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Abstract
Cancer is caused by mutations in the DNA which disrupt the normal physiology of cells. Integration of ENCODE functional genomics data in cell lines with TCGA molecular profiles on tumor tissues enable us to bridge the knowledge gaps in a number of cancers to better model mutations in non-coding regions. 	Comment by Patrick: The merge of edits from SL and KW is more challenging here, as their edits to the abstract are overlapping, but not always similar.
Cancer is caused by mutations in the DNA which disrupt the normal physiology of cells. TIn cancer, the impact of mutations in a limited number of coding genes is well characterized;majority of catalogued mutations are within coding genes. However,in contrast, the preponderance of variants constitute poorly characterized mutationsmutations in tumors occur in non-coding regions . Tthroughout the genome. While coding mutations yield easily inferred mis-sense, non-sense or frameshift events that lead to altered proteins, non-coding mutations are often exceptionally difficult to characterize.
Functional mapping of the non-coding genome in efforts such as the new release of the ENCODE Project data enables us to bridge these knowledge gaps for a number of well-studied cancers of the blood, liver, lung, breast and cervix. provide an opportunity to assess non-coding mutations throughout the human genome in light of diverse genomic assay profiles. For each of these a variety of cancer-derived cell lines, as well as non-cancerous cell lines derived from the same tissues (allowing in some cases for tissue-matched non-coding background mutation rate), ENCODE provides diversity of genome-wide assays to measure genomic characteristics like chromatin state and transcription factor binding  (e.g., ChIP-seq, DNase-seq, Enhancer-seq, Hi-C, and ChIA-PET). , and these are applied to matched tumor-normal cell lines. Integration of ENCODE functional genomics data in cell lines, with TCGA molecular profiles of tumor tissues, enable us to bridge the knowledge gaps in a number of cancers to better model mutations in non-coding regions. The resulting data and functional maps of the human genome provide a framework for assessing the potential for cancer mutations in the non-coding genome to dysregulate genes. 
Here we integrateFirst, the new data enables precise, tissue-matched non-coding background mutation rate calibration by removing the effects of confounders, such as replication timing. Furthermore, by integrating  diverse ENCODE data, we are able  to define high-confidence regulatory elements and their linkages totarget genes. This allows us to define create definitions of extended gene neighborhoods , which are more sensitive than just coding regions for mutation recurrence analysis. Using thisThis approach, we can identifyidentified additional novel genes, such as BCL6 in leukemia, that are recurrently mutated in cancers and associated with patient prognosis., beyond well-known highly mutated oncogenes (e.g., BCL6 in leukemia). 
Second, we We also integrated the ENCODE data to build a hierarchical regulatory networks, including both transcription factors (TFs) and RNA-binding proteins (RBPs). We find that  Intriguingly, TFs with higher mutation burdenmore mutationally burdened TFs tend to be located at the bottom of the hierarchy (e.g., EZH2 and NR2C2), whereas those with dysregulated expression associated with the largest oncogenic gene-expression changes tend to residebe at the top. Furthermore, by comparing tumor and normal network, we have identified highly “rewired” (i.e. target changing)  TFs with changed targets and prognostic value,, such as IKZF1 and MYC that hold prognostic value. Our results indicate that such rewiring events are mainly attributable to chromatin epigenetic changes, rather than mutations that disrupt TF motifs. instead of direct motif loss/gain effects from mutations. 
ThirdFinally, we proposed a prioritization scheme for key non-coding elements, as well as the mutations they contain, (as well as variants therein) according to their positions in regulatory networks and potentials to drive oncogenic expression changes in cancer. We then validate their functional impact in small-scale experimental studies. In particular, we prioritize CTCF as a key TF for blood cancer and SUB1 as a key RBP RNA-binding protein for liver and lung cancers, and validated them through siRNA knockdown experiments. Finally, we identify active enhancers and seven high impact mutations therein in breast cancer and validated their functional effects through luciferase assays in breast cancer.

Introduction
Coding mMutations associated with cancer have been the focus of extensive study. well characterized in a few key genes. However, the overwhelming bulk of these mutations in cancer genomes – particularly those coming discovered fromout of the new recent large-scale cancer genomics initiatives – lie within non-coding regions. The degree to whichWhether  these variants mutationseither drive cancer development or progression, or simply emerge ass a byproducts of genomic instability,, remains an open question. Newly-released data from the ENCODE Consortium can help address this question by providing comprehensive characterization of non-coding genomic elements, as well as by linking many such elements to well-known cancer associated genes with such elements. 
Here, we endeavor to provide a companion resource to the main ENCODE encyclopedia by focusing on cancer and building a “cancer encyclopedia”. The main encyclopedia is oriented toward breadth of the annotations, describing  to describe elements over hundreds of cell lines. In contrast, we focus on a few cell lines with wide variety of profiles (the “tier 1 & 2” lines) for which we have a very  wide variety of assays (the “tier 1 & 2" lines). Many Most of these cell lines are associated with various cancers, particularly those cancers of the blood, liver, lung, cervix, and breast. We show that these cell lines can be used to provide a better understanding of the portion of the non-coding genome that is affected during cancer development and progression oncogenesis, and we provide a  valuable  resource for interpreting the wealth of variant mutational and transcriptional profiles dysregulated gene expression data produced by the cancer community.
In particular, we first develop a regression-based method to integrate ENCODE data to calibrate an accurate background mutation rate (BMR). This allows us to accurately find significantly burdened regions in many cancers. We further use ENCODE assays to accurately define non-coding elements (enhancers in particular) and how these elements are linked to known genes. This enables us to delineate regulatory networks involving transcription factors (TFs) and, to a lesser extent, RNA-binding proteins (RBPs). We represent these networks in a variety of ways, including hierarchical models, wherein master regulators occupy the top of the hierarchy. For each regulator in the network, we then calculate a rewiring index that represents the degree to which a regulator differs between normal and cancerous cells. We then generalize our work to make it applicable over many cancer types, both in terms of mutational burden analysis and also to leverage the regulatory network to interpret expression data in a pan-cancer fashion. Finally, we show how our regulatory network and mutational burdening analyses can be combined into a unified workflow to prioritize specific regulators, regions, and variants in throughout the cancer genome. Our inferences from this workflow are then validated using a number of small-scale experimental studies.	Comment by Patrick: SL advised deleting this text.
Data for comprehensive functional characterization in ENCODE 
The tier 1 cell lines are especially important because, relative to other cell lines, the most comprehensive set of assays for ENCODE are available for those in tier 1 cell lines. These cell lines therefore provide an invaluable resourcegood models  for for accurately studying geneomic regulation in detail. .Five tier 1 cell lines are derived from cancers, including cancer of the  Furthermore, they can be approximately associated with well-known cancers of the blood (K562), breast (MCF-7), liver (HepG2), lung (A549), and cervix (HeLa-S3).
Moreover, forFor four of these five cell lines within tier 1, there is another immortalized cell line (from relatively healthy tissue)from corresponding healthy tissue. that can be used for comparisons. This provides an approximate ‘normal’ match to cell these tumor-derived cell lines.lines with tumor-like behaviors. It is worth noting that both the matching of cell lines to cancers and matching of tumor-normal pairs are very approximate in nature, Note that both the matching of the cell lines to cancers and then the approximate matching of the tumor-normal pairs is very much approximate in nature –  as these matchings are not intended to serve as a substitute  for data from real cancer tumor and normal tissues. Importantly, however, approximate matchings Nonetheless, they can be used to integrate a wide variety of available omics data to determine significant differences between the tumor-derived and immortalized ‘normal’ cells to get the most accurate portrayal of what might happen when the cell becomes dys-regulated. In additionImportantly, , we can alsothis exercise provides a resource that can then be used to better interpret the more limited volume of data derived from true cancer tissue.
 (Fig 1A). 
To build a “cancer-relevant encyclopedia of DNA elements” (C-ENCODE) with these cell lines, we first constructed a comprehensive data matrix by normalizing raw signals of genomic features that severely confound somatic mutagenic processes (see Supp. File/Section(?) X ). In contrast to previous approaches that rely on single histone modification marks, we implemented an ensemble-based method called ESCAPE, which performs large-scale data integration to accurately identify active enhancers. This integration involves predictions using a diverse collection of histone mark ChIP-seq, DNase-seq and Enhancer-seq datasets. We further link these to genes by optimally investigating how the histone modification marks on enhancers help predict the gene expression of the potential target gene. This group of potential linkages is then filtered through the results of Hi-C experiments, which provide a lower resolution three dimensional but also a more accurate physical picture of the inter-genomic connections chromatin interactions (see Supp. File/Section(?) X). To achieve improved functional interpretation, we used these high-quality linkages to construct what we termed “extended gene neighborhoods” – coding regions matched with key regulatory elements, such as enhancers, promoters, and binding sites from regulators (Fig1 B). In addition, we also explored the binding profiles in ENCODE data, and constructed high-confidence gene regulatory networks for both TFs and RBPs (Fig. 1C and Fig. X in Supp. File/Section(?) X). Finally, we merged our Cancer encyclopedia integrated analysis with the broader ENCODE  dataencyclopedia, and we provide consistent identifiers and definitions for the C-ENCODE resource. 
In allsummary, our resource the C-ENCODE resource consists of a list of accurately determined enhancers, a list of regions with high mutation burden in cancered regions, the regulatory network of TFs (and for some lines RBPs), as well as the most rewired TFs in this regulatory network (see supplementary materials). Collectively, these resources allow us to prioritize a few key elements as being associated with oncogenesis, some of which are then validated using small-scale experimentsal assays (see table S1). 
Multi-level data integration better enables recurrent variant analysis in cancer
One of the most powerful ways of identifying key elements and deleterious functional mutations in cancer is through recurrence analysis, which attempts to identify thosewhich identifies regions of the genome that are more heavily frequently mutated than expected. There are two challenges associated with such analysis. First, However, the a mutational process could be influenced by or associated withintroduces  confounding factors (in the form of both external genomic factors and local context effects), which can result in many false positives or negatives in recurrence analysis (see Supp. File/Section(?) X). SecondlyIn addition, traditional burden tests often neglect the interplay association among annotation categories and, thereby testing regions separately. Consequently, these tests are sometimes fail unable to identify distributed mutation signals from biologically relevant genomic regions, thereby limiting the interpretation power of burden tests functional interpretation of the burdened regions.
In contrast, we integrate the To address these limitation of traditional recurrence analysis, we integrated the C-ENCODE resources at two levels for better recurrence analysis. First, we predict an accurate local BMR by regressing out the confounding effects of features in a cancer-specific manner (see Supp. File/Section(?) X). Specifically, we prepare a covariate matrix by normalizing 475 features from ENCODE to remove those effects that may confound the BMR. We then separated the whole genome into 64 categories according to the local 3-mers, and run separate regression models to further remove confounders from intrinsic sequence context deal with internal context effects. In contrast to methods that use unmatched data \{cite MutsigCV}, our regression-based approach demonstrates thatwith matched data usually yieldsprovides higher BMR prediction precision (Fig 2A, see also Supp. File/Section(?) X). In breast cancer, for example, the spearman’s  correlation ()  between observed and predicted mutation counts over 1-megabase bins () increases from XX to XXX when using replication-timing signals (from MCF-7 instead of HeLa-S3)) increases from XX to XXX relative to that using data from HeLa-S3. This underlies the importance of hus, it is important to integratinge these chromatin features from matched tissues to infer BMR (Fig 1B). For example,  only ranges from xxx-xxx using matched replication timing, but its range increases to xxx-xxx by adding 1 PC from the remaining covariates. It progressively increases to the xxx-xxx regime by adding PCs to the full model through forward selection (Fig 1B, see Supp. File/Section(?) X). Such noticeable improvements in BMR estimation significantly improve the burden analyses (see below). 
Rather than separately testing standalone annotation categories, we employ our extended gene (detailed above) as joint test units (see Supp. File/Section(?) X). Such a scheme allows for the accumulation of weak mutation signals distributed across multiple biologically relevant functional elements, which may otherwise be lost missed if evaluated under individual tests (Fig. Sx in Supp. section X). Furthermore, it enables to collectively assess the overall burdening associated with a well-known cancer associated genes., potentially the b Burdening in the protein coding regions may be matched by apparently un-connected mutations in the regulatory regions. We demonstrate that our scheme approach can effectively remove false positives and discover meaningful burdened regions (Fig 2C). For example, in the context of K562 cells derived from a chronic lymphocytic leukemia (CLL), our analysis identifies well-known highly mutated genes (such as TP53 and ATM) as well as other genes (such as BCL6) that are missed by the recurrence analysis of coding regions. BCL6 demonstrates has strong prognostic value with respect to patient survival (Fig. 2D), indicating that the extended gene should be used as an annotation set for recurrence analysis. In addition, we can easily generalize this BMR calibration approach for a cancer types apart from the five we focus on, as our model will work to pick an appropriately matched C-ENCODE signal type. that is not related to one of the five on which we focused. This will work with our model and it will pick an appropriately matched ENCODE signal type.
Extensive rewiring events of several transcription factors in cancer 
We then next investigated the transcription regulatoryion networks in a tissue- specific waymanner. In each cell type, we organized the TF regulatory networks into a hierarchy by comparing the inbound and outbound edges of each factor, thereby enabling us to investigate the global topology of TF regulation (Fig. 1E, see also Supp. File/Section(?) X). TFs in different levels of the hierarchy reflect the extent to which they directly regulate the expression of other TFs \{cite 25880651}. For example, TFs in the top layer have more outbound than inbound edges in the network, and thus play larger roles in regulating other TFs (Supp. Fig. xx). In this representation, two patterns readily emerge. In leukemiathe blood cell comparison (K562 vs. GM12878), top-level TFs tend to more strongly influence the differential expression between the tumor CLL-derived K562 cells (tumor) and the immortalized GM12878 lymphoblastoid cells (normal) normal cells. The average Pearson correlation between TF binding events and tumor-normal expression changes increases from 0.125 in the bottom layer to 0.270 in the top layer (Table Sx). TFs in the bottom layer are more frequently associated with burdened binding sites in general, perhaps reflecting their increased resilience to mutation (see Supp. Section X, Table Sx).
When comparing the common regulators in approximately matched tumor and normal regulatory networks, rewiring (i.e., target changing) analysis may help to identify cancer-associated deregulation. Hence, we investigated rewiring events in TF networks using multiple formulations (see Supp. File/Section(?) X). Specifically for leukemiathe CLL example,  out of the 69 common TFs in K562 and GM12878 from ENCODE, we removed the general TFs and restricted our rewiring analysis to the remaining 61 common TF ChIP-seq in K562 and GM12878 from ENCODE (see Supp. File/Section(?) X). We first ranked TFs according to a “rewiring index” (Fig. 3 A, see also Supp. File/Section(?) X),  which calculates their respective number of lost and gained edges, a “rewiring index” (Fig. 3 A, see also Supp. File/Section(?) X).Several oOncogenes (such as MYC and NRF1) are among the top edge gainers. In contrast, IKZF1, (whose somatic mutations in which serve as a hallmark of high-risk acute lymphoblastic leukemia, or ALL) is the most significant edge loser, with up to xxx% of lost edges in K562 (Fig 3A). On the other handHowever, several ubiquitously distributed TFs,  (such as YY1,) retain their regulatory linkages (as shown in Fig 3A). We observe a similar trend in TFs using a distal, proximal and combined network (see details in supplementary file). Similarly, wWe also observe highly rewired TFs in lung and liver cancers (see fig XX) although we do not have as many common TFs between tumor and normal cell lines for these tissues. 
Our rewiring index only considers direct connections associated with a given TF. One may also consider more elaborate changes rewiring that includes not only direct connections, but also  the whole neighborhood of connections with which  a TF associates with through a variety of membership and topic models. In particular, we used a mixed-membership model to look take a wide-view of more abstractly at local gene neighborhoods, and  to re-rank the TFs accordingly (see Supp. File/Section(?) X). Similar patterns are observed using this model. We also observed that MYC (a well-known oncogene) becomes a top edge gainer (Fig 3A). To study the consequences of network rewiring under this model, we performed the survival analysis on xxx AML patients , in which we findand found IKZF1 to be significantly associated with tumor progression (see Supp. File/Section(?) X).
The combinatorial regulation of many TFs jointly determines the “ON” and “OFF” states of all genes as part of maintaining homeostasis in healthy cells. The disruption of co-regulatory relationships for key elements in cancer cell lines ultimately results in erroneous gene expression patterns. We quantified the co-association status of each TF, and observed major co-association changes in some of the key TFs when comparing the regulatory networks of K562 to GM12878. For example, ZNFXXX is a suppressor TF that shows only marginal co-binding events in GM12878, with. Its number of binding sites increases from xxx to xxx in K562. In addition, up to xxx% of its binding sites co-bind with other TFs (in which cell?). 
A remaining uncertainty lies inis the underlying causes of this rewiring. Is it a direct effect of mutations, which could knock out a binding site? Or is itit is due to indirect effects of chromatin changes, which could cover and uncover binding sites? We find that the a majority of rewiring events result from changes in chromatin status, rather than from variant-induced loss or gain events (Fig. 3A). For example, JUND is a top gainer in K562 (with xxx gains and xx losses). We find that a lotmany of the gain/loss events are associated with substantial expression changes (of at least 2-fold) and changes to chromatin states. However, oOnly xxx percent of them could be potentially due to direct motif loss/gain effects. (Fig. 3D). 

Integrating ENCODE data with patient tumor expression profiles identifies key regulators in cancer
Using a regression-based learning method (see Supp. File/Section(?) X), we integrated the molecular profiles of 8,202 TCGA tumors with 921 ENCODE regulatory binding profiles to systematically search for TFs and RBPs that drive tumor-specific expression patterns (Table Sx). For each tumor sample, our integration framework selects a set of regulator binding profiles to best explain the expression difference between the tumor sample and normal controls. For each cancer type, our framework further tests whether the regulatory targets identified in a ENCODE experiment are sufficiently correlated with the regulator’s molecular status across tumors. The final output of our framework is the estimated fraction of patients with target genes differentially regulated between each pair of cancer type and regulator (see Supp. File/Section(?) X). 	Comment by Patrick: Revision of these paragraphs comes from SL’s lab.
The overall trends for the key TFs and RBPs detected are given in Fig. 4A. The predicted impacts of regulators on tumor gene expression are highly consistent with previous findings. For example, we find that the target genes of MYC are significantly up-regulated in numerous cancers (star in Fig Sx), which is consistent with the known role of MYC as an oncogenic TF. In addition to recapitulating existing knowledge from previous studies, our analysis also predicts previously unidentified functions for regulators in cancer. For example, the predicted targets of the RBP SUB1 were significantly up-regulated in many cancer types (Fig. 4C). Moreover, the up-regulation of SUB1 target genes is correlated with a worse patient survival in cancer types such as lung cancer (Fig. 4). Previously, SUB1 was considered as a TF. However, the ENCODE eCLIP experiment has profiled many SUB1 peaks on gene 3’UTR regions (Supp Fig. X). In HepG2 cells where SUB1 eCLIP experiment was done, the decay rate of SUB1 target genes is significantly shorter than non-targets (Fig. 4C). After knock-down of SUB1, its predicted targets are also down regulated comparing to other genes (Fig. 4D). These results indicate that SUB1 may bind gene 3’UTR regions to stabilize transcript levels. From our integrated analysis, higher SUB1 activity through regulatory binding on 3’UTR regions is likely to drive tumor specific expression patterns in many cancer types.Here, we show how to generalize the cell type specific network analysis across cancers (i.e., in a pan-cancer fashion).  We produce the generalized pan-cancer regulatory network by merging the cell type specific networks to make a merged regulatory network for both TFs and RBPs. We then demonstrate how this generalized network may be used for interpreting the many different gene expression data sets that are now available for different cancers. Using a regression-based learning approach, we normalize these in a consistent fashion to the uncut expression data, thereby creating a consistent gene expression resource.
Using a regression-based learning method (see Supp. File/Section(?) X), we integrated thousands of patient expression profiles from multiple cohorts to systematically search for TFs and RBPs that drive tumor-specific expression patterns (Table Sx). In particular, for each regulator-cancer type pair, we select the best explanatory binding profile and estimate the fraction of patients with differentially regulated target genes (see Supp. File/Section(?) X). The overall trends for the key TFs and RBPs detected are given in Fig. 4A. The predicted impacts of regulators on tumor gene expression are highly consistent with previous findings. For example, we find that the target genes of MYC are significantly up-regulated in numerous cancers (star in Fig Sx), which is consistent with the known role of MYC as an oncogenic TF. In addition to recapitulating existing knowledge from previous studies, our analysis also predicts previously unidentified functions for regulators in cancer. For example, the predicted targets of the RBP SUB1 were significantly up-regulated in many cancer types (Figure 3C). As another example, the predicted targets of the TF CTCF were found to be significantly up-regulated in multiple tumors (star in Supp. Fig. 2). 
Step-wise prioritization schemes pinpoint deleterious SNVs in cancer
The above description of the regulatory networks and the optimum determination of mutation recurrence provide a wayan approach to prioritize key genomic features associated with cancer. The workflow in Fig.5 A describes this prioritization scheme in a systematic fashion. First, we start by searching for key regulators that: a) are most frequently rewire, d; b) sit within locate in network hubs or on at the top of the a network hierarchy,; or c) significantly drive oncogenic expression changes in cancer. We then prioritize functional elements that are associated with highly prioritized top regulators, undergo large regulatory and chromatin changes, or (most importantly) are highly mutated in tumors cohorts. Finally, on a nucleotide level, we can pinpoint impactful SNVs for small-scale functional characterization by their ability torelated to their disruption or creatione of specific binding sites, or induced chromatin changes, or position which occur in positions areas of particularly high conservation or chromatin changes.
Using this framework, we subject a number of key regulators (such as CTCF MYC and SUB1) to siRNA knock- down experiments to validate their regulatoryion effects (Fig 4D). We then identified several active enhancers in noncoding regions, and validated their ability to initiate influence transcription using luciferase assays (see Supp. File/Section(?) X). In addition, weWe further selected key SNVs within these enhancers that are important for gene expression control (table Sx). Of the eight8 motif-disrupting SNVs that we tested, we observed 6 variantssix showed a  with consistent up- or down-regulationted activity effect on expression relative to the wild type (Fig. 5B and Supp. File/Section(?) X). One particularly interesting example, illustrating ENCODE data integration, is on chromosome 6, 13.5xxx (Fig. 5C). This enhancer is located in a noncoding region. Both histone modification and DHS signals implicate itsindicate an active regulatory rolee as being active (Fig. 5C), and both our HisShape enhancer prediction method and the EnhancerSeq experiment  indicate that this is an support its enhancer function (Fig. 5D). Hi-C and ChIA-PET data link this region to a downstream gene SYCP2. 21 out of the 52 ChIP-Seq experiments demonstrate that the region has high regulatory traffic, frequency chromatin interactions, and motif analysis predicts theis C to G mutation can significantly disrupts the FOLS2 binding affinity (see Supp. File/Section(?) X). A lLuciferase assays demonstrates that this mutation introduces an xx-fold reduction in expression relative to wild type expression levels, indicating a strong repressive effect on this enhancer’s functionality. 
[bookmark: _yhiuisza6bc0]Conclusion
[bookmark: _GoBack]This study highlights the values of ENCODE as a resource for cancer research, and leverages ENCODE to provide a step-wise prioritization scheme to pinpoint key regulatory elements and SNVs for small-scale validations. One of the A key aspects of our analysis, is that it scales with larger quantities of data, and more diverse data typesclearly scales with larger quantities and more diverse data types. In particular, we anticipate that higher quality annotation of non-coding elements annotations (through progressively more accurate Enhancer-seq experiments and deeper Hi-C experiments) will  increase the number of known linkages between non-coding elements and target genesenable better linkages. Likewise, the mutation recurrence analysis can be further improved by collecting better-matched data sets, and expanding the size of tumor cohorts. In that the analyses presented here improve upon with increasing data integration, it provides future investigations with a blueprint for similar studies going forward. By amassing ever-larger data sets, we may obtain a more accurate picture of the cancer genome through large-scale data integration.
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