy reaches 100% with fairly small number of deletions for 

both datasets. For the joint discovery and genotyping scenario where the adversary first discovers 

deletions then genotypes them, the accuracy is also very high with small number of identified deletions 

(Fig 4d). 

An interesting question about histone modifications is which combinations of histones leak the highest 

amount of characterizing information. To answer this question, we studied the individual NA12878, for 

which there is an extensive set of histone modification ChIP-Seq data from the ENCODE Project[20]. We 

have evaluated whether different combinations of histone modifications render NA12878 vulnerable 

against a linking attack among 1000 Genomes individuals, which is illustrated in Fig 4e. In general, we 

have observed that NA12878 is vulnerable when the dataset combinations that cover the largest space 

in the genome. This can be simply explained by the fact that when histone marks cover more space, 

higher number of deletions can be predicted. For example, H3K36me3 and H3K27me3, an activating and 

a repressive mark respectively, are mainly complementary to each other and they render NA12878 

vulnerable. In addition, H3K9me3, a repressive mark that expands very broad genomic regions, renders 

NA12878 vulnerable in several combinations with other marks. On the other hand, H3K27ac, an 

activating histone mark that spans punctate regions do not render NA12878 vulnerable. 

2.5. Linking Attacks using Hi-C Matrices 
We also asked whether a relatively new data type, Hi-C signal profiles can be used for identification of 

genomic deletions. Hi-C is a high throughput method for identifying the long range genomic interactions 

and three dimensional chromatin structure[26]. It is based on proximity ligation of the genomic regions 

that are close-by in space followed by high throughput sequencing of the ligated sequences. After 

sequencing data is processed, it is converted to a matrix where the entry (𝑖, 𝑗) represents the strength 

of interaction between 𝑖𝑡ℎ and 𝑗𝑡ℎ genomic positions. To study leakage from Hi-C datasets, we again 

focused on NA12878 individual for whom Hi-C interaction matrices are generated at different 

resolutions[30]. In order to convert the matrix into a genomic signal profiles, we summed the interaction 

matrix along columns and obtained a signal profile along the genome (Fig 5a, Methods Section). This 

way, we are simplifying the multidimensional nature of the Hi-C contact matrix and treat it as a 

sequencing assay that spans the entire genome. We simulated an extremity based linking attack using 

the outliers in the Hi-C signal profile: For all the large deletions in the 1000 Genomes, we computed the 

average Hi-C signal. We next sorted the deletions in increasing order and assigned top 1000 windows 

with homozygous deletion genotype. We next compared the predicted genotypes with all the genotypes 

in the 1000 Genomes project. NA12878 is vulnerable to this attack when the Hi-C contact matrix 

resolution (bin length) is 10 kilobases or smaller (Fig 5b).  

It is important to clarify that we are focusing on using the final output of Hi-C data, i.e., the Hi-C contact 

matrix, for generating a genome-wide signal profiles and performing a linking attack. We are not 

studying the possibility of discovering complex structural variants using the paired-end reads of Hi-C 

experiment, which is a different problem by itself[31]. It also requires access to mapped reads, which we 
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assume the attacker does not have. As we explained above, our attack scenario treats the Hi-C data as 

any type of sequencing data and uses the linear genomic signal profile to identify deletions for the 

purpose of linking datasets. We are highlighting the fact that Hi-C interaction matrices themselves leak 

substantial amount of characterizing information. 

2.6.  Anonymization of Signal Profiles 
An important aspect of the genomic privacy is risk management and protection of datasets. For 

protection, anonymization of the datasets is the most effective way to share the data publicly in a safe 

manner. The most effective way to protect against linking attack scenario is to ensure that the deletion 

genotypes are not predictable from the signal tracks. We believe RNA-seq signals are currently the most 

vulnerable against the linking attacks and protection of these datasets against prediction of deletion 

variants is most immediate. As we showed in previous sections, the small deletions are major source of 

leakage of genetic information from RNA-seq signal profiles. We propose systematically removing the 

dips in the signal profiles as a way to anonymize the RNA-seq signal profiles against prediction of small 

deletions. Specifically, we propose smoothing the signal profile using median filtering locally around a 

given panel of deletions (Methods Section). We have observed that median filtering removes the dips in 

the signal very effectively while conserving the signal structure fairly well. To evaluate the effectiveness 

of this method, we applied signal profile anonymization to the RNA-seq signal profiles generated from 

the datasets generated by GEUVADIS Project consortium and the GTex Project Consortium. After 

application of the signal profile anonymization, we observed that the large fraction of the leakage is 

removed for GTex datasets (Fig 2b and 3b). For GEUVADIS datasets, there is still some leakage but the 

genome-wide predictability of the variants are decreased substantially (Fig 2a). We also observed that 

the extremity based linking attack proposed in the previous section is ineffective in characterizing 

individuals such that no individuals are vulnerable for GTex project and at most 1% of the individuals are 

vulnerable for GEUVADIS dataset. The anonymized signal profiles for GTex and GEUVADIS individuals 

can be downloaded from privaseq2.gersteinlab.org/Anonymized_Signal_Profiles. It is worth noting that 

the anonymization of ChIP-Seq datasets against small deletion genotyping based linking attacks can be 

performed using above approach. However as we have shown in previous section, there is significant 

leakage when large deletions are genotyped using ChIP-Seq datasets. We observed that the median 

based anonymization of signal profiles is not very effective against large deletion genotyping based 

attacks. 

3. Discussion 
We have systematically analyzed a critical source of sensitive information leakage from the signal profile 

datasets, which were previously thought to be largely secure to share. Specifically, our results show that 

an adversary can perform fairly accurate linking attacks for characterizing individuals by prediction of 

structural variants using functional genomics signal profiles. Although we are focusing mainly on RNA-

seq and ChIP-Seq signal profiles, the linking attack scenario and the measures that we presented are 

generally applicable to any type of genome-wide signal profile. For example, although it is obvious, the 

linking attacks can easily be carried out on the DNA-sequencing signal profiles. Also, signal profiles from 

genome-wide profiling techniques other than sequencing based assays, like ChIP and expression tiling 

arrays[32, 33] can be vulnerable to the linking attack scenario that we presented. On another note, the 

practical linking attack instantiations that we presented are data-driven and can be applied to any signal 

profile. We believe that many more genome-wide omics technologies will be developed in the near 
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future[34]. The genome-wide signal profiles will be vital source of information in the analysis of these 

datasets. The framework we presented here can be utilized for assessing the leakage and protecting 

these datasets.  

We showed that the linking can be done by predicting fairly small number of variants (generally less 

than 100 variants). Although the functional genomics assays do not reveal the full spectrum of structural 

variants, our results show that these data leak enough information for individual characterization among 

a fairly large set of individuals. This can be rather problematic because several large consortia are 

offering these signal tracks publicly. For example GTex signal profiles are publicly available through the 

UCSC Genome Browser. In addition, ENCODE RNA-Seq and ChIP-Seq signal profiles for several personal 

genomes (NA12878 and HeLa-S3) are downloadable through the UCSC Genome Browser and ENCODE 

Project’s portal. Given the extent of public sharing of datasets, we believe that the anonymization of the 

RNA-seq signal profiles using the signal processing technique that we proposed is very useful. The 

technique we proposed applies a signal smoothing around all the known deletions and removes a 

significant amount of characterizing information. The anonymization procedure can be easily integrated 

into existing functional genomics data analysis pipelines. It can handle all the widely used files types 

including bigwig, wiggle, and bedGraph. We believe that this anonymization technique can complement 

other approaches for removing genetic information from shared datasets. For example file formats like 

MRF[19] and tagAlign[20] can enable removing raw sequence information from reads while keeping the 

information about read mapping intact.  

We also proposed a new metric for measuring the predictability of deletions from signal profiles. It is 

important to note that this measure of predictability is more inclusive, in terms of the spectrum of 

variants that it can be applied to, than the sample-wide genotype predictability measure[14]. Sample-

wide predictability measures how well variants can be genotyped given a sample of phenotypic 

measurements from multiple individuals. For example, expression quantitative trait loci (eQTL) variant 

genotypes of multiple individuals can be predicted from the gene expression levels of the individuals. 

Sample-wide predictability is suitable when adversary utilizes sample-wide, i.e. measurements from 

multiple individuals, phenotypic measurements to predict genotypes in a linking attack. By definition, 

the sample-wide predictability of rare variants will not be high because sample-wide predictability relies 

on the fact that the genotype-phenotype relation is statistically detectable within a sample of 

individuals. Since the phenotypic effects of rare variants are not easily detected, their sample-wide 

predictability is not high. For example, the structural variants that affect gene expression have very low 

population frequency and thus they have low effect on the expression level when the effect is averaged 

over all the individuals. Thus, the sample-wide predictability of these are rather low (Supplementary Fig 

1). Genome-wide predictability, on the other hand, is for each individual separately. A variant, 

independent of its population frequency, can have a high genome-wide predictability. Following 

previous example, the structural variants have high genome-wide predictability because they do have 

very obvious effect on the genome-wide signal profiles. Thus, genome-wide prediction strategy can 

predict both high and low frequency variant. The sample-wide and genome-wide prediction approaches 

underpin different paths to linking attacks. They must be studied together in a risk assessment 

procedure while functional genomics datasets are being shared.  Formatted: Font: 11 pt



 

 

4. Methods 
We provide the details of the computational methodologies. We first introduce the notations. The 

genomic deletions are intervals of genomic coordinates. We refer to them simply as intervals, e.g. a 

deletion between genomic positions 𝑖 and 𝑗 by [𝑖, 𝑗]. The genotype of a genomic deletion at [𝑖, 𝑗] is 

denoted by 𝐺[𝑖,𝑗], which is a discrete random variable distributed over the 3 values {0,1,2}. These values 

correspond to the three genotypes of the deletion and they represent how many copies of the genomic 

sequence is deleted. The functional genomics read depth signal is denoted by 𝑺, which is a vector of 

values corresponding to each genomic position. The signal level at genomic position at 𝑖 is denoted by 

𝑺𝒊. An important quantity that we utilize in formulating methods is the multi-mappability profile of the 

deletion regions. The multi-mappability is a signal profile that measures, for each position in the 

genome, how uniquely we can map reads. The multi-mappability signal is denoted by 𝑴, which is a 

vector of multi-mappability signals for all the genomic positions and the signal at genomic position 𝑖 is 

denoted by 𝑴𝒊. The multi-mappability signal profile is generated as follows: The genome is cut into 

fragments and the fragments are mapped back to the genome using bowtie2[35] allowing the multi-

mapping reads. We then generate the read depth signal of the mapped reads. In this signal profile, the 

uniquely mapping regions receive low signal while the multi-mapping regions receive high signal[36]. 

4.1. Genome-wide Predictability of Deletion Genotypes and Individual Characterizing 

Information 
The genome-wide predictability, 𝜋𝐺𝑊,  of a deletion genotype refers to how well a deletion can be 

genotyped given the functional genomics signal (𝑺) of interest.  

We assume that the adversary employs a prediction methodology based on statistical modeling of the 

deletion genotypes with respect to read depth signal profile. We assume that the adversary performs 

prediction by extracting features from the functional genomics signal profile. We define here the 

features that are most useful for genotyping deletions (Supp Fig XX). Given a [𝑖, 𝑗], an important feature 

for genotyping the deletion is the average functional genomic signal within the deletion: 

�̅�[𝑖,𝑗] =
∑ 𝑺𝑖′  
𝑗
𝑖′=𝑖

𝑗 − 𝑖 + 1
. 

Another important feature is the average multi-mappability signal within the deletion:  

�̅�[𝑖,𝑗] =
∑ 𝑴𝑖′  
𝑗
𝑖′=𝑖

𝑗 − 𝑖 + 1
. 

In order to measure the extent of the dip within the signal, we observed that a measure we termed self-

to-neighbor signal ratio and neighbor signal balance ratio are very useful for genotyping. Given a 

deletion [𝑖, 𝑗] , self-to-neighbor signal ratio, denoted by 𝜌[𝑖,𝑗], is computed as 

𝜌[𝑖,𝑗] =
2 × �̅�[𝑖,𝑗]

�̅�[2𝑖−𝑗+1,𝑖−1] + �̅�[𝑗+1,2𝑗−𝑖+1]
. 

This is simply twice the ratio of total signal on the deletion and the total signal in the neighborhood of 

the deletion. The neighbor signal balance ratio, is computed as 
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𝜂[𝑖,𝑗] = min(
�̅�[𝑗+1,2𝑗−𝑖+1]

�̅�[2𝑖−𝑗+1,𝑖−1]
,
�̅�[2𝑖−𝑗+1,𝑖−1]

�̅�[𝑗+1,2𝑗−𝑖+1]
). 

Finally, we observed that the average signal on the neighborhood of the deletion coordinates are useful 

in genotyping deletions. We compute the average signal in the neighborhood as 

𝜏[𝑖,𝑗] = 0.5 × (�̅�[2𝑖−𝑗+1,𝑖−1] + �̅�[𝑗+1,2𝑗−𝑖+1]). 

We define 𝜋𝐺𝑊 as the conditional probability of a deletion genotype 𝑔 given the 5 features computed 

from functional genomics signal profile: 

𝜋𝐺𝑊(𝐺[𝑖,𝑗] = 𝑔, 𝑺[𝑖,𝑗]) = 𝑃𝐺𝑊

(

 
 
 
𝐺[𝑖,𝑗] = 𝑔 

|

|

 log2(�̅�[𝑖,𝑗]) ,

log2(�̅�[𝑖,𝑗]) ,

log2(𝜌[𝑖,𝑗]),

log2(𝜂[𝑖,𝑗]) ,

log2(𝜏[𝑖,𝑗]) )

 
 
 
. 

This corresponds to the conditional probability (over all the deletions within the genome) that we 

observe the genotype 𝑔 for a deletion at [𝑖, 𝑗] given the average functional genomics signal and average 

multi-mappability signal over the interval [𝑖, 𝑗]. The probability is defined over the genome, i.e., we 

estimate the probability for all the deletions in the genome. For this, we compute 5 features for every 

deletion in the genome, then estimate the conditional probability using this set as the sample of 

deletions.  

The basic idea behind the formulation of predictability is the observation that the regions with low 

functional genomics signal, low multi-mappability (i.e., uniquely mappable), low self-to-neighbor signal 

ratio, and high average neighbor signal are more likely to be deleted, i.e., their probability is large. 

Therefore, 𝜋𝐺𝑊 is higher for deletions that are more easier to identify than the deletions with lower 

𝜋𝐺𝑊. In order to estimate the conditional probabilities, we binned the feature values by computing the 

logarithm then rounding this value to the closest smaller integer value.  

4.2. Discovery and Genotyping of Small and Large Deletions from Signal Profiles 
The practical instantiation of the linking attacks that we study are based on genotyping of small 

deletions using extremity based statistics of functional genomics data. In addition, when a panel of 

deletions is not available, the adversary also discovers the deletions using the signal profile. For 

GEUVADIS and GTex datasets, we perform small deletion genotyping using RNA-Seq signal profiles. The 

basic idea behind genotyping of deletions is the fact that there is a sudden dip in signal profile whenever 

there is a deletion (Fig XX). In order to detect these dips, we observed that self-to-neighbor signal ratio is 

very useful for genotyping small deletions. For all the small deletions, self-to-neighbor signal ratio, 𝜌[𝑖,𝑗], 

neighbor signal balance,  𝜂[𝑖,𝑗], and average neighbor signal are computed. We then filter out the small 

deletions whose multi-mappability signal is larger than 1.5 or average neighbor signal (𝜏) is smaller than 

10 or 𝜂[𝑖,𝑗] is smaller than 0.5. For the remaining set of small deletions, we sorted the deletions with 

respect to increasing 𝜌[𝑖,𝑗]. The deletions which are at the top of the sorted list correspond to the 

deletions which are highly mappable (low multi-mappability signal), have strong neighbor signal support 

(high average neighbor signal), and finally they have a strong signal dip on them (Low 𝜌[𝑖,𝑗], and high 

𝜂[𝑖,𝑗]). We selected the top 𝑛 deletions and assigned them homozygous genotypes, i.e., 𝐺[𝑖,𝑗] = 0. The 



 

 

basic idea is that the deletions with strongest signal dips are enriched in homozygous deletions. It is 

worth noting that this genotyping method only assigns homozygous genotypes. Although this results in 

low genotyping accuracy (Supp Fig XX), these genotyping predictions have enough information for 

accurate linking attacks. 

We utilize pooled ChIP-Seq read depth signal profiles and Hi-C signal profiles for genotyping large 

deletions. For genotyping the large deletions, we first computed the average signal (
∑ 𝑺

𝑖′
 

𝑗

𝑖′=𝑖

𝑗−𝑖+1
) and 

average multi-mappability signal (
∑ 𝑴

𝑖′
 

𝑗

𝑖′=𝑖

𝑗−𝑖+1
) on each large deletion. Then we filtered out the large 

deletions for which the average multi-mappability signal is larger than 1.5. We then sorted the 

remaining deletions with respect to increasing average signal profiles. For the top 𝑛 deletions, we 

assigned homozygous genotypes, i.e., 𝐺[𝑖,𝑗] = 0. 

For the case when the adversary does not have access to the deletion panel, we fragment the genome 

into windows and use these windows as candidate deletions. For small deletions, we use 5 base pair 

windows within the exonic regions. For large deletions, we use 1000 base pair windows over all genome. 

4.3. Details of the Instantiations of Genome-wide Linking Attack  
Following the genotyping of the deletions, we use the genotyped deletions to link the individual to the 

individuals in the SV genotype dataset. Given the genotyped deletions {[𝑖1, 𝑗1], [𝑖2, 𝑗2], … , [𝑖𝑛, 𝑗𝑛]} for the 

𝑘𝑡ℎ individual in the signal profile dataset, we compute the genotype distance by comparing the 

genotyped deletions to the individuals in the genotype dataset: 

𝑑𝑘−𝑙 = ∑ 𝑑(𝐺
[𝑖′,𝑗′]

(𝑘)
, 𝐺
[𝑖′,𝑗′]

(𝑙)
)

𝑎=[𝑖′,𝑗′]∈
{[𝑖1,𝑗1,…
[𝑖𝑛,𝑗𝑛]}

 

where 𝑑𝑘−𝑙  represents the genotype distance of 𝑘𝑡ℎ individual in the signal profile dataset to the 𝑙𝑡ℎ 

individual in the genotype dataset and 𝑑 (𝐺[𝑖′,𝑗′], 𝐺[𝑖′,𝑗′]) is the distance function: 

𝑑 (𝐺
[𝑖′,𝑗′]

(𝑘)
, 𝐺
[𝑖′,𝑗′]

(𝑙)
) = {

1 𝑖𝑓 𝐺
[𝑖′,𝑗′]

(𝑘)
≠ 𝐺

[𝑖′,𝑗′]

(𝑙)

0 𝑖𝑓 𝐺
[𝑖′,𝑗′]

(𝑘)
= 𝐺

[𝑖′,𝑗′]

(𝑙)
. 

We next compute the genotype distance of 𝑘𝑡ℎ individual to all the individuals in the genotype dataset; 

𝑑𝑘−𝑙 for all 𝑙 in [1,𝑁𝑔] where 𝑁𝑔 represents the number of individuals in genotype dataset. The 

individual in the genotype dataset that has the smallest genotype distance is linked to 𝑘𝑡ℎ individual: 

linked individual′s index = argmin
𝑙′∈[1,𝑁𝑔]

(𝑑𝑘−𝑙′) 

Finally, if the linked individual in the genotype dataset matches the individual in signal profile dataset, 

we mark the individual in the signal profile as a vulnerable individual. We also compute the first distance 

gap, 𝑑1,2, for each linked individual[14] to evaluate the reliability of linking. For a linked individual, first 

distance gap is computed as 
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𝑑1,2 = 𝑑𝑘
(1)
− 𝑑𝑘

(2)
 

where 𝑑𝑘
(1)

 and 𝑑𝑘
(2)

 is the minimum and second minimum genotype distance among all the genotype 

distances computed between 𝑘𝑡ℎ individual and all the genotype dataset individuals. 

4.4. Anonymization of Signal Profile Datasets 
The anonymization of the signal profile datasets refers to the process of protecting the signal profile 

data against correct predictability of the genotypes for deletion variants. As we discussed earlier, the 

large and small dips in the functional genomics signal profiles are the main predictors of deletion variant 

genotypes. To remove these dips systematically, we propose using the median filtering[37] based signal 

processing to locally smooth the signal profile around the deletion. This signal processing technique has 

been used to remove shot noise in 2 dimensional imaging data and 1 dimensional audio signals[36, 38]. 

For each genomic 𝑎 in the deletion [𝑖, 𝑗], we replace the signal level using the median filtered signal 

level: 

�̃�𝑎 = median ({𝑥𝑏}, 𝑏 ∈ [𝑎 −
𝑙

2
, 𝑎 +

𝑙

2
])  

where 𝑥𝑎 refers to the signal level at the genomic position 𝑎, 𝑙 = 𝑗 − 1 + 1, �̃�𝑎 refers to the smoothed 

signal level at position 𝑎, and median refers to the median of all the signal values in the genomic region 

[𝑎 −
𝑙

2
, 𝑎 +

𝑙

2
]. The median is computed by sorting all the signal levels and choosing the value in the 

middle of the sorted list of signal levels.  

5. Datasets 
The mapped reads for the RNA-seq data from gEUVADIS project are obtained from gEUVADIS project 

web site (http://geuvadis.org/). The RNA-seq mapped reads from the GTex project are obtained from 

dbGAP portal. The structural variant loci and genotypes are obtained from the 1000 Genomes Project. 

[[Randomized Data Generation for \Pi?]] 

[[We filtered out variants with allele freq > 0.01]] 

[[GTex data is just blood, we did not use other data]] 
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