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Abstract 
The functional genomics data is emerging as a valuable resource for personalized medicine. Although 

one might think that the functional genomics data is safe to share, the extent to which they leak 

sensitive information is not well studied. Here, we show for the first time that the read depth signal 

profiles, which are often publicly shared, for several functional genomics data types can cause concerns 

for privacy. A signal profile is generated by counting the number of reads at each genomic position. We 

show that there is significant leakage from the signal profiles of a number of sequencing based 

functional assays including RNA-seq, ChIP-Seq, and Hi-C. We demonstrate that an adversary can predict 

small and large deletions and use those to accurately cross-reference an individual among a large pool 

of individuals in a linking attack. We also propose a metric to measure the accuracy of genotyping the 

deletion variants using signal profiles. To show the practicality of linking attacks through signal profiles, 

we present several outlier based genomic deletion genotyping methods that lead to accurate linking 

attacks. We finally present a novel and effective anonymization procedure for protection of signal 

profiles against genotype prediction based linking attacks. Given that several consortia, for example 

GTex, publicly share signal profiles for personal functional genomics data; our results point to a critical 

source of sensitive information leakage, which can be easily protected by our anonymization technique.  

1. Introduction 
Individual privacy is emerging as an important aspect of biomedical data science. A deluge of genetic 

data is being generated with the Cancer Moonshot Project[1], Precision Medicine Initiative[2, 3], and 

UK100K[4, 5] from hundreds of thousands, if not millions, of individuals. Moreover, there is much effort 

to make genetic data more prevalent in the standard of care[6]. This will increase personal genomic data 

storage in healthcare providers. Leakage of the genetic information creates many privacy concerns, e.g. 

genetic predisposition to diseases may bias insurance companies. The initial studies on genomic privacy 

has focused on protection of single nucleotide polymorphism (SNP) datasets and analysis of privacy of 

the participants in genetic studies [7, 8]. It is worth noting that cryptographic approaches are also 

utilized for protecting genetic information[9, 10]. The significant increase in available datasets has made 

genomic linking attacks much more relevant [11–13]. In a nutshell, the linking attacks are based on 

cross-referencing and matching of two or more datasets that are released independently. Some of the 
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datasets contain personal identifying information, e.g. names or addresses, while others contain 

sensitive information, e.g. health information. The immediate consequence of the cross-referencing is 

that sensitive information in one or more of the datasets are linked to an individual and this causes a 

privacy breach. The risks behind linking attacks are especially high these years because the personal 

information is generated at exceedingly high speed and these information are independently released 

and maintained. For example, the maintainers may not be aware of each other or some of the datasets 

may be released much earlier/later than the other datasets.  

A very famous example is the Netflix Prize Competition[11]. In this competition, a training dataset was 

released by the move rental company Netflix, which was to be used for training new automated movie 

rating algorithms. The dataset was anonymized by removing names. Two researcher have shown that 

this training dataset can be linked to a seemingly independent database of IMDb web site and revealed 

movie preferences and identities of many Netflix users. We believe this will be a significant route to 

breaches in individual genomic privacy. Most of the previous studies focus on leakage of single 

nucleotide polymorphisms (SNPs) genotypes as a source of sensitive information. There are two major 

aspects that are not well addressed in the previous studies. Firstly, although it is well known that the 

major portion of individual genomic polymorphism is structural variants, deletion, insertion, 

translocation, and transversion of large chunks of DNA sequence, these did not receive much attention 

in the debate of genomic privacy[14]. The structural variants can have much larger effects on the 

molecular phenotypes (like gene expression) than SNPs simply because they effect a much larger 

portion of the genome. This could render the personal SVs more detectable compared to SNPs. 

Secondly, moreover in a sense more obvious and noticeable???, functional genomics data is not in 

center of the most studies. Especially the newer functional genomics datasets based on sequencing 

assays, like RNA-Seq[15] and ChIP-Seq[16] are very rich sources of information that can lead to leakage 

of individual characterizing information. In general, the raw sequenced reads from these experiments 

are not shared because of privacy concerns. File formats like MRF[17] and tagAlign can enable removing 

raw sequence information from reads while keeping the information about read mapping intact. These 

reads can be used to create the genome-wide signal profiles by piling them up along the genome. 

Indeed, the genome-wide signal profiles are publicly shared by many projects like ENCODE[18], 

Roadmap Epigenome Mapping Consortium[19], and GTex[20, 21]. It is urgently necessary to evaluate 

the sensitive and characterizing information leakage from these data types. 

In this paper, we analyze the leakage in the signal profiles of several sequencing based functional 

genomics datasets. By signal profile, we refer to the signal generated by counting the number of reads 

that overlap with each nucleotide on the genome. Although the signal tracks do not contain any explicit 

sequence information, an adversary can utilize signal processing techniques to detect the large and 

small structural variants. The most notable of these variants are the small and large deletions. Many 

methods have been developed to identify genomic deletions and duplications from the DNA-sequencing 

read depth signal [22, 23]. On the other hand, detection of structural variants from functional genomics 

datasets is not well-studied. The main reason for this is the dynamic and non-uniform nature of the 

signal profiles of functional genomics experiments, unlike DNA-sequencing signal profiles that uniformly 

cover the genome. For example, RNA-seq[15] and ChIP-seq[16] signal profiles concentrate mainly on the 

exonic regions and promoters of the genome, respectively. Moreover, these experiments are generally 

done in combination. In aggregate, multiple functional genomics assays can be utilized for accurately 

detecting large genomic variants. One other recent experimental protocol is Hi-C[24], which is emerging 



 

 

as a functional genomics assay that is used to for genomic phasing and for detecting small and large 

genomic variants[25]. We show that the strategy of pooling these datasets is useful for detecting and 

genotyping small and large deletions because their effect is immediately observable in the signal 

profiles. We also show that the detected deletions can be used in a successful linking attack.  

The paper is organized as following: We propose a new metric for quantifying how correctly genotypes 

of small and large deletion variants can be estimated. In combination with information content of the 

deletion variants, we use this new metric for evaluating the extent of characterizing information leakage 

from functional genomics datasets. We next present several practical instantiations of linking attacks 

that utilizes deletion variant genotype prediction using outlier signal levels. Finally To protect the signal 

profiles against linking attacks, we present a novel signal processing methodology for anonymizing the 

signal profile. We show that it is effective in decreasing the predictability of deletion variant genotypes 

from signal profiles. The source code for linking attacks and anonymization can be downloaded from  

privaseq2.gersteinlab.org. 

2. Results 

2.1. Genome-wide Linking Attack Scenario 
Figure 1a summarizes the linking attack scenario that we focus. The adversary has access to a leaked 

structural variation (SV) dataset and another molecular phenotype dataset that contains genome-wide 

functional genomics signal profiles for example RNA-seq or ChIP-Seq signal profiles. The SV dataset 

contains identifying sample IDs for each individual and SV genotypes for multiple locations. We assume 

that the SV dataset comprises different types of variants like deletions, duplications, and translocations. 

The phenotype dataset also contains very sensitive information, i.e. HIV status, about the individuals. 

He/She uses the signal profiles to perform SV genotype prediction. He/She then compares the predicted 

SV genotypes and the leaked genotype dataset. The results are used to link the genotype samples to the 

phenotype samples and the HIV status of genotype samples are revealed to the adversary.  

2.2. Information Content and Correct Predictability of Structural Variant Genotypes 
It has been observed that the prediction of SV genotypes from functional genomics signal profiles has 

relatively low accuracy. In order to assess the predictability of SV genotypes, we propose using a 

measure named genome-wide predictability of SV genotypes, denoted by 𝜋𝐺𝑊, from signal tracks. The 

predictability measures how accurately an SV genotype can be estimated given the signal profile 

(Methods Section). Given the genotype of a variant, the predictability is the conditional probability of 

the variant genotype given the signal profile. By this definition, the predictability only depends on the 

genomic signal levels of an individual and how well they can be used to predict genotypes. In principle, 

the genome-wide predictability is computed for each individual separately and independently from 

other individuals. Because of this fact, the predictability is independent of the population frequency of 

the variants.  

Other than the predictability, an important measure in the linking attacks is the information content 

each SV genotype supplies. We utilize a previously proposed metric termed individual characterizing 

information (ICI) to quantify the information content of each SV. This measure gives higher weight to the 

genotypes that have low population frequency and vice versa. For a given variant genotype, ICI 

measures how much information it supplies for pinpointing an individual in a population. As we 

discussed above, the genome-wide predictability is independent of the population frequency of the 
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variants. Therefore the adversary can utilize genome-wide prediction approaches and predict rare 

variant genotypes to gain high ICI and characterize individuals very accurately. This is one of the major 

differences between genome-wide prediction approach proposed in this study and the recently 

proposed sample-wide prediction [12] based approach (Supplementary Fig 1).  To compare these two 

approaches, we computed the sample-wide predictability of all the genomic deletions from the 1000 

Genomes Project using the gene expression quantifications from GEUVADIS project [14, 26] 

(Supplementary Fig 1). ICI versus 𝜋𝑆𝑊 plot shows that there are not many SVs that have high 

predictability and high information content. One reason for this is that a significant number of SVs that 

impact gene expression levels have low population frequency and their sample-wide predictability are 

rather low. This implies that the gene expression levels can be shared without high risk of individual 

characterization using SV genotype prediction. However, as we will show later, a large fraction of these 

low frequency SVs have high genome-wide predictability and they can be used in individual 

characterization and identification.  

2.3. Genome-wide Linking with Short Deletion Prediction from RNA-Seq Signal Profiles 
We first focus on predictability of short deletions using RNA-seq signal profiles (Fig 1b). Each deletion is 

manifested as an abrupt dip in the signal profile. The prediction of a deletion is done by detecting these 

dips in the signal profiles. The genome-wide predictability (𝜋𝐺𝑊) of the small deletions quantifies how 

well the adversary can identify the dips from the signal profile (Methods Section).  

We computed genome-wide predictability for short deletions in 1000 Genomes Project using the RNA-

seq expression signal profiles from the GEUVADIS project. Figure 2a,b show 𝜋𝐺𝑊 vs ICI for short 

deletions, for genotyping of known deletions (Methods Section). For both cases, there is a substantial 

number of deletions that have much higher predictability compared to a randomized dataset where the 

signal profile is randomized with respect to location of deletions. There are also many more variants 

with very high ICI (on the order of 5-6 bits) with high predictability. In comparison to sample-wide 

predictability of genotypes, there are a lot of deletions that provide deletions with very high ICI (higher 

than 5 bits) with high genome-wide predictability (Supplementary Figure S1). 

In order to present practicality of small deletion predictability and information content, we propose an 

instantiation of a linking attack where we utilize outlier signal levels in the signal profiles for prediction 

of small deletion genotype prediction (Methods Section). For each individual, the prediction method 

sorts the short deletions with respect to deletion-to-neighbor signal ratio and assigns homozygous 

genotype to a number of deletions with smallest deletion-to-neighbor signal ratio (Methods Section). 

The adversary then compares the assigned homozygous deletion loci to the genotype dataset and 

identifies the individual whose deletion genotypes that are closest to the predicted genotypes. Thus, the 

attacker utilizes the outliers in deletion-to-neighbor signal ratio to predict genotypes and identify 

individuals. In order to minimize the bias on the variant call set, we used the known deletions with 

minor allele frequency greater than 1% in this analysis. Also, we extended the genotype dataset by re-

sampling 1000 Genomes deletion dataset. Figure 2c shows the accuracy of linking versus number of 

deletions used in linking attack. The linking is perfect when the adversary utilizes more than 40 

deletions. The attacker can also perform linking by first predicting existence of deletion (Fig 2c) and using 

the identified deletions to perform linking (Methods Section). When he/she utilizes this criteria, around 

60 deletions are required for perfect linking. 
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We also studied the scenario where the adversary does not have access to the deletion loci but aimed at 

finding deletions and estimating their genotypes at the same time. This is a harder linking problem 

because the adversary must also correctly find deletion variants. We call this, linking attack based on 

joint deletion discovery and genotype prediction. Figure 2d shows that the linking accuracy is maximized 

(around 60%) when the attacker utilizes the top 50 deletion candidates in linking. If the attacker uses 

the existence of variant criteria in linking, the linking accuracy decreases.  

In the previous analysis, the SV discovery set and RNA-seq sample set are matching. Since this may 

introduce a bias, we studied linking attack where signal profiles are generated by the GTex Project 

Consortium [20, 21] and the small deletions are called in the 1000 Genomes Project. This way, the 

deletions are identified in 1000 Genomes individuals while the linking is performed for the individuals in 

GTex Project datasets. Moreover we merged the genotype dataset from 1000 Genomes and the 

genotype dataset from GTex project. We first computed 𝜋𝐺𝑊 versus ICI for the deletions and observed 

that there is substantial enrichment of deletions that have high predictability with high ICI compared to 

randomized datasets, when the known deletions are utilized (Fig 3b). For the case of joint deletion 

discovery and genotype prediction, the number of highly predictable and high ICI variants decrease (Fig 

3b). When known deletions are utilized in extremity based attack, the linking accuracy is close to 100% 

for approximately 20 variants (Fig 3c). When the attacker increases the number of variants used in the 

attack, the linking accuracy decreases. Although the number of variants increase (more ICI), the 

genome-wide predictability of variants decrease faster. When the attacker predicts existence of 

deletion, the accuracy is maximized at around 240 variants and decreases when the number of variants 

in linking is increased (Fig 3d). In addition, the linking accuracy for joint deletion discovery and genotype 

prediction is low (Results not included), which indicates that joint prediction and genotyping of small 

deletions does not have enough power to perform linking attacks through RNA-seq signal profiles. 

2.4. Genome-wide Linking with Large Deletion Prediction from ChIP-Seq Signal Profiles 
We next focused on predictability versus ICI of long deletions, which are longer than 1000 base pairs. In 

this analyses, we utilize the ChIP-Seq signal profiles. Several recent studies have generated individual 

level epigenomic signal profiles through ChIP-Seq experiments [27–29]. These studies aimed at revealing 

how the variants interact with the epigenomic signals, mainly the histone modifications. The histone 

modifications are especially useful for identifying deletion genotypes because some of them cover a 

large portion of the genome, which is useful for predicting deletion genotypes. We use these 

personalized epigenomic signal profiles for quantifying how much characterizing information leakage 

they provide. For any individual where there are multiple histone mark ChIP-Seq signals, we pool them 

then compute several features for each large deletion. These are then used for quantifying information 

leakage (Methods Section). 

First we computed 𝜋𝐺𝑊 versus ICI for the large deletions in 1000 Genomes Project. Figure 4a,b show 

𝜋𝐺𝑊 versus ICI for the large deletions from the 1000 Genomes. We use the personal epigenome 

profiling ChIP-Seq datasets presented in studies by Kasowski et al and Kilpinen et al (Methods Section). 

Similar to the small deletion analysis, it can be seen that for both datasets there are many large 

deletions with high predictability and high ICI.  

We next performed practical linking attack utilizing the genotyping of known deletions and deletion 

discovery followed by genotyping. We again utilize a variant of the outlier based genotype prediction in 

the linking attack. The genotype prediction is done as follows. The average pooled ChIP-Seq signal on 
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each deletion is computed and the variants are sorted with respect to their average signal in increasing 

order. The deletions with smallest pooled ChIP-Seq signal are assigned homozygous deletion genotype. 

For the deletions with assigned genotypes, we identified the individual in genotype dataset whose 

genotypes match closest to the assigned genotypes. We repeated this linking attack with different 

number of windows and computed the accuracy of linking (Methods Section). Figure 4c shows the 

linking attack accuracy when known large deletions are used in linking. The linking accuracy reaches 

100% with fairly small number of deletions for both datasets. For the scenario where the adversary first 

discovers deletions then genotypes them, i.e. deletion loci are not given, the accuracy is also very high 

with small number of identified deletions (Fig 4d). 

An interesting question about histone modifications is which combinations of histones leak the highest 

amount of characterizing information. To answer this question, we studied the individual NA12878, for 

which there is an extensive set of histone modification ChIP-Seq data from the ENCODE Project [18]. We 

have evaluated whether different combinations of histone modifications render NA12878 vulnerable 

against a linking attack among 1000 Genomes individuals, which is illustrated in Fig 4e. In general, we 

have observed that NA12878 is vulnerable when the dataset combinations that cover the largest space 

in the genome. This can be simply explained by the fact that when histone marks cover more space, 

higher number of deletions can be predicted. For example, H3K36me3 and H3K27me3, an activating and 

a repressive mark respectively, are mainly complementary to each other and they render NA12878 

vulnerable. In addition, H3K9me3, a repressive mark that expands very broad genomic regions, renders 

NA12878 vulnerable in several combinations with other marks. On the other hand, H3K27ac, an 

activating histone mark that spans punctate regions do not render NA12878 vulnerable. 

2.5. Genome-wide Linking with Large Deletion prediction from Hi-C Matrices 
We also asked whether a relatively new data type, Hi-C can be used for identification of genomic 

deletions. Hi-C is a high throughput method for identifying the long range genomic interactions and 

three dimensional chromatin structure[24]. It is based on proximity ligation of the genomic sequences 

that are close-by and high throughput sequencing of the ligated sequences. After sequencing data is 

processed, it is converted to a matrix where the entry (𝑖, 𝑗) represents the strength of interaction 

between 𝑖𝑡ℎ and 𝑗𝑡ℎ genomic positions. To study leakage from Hi-C datasets, we again focused on 

NA12878 individual for whom Hi-C interaction matrices are generated at different resolutions [30]. In 

order to convert the matrix into a genomic signal profiles, we summed the interaction matrix along 

columns and obtained a signal profile along the genome (Fig 5a, Methods Section). Next we simulated 

an extremity based linking attack using the outliers in this signal profile: For all the large deletions in the 

1000 Genomes, we computed the average Hi-C signal. We next sorted the deletions in increasing order 

and assigned top 1000 windows with homozygous deletion genotype. We next compared the predicted 

genotypes with all the genotypes in the 1000 Genomes project. NA12878 is vulnerable to this attack 

when the Hi-C contact matrix resolution (bin length) is 10 kilobases or smaller (Fig 5b).  

2.6.  Anonymization of Signal Profiles against Linking Attacks 
An important aspect of the genomic privacy is risk management and protection of datasets. For 

protection, anonymization of the datasets is the most effective way to share the data publicly in a safe 

manner. The most effective way to protect against linking attack scenario is to ensure that the deletion 

genotypes are not predictable from the signal tracks. We believe RNA-seq signals are currently the most 

vulnerable against the linking attacks and protection of these datasets against prediction of deletion 
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variants is most immediate. As we showed in previous sections, the small deletions are major source of 

leakage of genetic information from RNA-seq signal profiles. We propose systematically removing the 

dips in the signal profiles as a way to anonymize the RNA-seq signal profiles against prediction of small 

deletions. Specifically, we propose smoothing the signal profile using median filtering (Methods 

Section). We have observed that median filtering removes the dips in the signal that indicate deletions 

very effectively and while conserving the signal structure fairly well. To evaluate the effectiveness of this 

method, we applied signal profile anonymization to the RNA-seq signal profiles generated from the 

datasets generated by GEUVADIS Project consortium and the GTex Project Consortium. After application 

of the signal profile anonymization, we observed that the large fraction of the leakage is removed for 

GTex datasets (Supplementary Figure 6). For GEUVADIS datasets, there is still some leakage but the 

genome-wide predictability of the variants are decreased substantially (Fig 2a). We also observed that 

the extremity based linking attack proposed in the previous section is ineffective in characterizing 

individuals such that no individuals are vulnerable for GTex project and at most 1% of the individuals are 

vulnerable for GEUVADIS dataset.  

3. Discussion 
We have systematically analyzed a critical source of sensitive information leakage from the signal profile 

datasets, which were previously thought to be largely secure to share. Specifically, our results show that 

an adversary can perform fairly accurate linking attacks for characterizing individuals by prediction of 

structural variants using functional genomics signal profiles. In addition, we also showed that the linking 

can be done by predicting fairly small number of variants (generally less than 100 variants). Although the 

functional genomics assays do not reveal the full spectrum of structural variants, our results show that 

these data leak enough information for individual characterization among a fairly large set of individuals. 

This can be rather problematic because several large consortia are offering these signal tracks publicly. 

For example GTex signal profiles are publicly available through the UCSC Genome Browser. In addition, 

ENCODE RNA-Seq and ChIP-Seq signal profiles for several personal genomes (NA12878 and HeLa-S3) are 

downloadable through the UCSC Genome Browser and ENCODE Project’s portal. Given the extent of 

public sharing of datasets, we believe that the anonymization of signal profiles using the signal 

processing technique that we proposed is very useful. The technique we proposed applies a minor signal 

smooting around all the known deletions and removes a significant amount of information. The 

anonymization procedure can be easily integrated into existing functional genomics data analysis 

pipelines. It can handle all the widely used files types including bigwig, wig, and bedGraph. 

We also proposed a new metric for measuring the predictability of deletions from signal profiles. This 

measure of predictability is complementary to the sample-wide genotype predictability measure 

proposed earlier [12]. Sample-wide predictability measure is computed when genotypes are predicted 

from sample-wide datasets, for example from a sample-wide gene expression profiling datasets. 

Sample-wide predictability is suitable when adversary utilizes sample-wide phenotypic measurements to 

predict genotypes in a linking attack (Supplementary Fig 1). This scenario is meaningful when the variant 

genotype is of high frequency and affects phenotype among samples, e.g. quantitative trait loci. For the 

rare variants sample-wide predictability will not be effective because variant genotypes do not show 

much variation among samples. For these variants, genome-wide predictability can be computed for 

each individual separately (Supplementary Fig 1). The genome-wide and sample-wide predictability of 
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genotypes must be studied together in a risk assessment procedure while functional genomics datasets 

are being shared.  

It has been shown that the sample-wide predictability is related to the population frequency (and to the information content) of the variant genotypes. For example, the genotypes that have high population frequency are easier to 

predict than lower frequency genotypes. This is, however, not true for the genome-wide predictability of variant genotypes because it is totally independent of population frequencies. In fact, genome-wide predictability is 

estimated for each sample separately while estimation of sample-wide predictability requires a sample of measurements from multiple individuals. These  

4. Methods 
We provide the details of the computational methodologies. We first introduce the notations. The 

genomic deletions are intervals of genomic coordinates. We refer to them simply as intervals, e.g. a 

deletion between genomic positions 𝑖 and 𝑗 by [𝑖, 𝑗]. The genotype of a genomic deletion at [𝑖, 𝑗] is 

denoted by 𝐺[𝑖,𝑗], which is a discrete random variable distributed over the 3 values {0,1,2}. These values 

correspond to the three genotypes of the deletion and they represent how many copies of the genomic 

sequence is deleted. The functional genomics read depth signal is denoted by 𝑺, which is a vector of 

values corresponding to each genomic position. The signal level at genomic position at 𝑖 is denoted by 

𝑺𝒊. An important quantity that we utilize in formulating methods is the multi-mappability profile of the 

deletion regions. The multi-mappability is a signal profile that measures, for each position in the 

genome, how uniquely we can map reads. The multi-mappability signal is denoted by 𝑴, which is a 

vector of multi-mappability signals for all the genomic positions and the signal at genomic position 𝑖 is 

denoted by 𝑴𝒊. The multi-mappability signal profile is generated as follows: The genome is cut into 

fragments and the fragments are mapped back to the genome using bowtie2[31] allowing the multi-

mapping reads. We then generate the read depth signal of the mapped reads. In this signal profile, the 

uniquely mapping regions receive low signal while the multi-mapping regions receive high signal[32]. 

4.1. Genome-wide Predictability of Deletion Genotypes and Individual Characterizing 

Information 
The genome-wide predictability, 𝜋𝐺𝑊,  of a deletion genotype refers to how well a deletion can be 

genotyped given the functional genomics signal (𝑺) of interest.  

We assume that the adversary employs a prediction methodology based on statistical modeling of the 

deletion genotypes with respect to read depth signal profile. We assume that the adversary performs 

prediction by extracting features from the functional genomics signal profile. We define here the 

features that are most useful for genotyping deletions (Supp Fig XX). Given a [𝑖, 𝑗], an important feature 

for genotyping the deletion is the average functional genomic signal within the deletion: 

�̅�[𝑖,𝑗] =
∑ 𝑺𝑖′  
𝑗
𝑖′=𝑖

𝑗 − 𝑖 + 1
. 

Another important feature is the average multi-mappability signal within the deletion:  

�̅�[𝑖,𝑗] =
∑ 𝑴𝑖′  
𝑗
𝑖′=𝑖

𝑗 − 𝑖 + 1
. 

In order to measure the extent of the dip within the signal, we observed that a measure we termed self-

to-neighbor signal ratio and neighbor signal balance ratio are very useful for genotyping. Given a 

deletion [𝑖, 𝑗] , self-to-neighbor signal ratio, denoted by 𝜌[𝑖,𝑗], is computed as 
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𝜌[𝑖,𝑗] =
2 × �̅�[𝑖,𝑗]

�̅�[2𝑖−𝑗+1,𝑖−1] + �̅�[𝑗+1,2𝑗−𝑖+1]
. 

This is simply twice the ratio of total signal on the deletion and the total signal in the neighborhood of 

the deletion. The neighbor signal balance ratio, is computed as 

𝜂[𝑖,𝑗] = min(
�̅�[𝑗+1,2𝑗−𝑖+1]

�̅�[2𝑖−𝑗+1,𝑖−1]
,
�̅�[2𝑖−𝑗+1,𝑖−1]

�̅�[𝑗+1,2𝑗−𝑖+1]
). 

Finally, we observed that the average signal on the neighborhood of the deletion coordinates are useful 

in genotyping deletions. We compute the average signal in the neighborhood as 

𝜏[𝑖,𝑗] = 0.5 × (�̅�[2𝑖−𝑗+1,𝑖−1] + �̅�[𝑗+1,2𝑗−𝑖+1]). 

We define 𝜋𝐺𝑊 as the conditional probability of a deletion genotype 𝑔 given the 5 features computed 

from functional genomics signal profile: 

𝜋𝐺𝑊(𝐺[𝑖,𝑗] = 𝑔, 𝑺[𝑖,𝑗]) = 𝑃𝐺𝑊

(

 
 
 
𝐺[𝑖,𝑗] = 𝑔 

|

|

 log2(�̅�[𝑖,𝑗]) ,

log2(�̅�[𝑖,𝑗]) ,

log2(𝜌[𝑖,𝑗]),

log2(𝜂[𝑖,𝑗]) ,

log2(𝜏[𝑖,𝑗]) )

 
 
 
. 

This corresponds to the conditional probability (over all the deletions within the genome) that we 

observe the genotype 𝑔 for a deletion at [𝑖, 𝑗] given the average functional genomics signal and average 

multi-mappability signal over the interval [𝑖, 𝑗]. The probability is defined over the genome, i.e., we 

estimate the probability for all the deletions in the genome. For this, we compute 5 features for every 

deletion in the genome, then estimate the conditional probability using this set as the sample of 

deletions.  

The basic idea behind the formulation of predictability is the observation that the regions with low 

functional genomics signal, low multi-mappability (i.e., uniquely mappable), low self-to-neighbor signal 

ratio, and high average neighbor signal are more likely to be deleted, i.e., their probability is large. 

Therefore, 𝜋𝐺𝑊 is higher for deletions that are more easier to identify than the deletions with lower 

𝜋𝐺𝑊. In order to estimate the conditional probabilities, we binned the feature values by computing the 

logarithm then rounding this value to the closest smaller integer value.  

4.2. Genotyping of Small and Large Deletions from Signal Profiles 
The practical instantiation of the linking attacks that we study are based on genotyping of small 

deletions using extremity based statistics of functional genomics data. For GEUVADIS and GTex datasets, 

we perform small deletion genotyping using RNA-Seq signal profiles. The basic idea behind genotyping 

of deletions is the fact that there is a sudden dip in signal profile whenever there is a deletion (Fig XX). In 

order to detect these dips, we observed that self-to-neighbor signal ratio is very useful for genotyping 

small deletions. For all the small deletions, self-to-neighbor signal ratio, 𝜌[𝑖,𝑗], neighbor signal balance,  

𝜂[𝑖,𝑗], and average neighbor signal are computed. We then filter out the small deletions whose multi-

mappability signal is larger than 1.5 or average neighbor signal (𝜏) is smaller than 10 or 𝜂[𝑖,𝑗] is smaller 

than 0.5. For the remaining set of small deletions, we sorted the deletions with respect to increasing 
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𝜌[𝑖,𝑗]. The deletions which are at the top of the sorted list correspond to the deletions which are highly 

mappable (low multi-mappability signal), have strong neighbor signal support (high average neighbor 

signal), and finally they have a strong signal dip on them (Low 𝜌[𝑖,𝑗], and high 𝜂[𝑖,𝑗]). We selected the top 

𝑛 deletions and assigned them homozygous genotypes, i.e., 𝐺[𝑖,𝑗] = 0. The basic idea is that the 

deletions with strongest signal dips are enriched in homozygous deletions. It is worth noting that this 

genotyping method only assigns homozygous genotypes. Although this results in low genotyping 

accuracy (Supp Fig XX), these genotyping predictions have enough information for accurate linking 

attacks. 

We utilize pooled ChIP-Seq read depth signal profiles and Hi-C signal profiles for genotyping large 

deletions. For genotyping the large deletions, we first computed the average signal (
∑ 𝑺

𝑖′
 

𝑗

𝑖′=𝑖

𝑗−𝑖+1
) and 

average multi-mappability signal (
∑ 𝑴

𝑖′
 

𝑗

𝑖′=𝑖

𝑗−𝑖+1
) on each large deletion. Then we filtered out the large 

deletions for which the average multi-mappability signal is larger than 1.5. We then sorted the 

remaining deletions with respect to increasing average signal profiles. For the top 𝑛 deletions, we 

assigned homozygous genotypes, i.e., 𝐺[𝑖,𝑗] = 0. 

For the case when the deletion loci are not known to the adversary, we fragment the genome into 

windows and use these windows as candidate deletions. For small deletions, we use 5 base pair 

windows within the exonic regions. For large deletions, we use 1000 base pair windows over all genome. 

4.3. Details of the Instantiations of Genome-wide Linking Attack  
Following the genotyping of the deletions, we use the genotyped deletions to link the individual to the 

individuals in the SV genotype dataset. Given the genotyped deletions {[𝑖1, 𝑗1], [𝑖2, 𝑗2], … , [𝑖𝑛, 𝑗𝑛]} for the 

𝑘𝑡ℎ individual in the signal profile dataset, we compute the genotype distance by comparing the 

genotyped deletions to the individuals in the genotype dataset: 

𝑑𝑘−𝑙 = ∑ 𝑑(𝐺
[𝑖′,𝑗′]

(𝑘)
, 𝐺
[𝑖′,𝑗′]

(𝑙)
)

𝑎=[𝑖′,𝑗′]∈
{[𝑖1,𝑗1,…
[𝑖𝑛,𝑗𝑛]}

 

where 𝑑𝑘−𝑙  represents the genotype distance of 𝑘𝑡ℎ individual in the signal profile dataset to the 𝑙𝑡ℎ 

individual in the genotype dataset and 𝑑 (𝐺[𝑖′,𝑗′], 𝐺[𝑖′,𝑗′]) is the distance function: 

𝑑 (𝐺
[𝑖′,𝑗′]

(𝑘)
, 𝐺
[𝑖′,𝑗′]

(𝑙)
) = {

1 𝑖𝑓 𝐺
[𝑖′,𝑗′]

(𝑘)
≠ 𝐺

[𝑖′,𝑗′]

(𝑙)

0 𝑖𝑓 𝐺
[𝑖′,𝑗′]

(𝑘)
= 𝐺

[𝑖′,𝑗′]

(𝑙)
. 

We next compute the genotype distance of 𝑘𝑡ℎ individual to all the individuals in the genotype dataset; 

𝑑𝑘−𝑙 for all 𝑙 in [1,𝑁𝑔] where 𝑁𝑔 represents the number of individuals in genotype dataset. The 

individual in the genotype dataset that has the smallest genotype distance is linked to 𝑘𝑡ℎ individual: 

𝑙𝑖𝑛𝑘𝑒𝑑 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 = argmin
𝑙′∈[1,𝑁𝑔]

(𝑑𝑘−𝑙′) 



 

 

Finally, if the linked individual in the genotype dataset matches the individual in signal profile dataset, 

we mark the individual in the signal profile as a vulnerable individual. We also compute the first distance 

gap, 𝑑1,2, for each linked individual[12] to evaluate the reliability of linking. For a linked individual, first 

distance gap is computed as 

𝑑1,2 = 𝑑𝑘
(1)
− 𝑑𝑘

(2)
 

where 𝑑𝑘
(1)

 and 𝑑𝑘
(2)

 is the minimum and second minimum genotype distance among all the genotype 

distances computed between 𝑘𝑡ℎ individual and all the genotype dataset individuals. 

4.4. Anonymization of Signal Profile Datasets 
The anonymization of the signal profile datasets refers to the process of protecting the signal profile 

data against correct predictability of the genotypes for deletion variants. As we discussed earlier, the 

large and small dips in the functional genomics signal profiles are the main predictors of deletion variant 

genotypes. To remove these dips systematically, we propose using the median filtering[33] based signal 

processing to locally smooth the signal profile around the deletion. This signal processing technique has 

been used to remove shot noise in 2 dimensional imaging data and 1 dimensional audio signals[34] and 

in genomic signal smoothing[32]. For each genomic 𝑎 in the deletion [𝑖, 𝑗], we replace the signal level 

using the median filtered signal level: 

�̃�𝑎 = median ({𝑥𝑏}, 𝑏 ∈ [𝑎 −
𝑙

2
, 𝑎 +

𝑙

2
])  

where 𝑥𝑎 refers to the signal level at the genomic position 𝑎, 𝑙 = 𝑗 − 1 + 1, �̃�𝑎 refers to the smoothed 

signal level at position 𝑎, and median refers to the median of all the signal values in the genomic region 

[𝑎 −
𝑙

2
, 𝑎 +

𝑙

2
]. The median is computed by sorting all the signal levels and choosing the value in the 

middle of the sorted list of signal levels.  

5. Datasets 
The mapped reads for the RNA-seq data from gEUVADIS project are obtained from gEUVADIS project 

web site (http://geuvadis.org/). The RNA-seq mapped reads from the GTex project are obtained from 

dbGAP portal. The structural variant loci and genotypes are obtained from the 1000 Genomes Project. 

Figure Legends 
Figure 1: 

Figure 2: 

Figure 3: 

Figure 4: 

Figure 5: 
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