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Abstract 
The functional genomics data is emerging as a valuable resource for personalized medicine. Although 

one might think that the functional genomics data is safe to share, the extent to which they leak 

sensitive information is not well studied. Here, we show for the first time that the read depth signal 

profiles for several functional genomics data types can cause concerns for privacy. A signal profile is 

generated by counting the number of reads at each genomic position. We show that there is significant 

leakage from the signal profiles of a number of sequencing based functional assays including RNA-seq, 

ChIP-Seq, and Hi-C. We demonstrate that an adversary can predict small and large deletions and use 

those to accurately cross-reference an individual among a large pool of individuals in a linking attack. 

We also propose a metric to measure the accuracy of genotyping the deletion variants using signal 

profiles. To show the practicality of linking attacks through signal profiles, we present several outlier 

based genomic deletion genotyping methods that lead to accurate linking attacks. We finally present a 

novel and effective anonymization procedure for protection of signal profiles against genotype 

prediction based linking attacks. 

1. Introduction 
Individual privacy is emerging as an important aspect of biomedical data science. A deluge of genetic 

data is being generated with the Cancer Moonshot Project\cite{XXXX}, Precision Medicine 

Initiative\cite{XXXX}, and UK100K from hundreds of thousands, if not millions, of individuals. Moreover, 

there is much effort to make genetic data more prevalent in the standard of care \cite{XXXX}. This will 

increase personal genomic data storage in healthcare providers. Leakage of the genetic information 

creates many privacy concerns, e.g. genetic predisposition to diseases may bias insurance companies. 

The initial studies on genomic privacy has focused on protection of single nucleotide polymorphism 

(SNP) datasets and analysis of privacy of the participants in genetic studies [1, 2]. It is worth noting that 

cryptographic approaches are also utilized for protecting genetic information \cite{XXXX, XXXX}. The 

significant increase in available datasets has made genomic linking attacks much more relevant [3–5].  

A very relevant example of these attacks took place in the Netflix Prize Competition[3]. In this 

competition, a training dataset was released by the move rental company Netflix, which was to be used 

for training new automated movie rating algorithms. The dataset was anonymized by removing names. 

Two researcher have shown that this training dataset can be linked to a seemingly independent 

database of IMDb web site and revealed movie preferences and identities of many Netflix users. We 

believe this will be a significant route to breaches in individual genomic privacy. Most of the previous 

studies focus on leakage of single nucleotide polymorphisms (SNPs) genotypes as a source of sensitive 
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information. There are two major aspects that are not well addressed in the previous studies. Firstly, 

although it is well known that the major portion of individual genomic polymorphism is structural 

variants, deletion, insertion, translocation, and transversion of large chunks of DNA sequence, these did 

not receive much attention in the debate of genomic privacy[6]. The structural variants can have much 

more significant effects than SNPs, which may render some of the SVs more predictable compared to 

SNPs. Secondly, functional genomics data is not in center of the most studies. Especially the newer 

functional genomics datasets based on sequencing assays, like RNA-Seq[7] and ChIP-Seq[8] are very rich 

sources of information that can lead to leakage of individual characterizing information. In general, the 

raw sequenced reads from these experiments are not shared because of privacy concerns. File formats 

like MRF[9] and tagAlign can enable removing raw sequence information from reads while keeping the 

information about read mapping intact. These reads can be used to create the genome-wide signal 

profiles by piling them up along the genome. Indeed, the genome-wide signal profiles are publicly 

shared by many projects like ENCODE[10], Roadmap Epigenome Mapping Consortium[11], and GTex[12, 

13]. It is urgently necessary to evaluate the sensitive and characterizing information leakage from these 

data types. 

In this paper, we analyze the leakage in the signal profiles of several sequencing based functional 

genomics datasets. By signal profile, we refer to the signal generated by counting the number of reads 

that overlap with each nucleotide on the genome. Although the signal tracks do not contain any 

sequence information, an adversary can utilize signal processing techniques to detect the large and 

small structural variants. The most notable of these variants are the small and large deletions. Many 

methods have been developed to identify genomic deletions and duplications from the DNA-sequencing 

read depth signal [14] \cite{XXXX}. On the other hand, detection of structural variants from functional 

genomics datasets is not well-studied. The main reason for this is the dynamic and non-uniform nature 

of the signal profiles of functional genomics experiments, unlike DNA-sequencing signal profiles that 

uniformly cover the genome. For example, RNA-seq[7] and ChIP-seq[8] signal profiles concentrate 

mainly on the exonic regions and promoters of the genome, respectively. Recently, Hi-C[15] is emerging 

as a functional genomics assay that is used to detect small and large variants[16]. Moreover, these 

experiments are generally done in combination. In aggregate, multiple functional genomics assays can 

be utilized for accurately detecting large genomic variants. We show that this strategy is useful 

especially for detecting and genotyping small and large deletions because their effect is immediately 

observable in the signal profiles. We also show that the detected deletions can be used in a successful 

linking attack.  

The paper is organized as following: We propose a new metric for quantifying how correctly genotypes 

of small and large deletion variants can be estimated. In combination with information content of the 

deletion variants, we use this new metric for evaluating the extent of characterizing information leakage 

from functional genomics datasets. We next present several practical instantiations of linking attacks 

that utilizes deletion variant genotype prediction using outlier signal levels. Finally To protect the signal 

profiles against linking attacks, we present a novel signal processing methodology for anonymizing the 

signal profile. We show that it is effective in decreasing the predictability of deletion variant genotypes 

from signal profiles. The source code for linking attacks and anonymization can be downloaded from  

privaseq2.gersteinlab.org. 
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2. Results 

2.1. Genome-wide Linking Attack Scenario 
Figure 1 summarizes the linking attack scenario that we focus. The adversary has access to a leaked 

structural variation (SV) dataset and another molecular phenotype dataset that contains genome-wide 

functional genomics signal profiles for example RNA-seq or ChIP-Seq signal profiles. The SV dataset 

contains identifying sample IDs for each individual and SV genotypes for multiple locations. We assume 

that the SV dataset comprises different types of variants like deletions, duplications, and translocations. 

The phenotype dataset also contains very sensitive information, i.e. HIV status, about the individuals. 

He/She uses the signal profiles to perform SV genotype prediction. He/She then compares the predicted 

SV genotypes and the leaked genotype dataset. The results are used to link the genotype samples to the 

phenotype samples and the HIV status of genotype samples are revealed to the adversary.  

2.2. Information Content and Correct Predictability of Structural Variant Genotypes 
It has been observed that the prediction of SV genotypes from functional genomics signal profiles has 

relatively low accuracy. In order to assess the predictability of SV genotypes, we propose using a 

measure named genome-wide predictability of SV genotypes, denoted by 𝜋𝐺𝑊, from signal tracks. The 

predictability measures how accurately an SV genotype can be estimated given the signal profile 

(Methods Section). Given the genotype of a variant, the predictability is the conditional probability of 

the variant genotype given the signal profile. By this definition, the predictability only depends on the 

genomic signal levels of an individual and how well they can be used to predict genotypes. In principle, 

the genome-wide predictability is computed for each individual separately and independently from 

other individuals. Because of this fact, the predictability is independent of the population frequency of 

the variants.  

Other than the predictability, an important measure in the linking attacks is the information content 

each SV genotype supplies. We utilize a previously proposed metric termed individual characterizing 

information (ICI)[1] to quantify the information content of each SV. This measure gives higher weight to 

the genotypes that have low population frequency and vice versa. For a given variant genotype, ICI 

measures how much information it supplies for pinpointing an individual in a population. As we 

discussed above, the genome-wide predictability is independent of the population frequency of the 

variants. Therefore the adversary can utilize genome-wide prediction approaches and predict rare 

variant genotypes to gain high ICI and characterize individuals very accurately. This is one of the major 

differences between genome-wide prediction approach proposed in this study and the recently 

proposed sample-wide prediction [4] based approach (Supplementary Fig 1).  To compare these two 

approaches, we computed the sample-wide predictability of all the genomic deletions from the 1000 

Genomes Project using the gene expression quantifications from GEUVADIS project [6, 17] 

(Supplementary Fig 1). ICI versus 𝜋𝑆𝑊 plot shows that there are not many SVs that have high 

predictability and high information content. One reason for this is that a significant number of SVs that 

impact gene expression levels have low population frequency and their sample-wide predictability are 

rather low. This implies that the gene expression levels can be shared without high risk of individual 

characterization using SV genotype prediction. However, as we will show later, a large fraction of these 

low frequency SVs have high genome-wide predictability and they can be used in individual 

characterization and identification.  
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2.3. Genome-wide Linking with Short Deletion Prediction from RNA-Seq Signal Profiles 
We first focus on predictability of short deletions using RNA-seq signal profiles (Fig 1b). Each deletion is 

manifested as an abrupt dip in the signal profile. The prediction of a deletion is done by detecting these 

dips in the signal profiles. The genome-wide predictability (𝜋𝐺𝑊) of the small deletions quantifies how 

well the adversary can identify the dips from the signal profile (Methods Section).  

We computed genome-wide predictability for short deletions in 1000 Genomes Project using the RNA-

seq expression signal profiles from the GEUVADIS project. Figure 2a,b show 𝜋𝐺𝑊 vs ICI for short 

deletions, for genotyping of known deletions (Methods Section). For both cases, there is a substantial 

number of deletions that have much higher predictability compared to a randomized dataset where the 

signal profile is randomized with respect to location of deletions. There are also many more variants 

with very high ICI (on the order of 5-6 bits) with high predictability. In comparison to sample-wide 

predictability of genotypes, there are a lot of deletions that provide deletions with very high ICI (higher 

than 5 bits) with high genome-wide predictability (Supplementary Figure S1). 

In order to present practicality of small deletion predictability and information content, we propose an 

instantiation of a linking attack where we utilize outlier signal levels in the signal profiles for prediction 

of small deletion genotype prediction (Methods Section). For each individual, the prediction method 

sorts the short deletions with respect to deletion-to-neighbor signal ratio and assigns homozygous 

genotype to a number of deletions with smallest deletion-to-neighbor signal ratio (Methods Section). 

The adversary then compares the assigned homozygous deletion loci to the genotype dataset and 

identifies the individual whose deletion genotypes that are closest to the predicted genotypes. Thus, the 

attacker utilizes the outliers in deletion-to-neighbor signal ratio to predict genotypes and identify 

individuals. In order to minimize the bias on the variant call set, we used the known deletions with 

minor allele frequency greater than 1% in this analysis. Also, we extended the genotype dataset by re-

sampling 1000 Genomes deletion dataset. Figure 2c shows the accuracy of linking versus number of 

deletions used in linking attack. The linking is perfect when the adversary utilizes more than 40 

deletions. The attacker can also perform linking by first predicting existence of deletion (Fig 2c) and using 

the identified deletions to perform linking (Methods Section). When he/she utilizes this criteria, around 

60 deletions are required for perfect linking. 

We also studied the scenario where the adversary does not have access to the deletion loci but aimed at 

finding deletions and estimating their genotypes at the same time. This is a harder linking problem 

because the adversary must also correctly find deletion variants. We call this, linking attack based on 

joint deletion discovery and genotype prediction. Figure 2d shows that the linking accuracy is maximized 

(around 60%) when the attacker utilizes the top 50 deletion candidates in linking. If the attacker uses 

the existence of variant criteria in linking, the linking accuracy decreases.  

In the previous analysis, the SV discovery set and RNA-seq sample set are matching. Since this may 

introduce a bias, we studied linking attack where signal profiles are generated by the GTex Project 

Consortium [12, 13] and the small deletions are called in the 1000 Genomes Project. This way, the 

deletions are identified in 1000 Genomes individuals while the linking is performed for the individuals in 

GTex Project datasets. Moreover we merged the genotype dataset from 1000 Genomes and the 

genotype dataset from GTex project. We first computed 𝜋𝐺𝑊 versus ICI for the deletions and observed 

that there is substantial enrichment of deletions that have high predictability with high ICI compared to 

randomized datasets, when the known deletions are utilized (Fig 3b). For the case of joint deletion 



 

 

discovery and genotype prediction, the number of highly predictable and high ICI variants decrease (Fig 

3b). When known deletions are utilized in extremity based attack, the linking accuracy is close to 100% 

for approximately 20 variants (Fig 3c). When the attacker increases the number of variants used in the 

attack, the linking accuracy decreases. Although the number of variants increase (more ICI), the 

genome-wide predictability of variants decrease faster. When the attacker predicts existence of 

deletion, the accuracy is maximized at around 240 variants and decreases when the number of variants 

in linking is increased (Fig 3d). In addition, the linking accuracy for joint deletion discovery and genotype 

prediction is low (Results not included), which indicates that joint prediction and genotyping of small 

deletions does not have enough power to perform linking attacks through RNA-seq signal profiles. 

2.4. Genome-wide Linking with Large Deletion Prediction from ChIP-Seq Signal Profiles 
We next focused on predictability versus ICI of long deletions, which are longer than 1000 base pairs. In 

this analyses, we utilize the ChIP-Seq signal profiles. Several recent studies have generated individual 

level epigenomic signal profiles through ChIP-Seq experiments [18–20]. These studies aimed at revealing 

how the variants interact with the epigenomic signals, mainly the histone modifications. The histone 

modifications are especially useful for identifying deletion genotypes because some of them cover a 

large portion of the genome, which is useful for predicting deletion genotypes. We use these 

personalized epigenomic signal profiles for quantifying how much characterizing information leakage 

they provide. For any individual where there are multiple histone mark ChIP-Seq signals, we pool them 

then compute several features for each large deletion. These are then used for quantifying information 

leakage (Methods Section). 

First we computed 𝜋𝐺𝑊 versus ICI for the large deletions in 1000 Genomes Project. Figure 4a,b show 

𝜋𝐺𝑊 versus ICI for the large deletions from the 1000 Genomes. We use the personal epigenome 

profiling ChIP-Seq datasets presented in studies by Kasowski et al and Kilpinen et al (Methods Section). 

Similar to the small deletion analysis, it can be seen that for both datasets there are many large 

deletions with high predictability and high ICI.  

We next performed practical linking attack utilizing the genotyping of known deletions and deletion 

discovery followed by genotyping. We again utilize a variant of the outlier based genotype prediction in 

the linking attack. The genotype prediction is done as follows. The average pooled ChIP-Seq signal on 

each deletion is computed and the variants are sorted with respect to their average signal in increasing 

order. The deletions with smallest pooled ChIP-Seq signal are assigned homozygous deletion genotype. 

For the deletions with assigned genotypes, we identified the individual in genotype dataset whose 

genotypes match closest to the assigned genotypes. We repeated this linking attack with different 

number of windows and computed the accuracy of linking (Methods Section). Figure 4c shows the 

linking attack accuracy when known large deletions are used in linking. The linking accuracy reaches 

100% with fairly small number of deletions for both datasets. For the scenario where the adversary first 

discovers deletions then genotypes them, i.e. deletion loci are not given, the accuracy is also very high 

with small number of identified deletions (Fig 4d). 

An interesting question about histone modifications is which combinations of histones leak the highest 

amount of characterizing information. To answer this question, we studied the individual NA12878, for 

which there is an extensive set of histone modification ChIP-Seq data from the ENCODE Project [10]. We 

have evaluated whether different combinations of histone modifications render NA12878 vulnerable 

against a linking attack among 1000 Genomes individuals, which is illustrated in Fig 4e. In general, we 
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have observed that NA12878 is vulnerable when the dataset combinations that cover the largest space 

in the genome. This can be simply explained by the fact that when histone marks cover more space, 

higher number of deletions can be predicted. For example, H3K36me3 and H3K27me3, an activating and 

a repressive mark respectively, are mainly complementary to each other and they render NA12878 

vulnerable. In addition, H3K9me3, a repressive mark that expands very broad genomic regions, renders 

NA12878 vulnerable in several combinations with other marks. On the other hand, H3K27ac, an 

activating histone mark that spans punctate regions do not render NA12878 vulnerable. 

2.5. Genome-wide Linking with Large Deletion prediction from Hi-C Matrices 
We also asked whether a relatively new data type, Hi-C can be used for identification of genomic 

deletions. Hi-C is a high throughput method for identifying the long range genomic interactions and 

three dimensional chromatin structure[15]. It is based on proximity ligation of the genomic sequences 

that are close-by and high throughput sequencing of the ligated sequences. After sequencing data is 

processed, it is converted to a matrix where the entry (𝑖, 𝑗) represents the strength of interaction 

between 𝑖𝑡ℎ and 𝑗𝑡ℎ genomic positions. To study leakage from Hi-C datasets, we again focused on 

NA12878 individual for whom Hi-C interaction matrices are generated at different resolutions [21]. In 

order to convert the matrix into a genomic signal profiles, we summed the interaction matrix along 

columns and obtained a signal profile along the genome (Fig 5a, Methods Section). Next we simulated 

an extremity based linking attack using the outliers in this signal profile: For all the large deletions in the 

1000 Genomes, we computed the average Hi-C signal. We next sorted the deletions in increasing order 

and assigned top 1000 windows with homozygous deletion genotype. We next compared the predicted 

genotypes with all the genotypes in the 1000 Genomes project. NA12878 is vulnerable to this attack 

when the Hi-C contact matrix resolution (bin length) is 10 kilobases or smaller (Fig 5b).  

2.6.  Anonymization of Signal Profiles against Linking Attacks 
An important aspect of the genomic privacy is risk management and protection of datasets. For 

protection, anonymization of the datasets is the most effective way to share the data publicly in a safe 

manner. The most effective way to protect against linking attack scenario is to ensure that the deletion 

genotypes are not predictable from the signal tracks. We believe RNA-seq signals are currently the most 

vulnerable against the linking attacks and protection of these datasets against prediction of deletion 

variants is most immediate. As we showed in previous sections, the small deletions are major source of 

leakage of genetic information from RNA-seq signal profiles. We propose systematically removing the 

dips in the signal profiles as a way to anonymize the RNA-seq signal profiles against prediction of small 

deletions. Specifically, we propose smoothing the signal profile using median filtering (Methods 

Section). We have observed that median filtering removes the dips in the signal that indicate deletions 

very effectively and while conserving the signal structure fairly well. To evaluate the effectiveness of this 

method, we applied signal profile anonymization to the RNA-seq signal profiles generated from the 

datasets generated by GEUVADIS Project consortium and the GTex Project Consortium. After application 

of the signal profile anonymization, we observed that the large fraction of the leakage is removed for 

GTex datasets (Supplementary Figure 6). For GEUVADIS datasets, there is still some leakage but the 

genome-wide predictability of the variants are decreased substantially (Fig 2a). We also observed that 

the extremity based linking attack proposed in the previous section is ineffective in characterizing 

individuals such that no individuals are vulnerable for GTex project and at most 1% of the individuals are 

vulnerable for GEUVADIS dataset. The anonymized signal profiles for GTex and GEUVADIS individuals 

can be downloaded from privaseq2.gersteinlab.org/Anonymized_Signal_Profiles 
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3. Discussion 
Our results show that an adversary can perform fairly accurate linking attacks for characterizing 

individuals by prediction of structural variants using functional genomics signal profiles. In addition, we 

also showed that the linking can be done by predicting fairly small number of variants (generally less 

than 100 variants). Although the functional genomics assays do not reveal the full spectrum of structural 

variants, our results show that these data leak enough information for individual characterization among 

a fairly large set of individuals. This can be rather problematic because several large consortia are 

offering these signal tracks publicly. For example GTex signal profiles are publicly viewable and 

downloadable through the UCSC Genome Browser. In addition ENCODE RNA-Seq and ChIP-Seq signal 

profiles for several personal genomes (NA12878 and HeLa-S3) are downloadable through the UCSC 

Genome Browser and ENCODE Project’s portal. 

We also proposed a new metric for measuring the predictability of deletions from signal profiles. It is 

worth discussing that the genome-wide predictability measure is complementary to a sample-wide 

genotype predictability measure, 𝜋𝑆𝑊, proposed earlier [4]. 𝜋𝑆𝑊 represents a sample-wide predictability 

measure that is computed when genotypes are predicted from sample-wide datasets, for example 

sample-wide gene expression profiling datasets. Sample-wide predictability is suitable when adversary 

utilizes sample-wide phenotypic measurements to predict genotypes in a linking attack (Supplementary 

Fig 1). This scenario is meaningful when the variant genotype is of high frequency and affects phenotype 

among samples, e.g. quantitative trait loci. For the rare variants sample-wide predictability will not be 

effective because variant genotypes do not show much variation among samples. For these variants, 

genome-wide predictability can be computed for each individual separately (Supplementary Fig 1).  

It has been shown that the sample-wide predictability is related to the population frequency (and to the 

information content) of the variant genotypes. For example, the genotypes that have high population 

frequency are easier to predict than lower frequency genotypes. This is, however, not true for the 

genome-wide predictability of variant genotypes because it is totally independent of population 

frequencies. In fact, genome-wide predictability is estimated for each sample separately while 

estimation of sample-wide predictability requires a sample of measurements from multiple individuals.  

4. Methods 
  

4.1. Genome-wide Predictability and Individual Characterizing Information 
 

4.2. Prediction of Small Indels from RNA-Seq Signal Profiles 
 

4.3. Prediction of Large Indels from ChIP-Seq Signal Profiles and Hi-C Matrices 
 

4.4. Extremity based Genotype Prediction and Instantiation of Linking Attacks  
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4.5. Anonymization of Signal Profiles 
This signal processing method has been applied previously for genomic signal correction in the multi-

mappable regions of the genome [22]. 

 

5. Datasets 
[[The source and accession numbers of the datasets]] 

[[Dataset processing: 

GEUVADIS, GTex, 1000 Genomes]] 
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