1	Whole-genome analysis of papillary kidney cancer finds significant non-	
2	coding alterations	
3		
4	Authors: Shantao Li ¹ , Brian M. Shuch ^{2,*} , Mark B. Gerstein ^{1,3,4,*}	
5	¹ Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA.	
6	² Department of Urology, Yale School of Medicine, New Haven, CT, 06520, USA.	
7	³ Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.	
8	⁴ Department of Computer Science, Yale University, New Haven, CT 06520, USA.	
9	*To whom correspondence should be addressed: brian.shuch@yale.edu, pi@gersteinlab.org	
10	Short title: Whole-genome analysis of papillary kidney cancer	
11	Abstract: To date, studies on papillary renal-cell carcinoma (pRCC) have largely focused on	Shantao 2/18/2017 7:04 PM
12	coding alterations in traditional drivers, particularly MET. However, for a significant fraction of	Comment [1]: New results: 1. MET retrotransposons 2. SV: SDHB del.?
13	tumors, researchers have been unable to determine clear molecular etiologies. To address this,	3.Evolution tree topology 4.CR defects associated with RT
14	we perform the first whole-genome analysis of pRCC. Elaborating on previous results on MET,	Shantao 2/17/2017 6:45 PM Deleted: Papillary renal-cell carcinoma (pRCC) constitutes 10-15% of kidney tumors.
15	in the coding regions of this gene we find more somatic alternations and a germline SNP	Shantao 2/17/2017 6:45 PM
16	predicting prognosis (rs11762213), We identify activation of promoter of retrotransposons in	
17	MET due to methylation dysregulation as a driver event. Next, we scrutinize non-coding	Deleted: Interestingly, we find no enrichment for small structural variants
18	mutations, discovering potentially impactful ones in regions associated with MET and a long	Shantao 2/18/2017 7:04 PM
19	non-coding RNA (NEAT1). Moreover, NEAT1 is implicated in other cancer and its mutations in	Comment [2]: Too Strong? Shantao 2/18/2017 7:04 PM
20	pRCC are associated with increased expression and unfavorable outcome. Finally, we investigate	romatted. rignight
21	genome-wide mutational patterns, finding they are governed mostly by methylation-associated	
22	C-to-T transitions. Also, we observe significantly more mutations in open chromatin and early	

- 29 replicated regions in tumors with chromatin-modifier alterations. We build evolution trees for
 30 individual tumor and find their topologies are associated with tumor subtypes.
 31 Currently word count: 177, need to be <=150
- 32

33 Author Summary

34	Renal cell carcinoma accounts for more than 90% of kidney cancers. Papillary renal cell
35	carcinoma (pRCC) is the second most common subtype of renal cell carcinoma. Previous studies,
36	focusing mostly on the protein-coding regions, have identified several key genomic alterations
37	that are key to cancer initiation and development. However, researchers cannot find any key
38	mutation in a significant portion of pRCC. Therefore, we carry out the first whole-genome study
39	of pRCC to discover triggering DNA changes explaining these cases. By looking at the entire
40	genome, we find additional potentially impactful alterations in and out of the protein-coding
41	regions. These newly identified critical mutations from scrutinizing the entire genome help
42	complete our understanding of pRCC genomes. Two alterations we found are associated with
43	prognosis, which could aid clinical decisions. We are also able to recognize mutation patterns $_{a}$
44	signatures and tumor evolution structures, which reflect the mutagenesis processes and give hints
45	on how cancer develops. Our study provides valuable additional information to facilitate better
46	tumor subtyping, risk stratification and potentially clinical management.

47

48 Introduction

Renal cell carcinoma (RCC) makes up over 90% of kidney cancers and currently is the
 most lethal genitourinary malignancy (1). Papillary RCC (pRCC) accounts for 10%-15% of the

total RCC cases (2). Unfortunately pRCC has been understudied and there are no current forms 51 of effective systemic therapy for this disease. pRCC are further subtyped into two major groups: 52 53 type 1 and type 2 based on histopathological features. For many years, the only prominent oncogene in pRCC (specifically, type 1) that physicians were able to identify was MET, a 54 tyrosine kinase receptor for hepatic growth factor. An amino acid substitution that leads to 55 constitutive activation and/or overexpression are two mechanisms of dysfunction of MET in 56 tumorigenesis. Recently, the Cancer Genome Atlas (TCGA) published its first result on pRCC 57 (3), which greatly improves our understanding of the genomic basis of this disease. Several more 58 genes and specific sub-clusters were identified to be significantly mutated in pRCC. 59 Nevertheless, a significant portion of pRCC cases still remains without any known driver. 60 Therefore we think it is time to explore the rest 98% non-coding regions of the genome using 61 62 whole genome sequencing (WGS). This is sensible because non-coding regions, previously overlooked in cancer, have been showed to be actively involved in tumorigenesis (4-6). 63 Mutations in non-coding regions may cause disruptive changes in both cis- and trans-regulatory 64 elements, affecting gene expression. Understanding non-coding mutations helps fill the missing 65 "dark matter" in cancer research. 66 67 Multiple endogenous and environmental mutation processes shape the somatic mutational landscape observed in cancers (7). Analyses of the genomic alterations associated with these 68

cancer subtypes and even indicate potential new treatment strategies (8). Additionally, genomic
 features such as replication time and chromatin environment govern mutation rate along the
 genome, contributing to spatial mutational heterogeneity. While identifying mutation signatures

69

processes give information on cancer development, shed light on mutational disparity between

is possible using data from whole exome sequencing (WXS), whole genome sequencing (WGS)

74 gives richer information on mutation landscape and minimizes the potential confounding effects

75 of exome capture process and driver selection.

76	In this study, we comprehensively analyzed <u>25 pRCC cases that were whole genome</u>	
77	sequenced along with an extensive set of WXS data on multiple levels. We went from	
78	microscopic examination of driver genes to analyses of whole genome sequencing variants, and	
79	finally, to investigation of high-order mutational features. First, we focused on MET, an	
80	oncogene which plays a central role in pRCC, especially in type 1. We found rs11762213, a	
81	germline exonic single nucleotide polymorphism inside MET, predicts cancer-specific survival	
82	(CSS) in type 2 pRCC. We also discovered several potentially impactful non-coding mutation	
83	hotspots in MET promoter and its first two exons. The previous TCGA study identifies a MET	
84	alternative transcription event as a driver event but without illustrating the etiology (3). We	
85	found that a cryptic promoter from a long interspersed nuclear element-1 (L1) triggers the	
86	alternative isoform expression. Surprisingly, we did not find a significant amount of structural	
87	variations affecting MET besides polysomy 7, Then we went onto cases not as easily explained	
88	as those with MET alterations. We analyzed about, 160,000 non-coding mutations throughout the	
89	entire genomes and found several potentially high-impact mutations in non-coding regions.	
90	Further zooming out, we discovered pRCC exhibits mutational heterogeneity in both nucleotide	
91	context and genome location, indicating underlying vibrant mutational processes interplay. We	
92	found methylation is the leading factor influencing mutation landscape. Methylation status drives	
93	the intra-sample mutation variation by promoting more C-to-T mutations in the CpG context.	
94	APOBEC activity, although infrequently observed, leaves an unequivocal mutation signature in a	
95	pRCC genome but not in ccRCC. Also, we discovered samples with chromatin remodeler	
96	alternations accumulate more mutations in open chromatin and early-replicated regions. Last, we	

Shantao 1/24/2017 12:04 AM **Deleted:** 32

Shantao 1/23/2017 5:32 PM Formatted: Font:Italic

Shantao 1/24/2017 2:29 AM Deleted: 3 Shantao 2/9/2017 6:38 PM Deleted: nearly Shantao 2/9/2017 6:38 PM Deleted: 5

Shantao 2/18/2017 7:08 PM Deleted: Last

inferred evolution tree for each individual samples and found tree structures correlate with tumor 102

103 subtypes.

105	Results
106	1. An exonic SNP in <i>MET</i> , rs11762213, predicts prognosis in type 2 pRCC.
107	We begin with coding variants in the long known driver MET. The TCGA study of 161
108	pRCC patients found 15 samples carrying somatic, nonsynonymous single nucleotide variant
109	(SNV) in MET. By analyzing 117 extra WXS samples (see Methods), we found six more
110	nonsynonymous somatic mutations in six samples (Table S1). V1110I and M1268T were two
111	recurrent mutations in this extra set. Both of them were observed in the TCGA study as well.
112	Additionally, we found two samples carrying H112Y and Y1248C respectively. H1112Y has
113	been observed in two patients the original TCGA study cohort and H1118R is a long-known
114	germline mutation associated with hereditary papillary renal carcinoma (HPRC, 13). Y1248C
115	has been observed in type 1 pRCC before (rs121913246) and the TCGA cohort has a case
116	carrying Y1248H. All mutations occur in the hypermutated tyrosine kinase catalytic domain of
117	MET. Two out of these six samples were identified as type 1 pRCC while the subtypes of the rest
118	four were unknown.
119	Although many MET somatic mutations are believed to play a central role in pRCC,
120	some germline MET mutations have also been associated with the disease. In particular, a
121	germline SNP, rs11762213, has been discovered to predict recurrence and survival in a mixed
122	RCC cohort (14). ccRCC predominated the initial discovery RCC cohort. This conclusion was
123	later validated in a ccRCC cohort but never in pRCC (9). We wondered whether this SNP has a

125	prognostic effect in pRCC. Using an extensive WXS set of 277 patients (see Methods; Figure S1
126	and Table S1;), we found 14 patients carry one risk allele of rs11762213 (G/A, Table 1, minor
127	allele frequency (MAF) = 2.53%). No homozygous A/A was observed. Cancer specific deceases
128	are concentrated in type 2 pRCC. Among 96 type 2 pRCC cases, seven patients carry the minor
129	A allele (MAF = 3.65%, Table 1). Survival is significantly worse in type 2 patients carrying the
130	risk allele of rs11762213 (p = 0.034, Figure 1B). But we did not find significant association of
131	this germline SNP with survival in type 1 patients. We did not find statistically significant
132	association of rs11762213 with MET RNA expression in either tumor samples or normal controls
133	(p > 0.1, two-sided rank-sum test). <i>Met</i> pY1235 levels in tumor samples, as measured by Reverse
134	phase protein array (RPPA), were not significantly different in patients carrying the minor G

allele compared to patients with A/A genotype (p > 0.1, two-sided rank-sum test).

Characteristic	G/A (n = 7)	A/A (n = 89)
Sex, No. (%)		
Male (%)	4 (57)	25 (28)
Female (%)	3 (43)	64 (72)
Age, median (IQR), y	54 (47-61)	65 (57-73)
Race, No. (%)		
White	6 (86)	65 (73)
Black	1 (14)	16 (18)
Asian	0	4 (4)
NA	0	4 (4)
T stage, No. (%)		
T1	4 (57)	47 (53)
Τ2	1 (14)	10 (11)
Т3	2 (29)	31 (35)
Τ4	0	1 (1)
N stage, No. (%)		
N0	3 (43)	20 (22)
N1	0	15 (17)
N2	1 (14)	2 (2)
NX	3 (43)	52 (58)
M stage, No. (%)		
M0	3 (43)	54 (61)

M1	1 (14)	4 (4)
MX/NA	3 (43)	31 (35)
AJCC stage, No. (%)		
Ι	4 (57)	43 (48)
II	0	7 (8)
III	1 (14)	29 (33)
IV	2 (29)	6 (7)
NA	0	4 (4)
Median follow-up for surviving patients, days (IQR)	243 (132-354)	579 (219-1247)

137 Table 1. Patient clinical profiles of the type 2 pRCC cohort in rs11762213 survival analysis. AJCC: American

138 Joint Committee on Cancer; IQR: interquartile range; NA: not available. Percentages may not add up to 100%

139 because of rounding.

140

2. Epigenetic alterations and mutation hotspots in non-coding regions 141 142 The TCGA study has identified a MET alternative translation isoform as a driver event (3). However, the etiology of this new isoform is unknown. We identified this isoform results 143 from the usage of a cryptic promoter from an L1 element (Figure 1A), likely due to a local loss 144 of methylation (REF). This event was reported in several other cancer types (REF). To test its 145 relationship with methylation, we found a closet probe (cg06985664, ~3kb downstream) on the 146 147 Methylation array show marginally statistically significant (p=0.055, one-side rank-sum test). Additionally, as expected, this event is associated with methylation group 1 (odds ration (OR)= 148 4.54, p<0.041), indicating genome-wide methylation dysfunction. This association is stronger in 149 type 2 pRCC and it shows a significant association with the C2b cluster (OR= 17.5, p<0.007). 150 151 Despite the fact MET is the most common driver alteration, about 20% presumably METdriven yet MET wild-type pRCC samples were still left unexplained (3). Therefore, we scanned 152 the MET non-coding regions. We observed one mutation in MET promoter region in a type 1 153 154 pRCC sample (Figure 1A and Table S2). This sample shows no evidence of a nonsynonymous

Shantao 1/23/2017 5:41 PM Formatted: Font:Bold, Not Italic Shantao 1/23/2017 5:40 PM Deleted: M

Shantao 2/18/2017 7:12 PM Deleted: 2

157	mutation in <i>MET</i> gene but it has copy number gain of <i>MET</i> . Additionally, we observed 6/35	S
158	(17.1%) samples carry mutations in the intronic regions between exon 1-3 of <i>MET</i> (Figure 1A	D
159	and Table S2). Previously it is been established that alternative splicing of these exons is a driver	D
160	event (3). Therefore we speculated that these non-coding variants might correlate with the	D
161	alternative splicing. However, likely being hindered by a small size, we were not able to find	
162	statistically significant association between the alternative splicing event and these intronic	
163	mutations.	
164	We further expanded our scope and ran FunSeq (4-5) to identify potentially high-impact,	
165	non-coding variants in pRCC. First, we identified a high-impact mutation hotspot on	
166	chromosome 1. 6/35 (17.1%) samples have mutations within this 6.5kb region (Figure 2A and	
167	Table S2). This hotspot locates at the upstream of <i>ERRF11</i> (ERBB Receptor Feedback Inhibitor	D
168	1) and overlaps with the predicted promoter region. ERRFI1 is a negative regulator of EGFR	D
169	family members, including EGFR, HER2 and HER3, all have been implicated in cancer. Due to	D
170	a very limited sample size here, our test power was inevitably low. We didn't observe	
171	statistically significant changes among mutated samples in mRNA expression level, protein level	
172	and phosphorylation level of EGFR, HER2 and HER3.	
173	Another potentially impactful mutation hotspot is in NEAT1. We saw mutations inside	
174	this nuclear long non-coding RNA in $6/35(17.1\%)$ samples (Figure 2B and Table S2). Several	S
175	studies indicated NEATI is associated in many other cancers (15-16). It promotes cell	D
176	proliferation in hypoxia (17) and alters the epigenetic landscape, increasing transcription of	D
177	target genes (18).	D
178	All the mutations we found fell into a putative promoter region of NEAT1. We noticed	D
179	<i>NEAT1</i> mutations were associated with higher <i>NEAT1</i> expression (Figure <u>2C</u> , $p < 0.032$, two-	D
		D

Shantao 1/24/2017 12:09 AM Deleted: 32 Shantao 1/24/2017 12:09 AM Deleted: 18.8 Shantao 2/18/2017 7:11 PM Deleted: 2

 Shantao 1/24/2017 12:05 AM

 Deleted: 2

 Shantao 1/24/2017 12:05 AM

 Deleted: 8.8

 Shantao 2/18/2017 7:12 PM

 Deleted: 2B

Shantao 1/24/2017 12:04 AM	
Deleted: 5	
Shantao 1/24/2017 12:05 AM	
Deleted: 2	
Shantao 1/24/2017 12:05 AM	
Deleted: 15.6	
Shantao 2/18/2017 7:12 PM	
Deleted: 2C	
Shantao 2/18/2017 7:12 PM	
Deleted: 2D	
Shantao 2/18/2017 7:13 PM	
Deleted: 044	

192	sided rank sum test). We also found NEAT1 mutations were associated with worse prognosis
193	(Figure 2D, $p < 0.041$, log-rank test). However, without mutation status, <u>NEAT1</u> expression level
194	is not significantly linked with pRCC survival. Nonetheless, <u>NEAT1</u> is overexpressed in 5%
195	ccRCC samples from the TCGA cohort. <u>NEAT1</u> overexpression is significantly associated with
196	shorted overall survival (Fig SXX). MALATI, another noticeable lncRNA in cancer, is tightly co-
197	expressed with <u>NEAT1</u> in both pRCC and ccRCC (Spearman's correlation: 0.79 and 0.87
198	respectively). Catalogue of Somatic Mutations in Cancer (COSMIC) (REF) annotates MALAT1
199	as cancer consensus gene, associating it with pediatric RCCs and lung cancer. Overexpression of
200	MALAT1 is reported to be associated with cancer progression (REF).
201	We used DELLY (10) to perform structural variants (SVs) discovery from WGS reads
202	information (see Methods and Table S3). The SV discovery approach has higher sensitivity and
203	resolution than array-based methods, which were employed in the TCGA analysis. In the end we
204	found <u>424</u> somatic SV events, includes deletions, duplications, inversions and translocations
205	(Figure SXX). Based on the SV event number, samples clearly split into two types: genome
206	unstable (>40 events) and genome stable (<10 events).
207	First, by overlapping SVs with known pRCC related genes, we found two cases with
208	deletion in SDHB. The median SDHB expression is only ~50% compared to cases without
209	alternation (Figure SXX). We confirmed three cases carrying deletions affecting CDKN2A
210	called by TCGA array-based methods but not the other two cases, possibly due to large-scale
211	events (aneuploidy), <u>Notably</u> , three confirmed cases have significantly lower <u>CDKN2A</u>
212	expression but not in the unconfirmed two cases. This suggests SV calling from WGS is
213	accurate and predicts expression better. One sample, TCGA-B9-4116, which has extensive
214	amplification of <i>MET</i> , showed multiple SVs of various classes hitting <i>MET</i> regions. However,

hantao 2/18/2017 7:12 PM Deleted: 2E hantao 2/18/2017 7:14 PM Deleted: 022 hantao 2/17/2017 7:21 PM ormatted: Highlight hantao 2/17/2017 7:21 PM ormatted: Font:Italic, Highlight hantao 2/17/2017 7:21 PM ormatted: Highlight hantao 1/24/2017 12:17 AM ormatted: Font:Italic hantao 2/18/2017 4:43 AM ormatted: Font:Italic hantao 1/24/2017 12:18 AM ormatted: Font:Italic hantao 1/24/2017 12:19 AM ormatted: Font:Not Italic hantao 1/24/2017 12:18 AM ormatted: Font:Italic hantao 1/24/2017 12:20 AM ormatted: Font:Italic

Shantao 2/17/2017 7:13 PM Deleted: 343

Shantao 2/17/2017 7:12 PM Formatted: Not Highlight Shantao 2/17/2017 7:12 PM Formatted: Font:Italic

surprisingly, we did not find SVs affecting MET except this one example. We postulate 218 219 trisomy/polysomy 7 is the main mechanism of *MET* structural alteration rather than duplication 220 in a smaller scale. Besides duplication, we did not expect to find deletion, inversion or translocation disrupting oncogene MET. These SVs are likely to cause loss-of-function rather 221 than gain-of-function mutations. This is consistent with the putative role of MET as an oncogene, 222 rather than a tumor suppressor, Last, we observed several interesting sporadic events, including 223 duplications in EGFR and HIF1A duplication and deletions in DNMT3A and STAG2 (see SXX). 224 225 3. Mutation spectra and mutation processes of pRCC 226 To further get a high-order overview of the mutation landscape, we summarized the 227 228 mutation spectra of 35, whole genome sequenced pRCC samples (Figure 3A). C-to-T in CpGs showed the highest mutation rates, which were roughly ten to twenty-fold higher than mutation 229 rates in other nucleotide contexts. 230 We used principle components analysis (PCA) to reveal factors that explain the most 231 inter-sample variation. The loadings on the first principle component (which explained 12.5% of 232 the variation) demonstrated C-to-T in CpGs contributed the most to inter-sample variation 233 (Figure 3B). C-to-T in CpGs is highly associated with methylation. It reflects the spontaneous 234 235 deamination of cytosines in CpGs, which is much more frequent in 5-methyl-cytosines (REF). So we further explored the association between C-to-T in CpGs and tumor methylation status. 236 237 First we validated the TCGA identified methylation cluster 1 showed higher methylation lever than cluster 2 in all annotation regions (Figure S2, see Methods), prominently in CpG Islands 238 (OR of sites being differentially hypermethylated: 1.29, 95%CI: 1.20-1.39, p<0.0001). We 239 240 confirmed this association by showing samples from methylation cluster 1 had higher PC1 scores

Shantao 2/17/2017 7:12 PM Formatted: Not Highlight Shantao 2/17/2017 7:11 PM Deleted: . Shantao 2/17/2017 7:19 PM Formatted: Font:Italic Shantao 2/17/2017 7:19 PM Formatted: Font:Italic Shantao 2/17/2017 7:19 PM Formatted: Font:Italic Shantao 2/17/2017 7:20 PM Formatted: Font:Italic Shantao 1/24/2017 2:27 AM Deleted: 32

Shantao 1/23/2017 6:07 PM Deleted: (hypermethylated group, Figure S2)

244	as well as higher C-to-T mutation counts and mutation percentages in CpGs (Figure 3C). This
245	trend was further validated using a larger WXS dataset as well. Especially, the most
246	hypermethylated group, CpG island methylation phenotype (CIMP), showed the greatest C-to-T
247	in CpGs (Figure S2). As expected, C-to-T mutations in CpGs in group 1 showed higher but not
248	statistically significant percentage overlapping with CpG islands compared with group 2 (1.8%
249	versus 1.4%, p=0.14). Therefore, methylation status is the most prominent factor shaping the
250	mutation spectra across patients. We further explored the functional impact of the excessive
251	mutations driven by methylation. C-to-T mutations in CpGs were more likely to be in the coding
252	region (OR=1.54, 95%CI: 1.27-1.85, p<0.0001) and nonsynonymous (OR=1.47, 95%CI: 1.17-
253	1.84, p<0.001). Yet, C-to-T mutations in CpGs did not show functional bias between two
254	methylation groups in non-coding regions.
255	Recently, several somatic mutation signatures were identified. Many have putative
256	etiology, revealing the underlying mutation processes (7). We used a LASSO-based approach
257	(see Methods) to decompose mutations into a linear combination of these canonical mutation
258	signatures in both WGS and WXS samples (Figure S3). The leading signature was signature 5,
259	which is consistent with previous studies (7). Interestingly, we found one type 2 pRCC case out
260	of 155 somatic WXS sequenced samples exhibited APOBEC-associated mutation signature 2
261	and 13. APOBEC mutation pattern enrichment analysis (see Method) further confirmed the
262	presence of APOBEC activity (Figure 3D). This sample was statistically enriched of APOBEC
263	mutations (adjusted p-value < 0.0003).
264	Prominent APOBEC activities were also incidentally detected in three upper track

265 urothelial cancer (UC) samples sequenced and processed in the same pipeline with pRCC

Shantao 2/18/2017 7:20 PM Comment [3]: Do we want this sentence?

266	samples. UC often carries APOBEC mutation signatures and our result is consistent with TCGA
267	bladder urothelial cancer study (19).

268	The APOBEC-signature carrying pRCC case was centrally reviewed by six pathologists
269	in the original study and confirmed to be type 2 pRCC (3). Thus this tumor is likely a special
270	case of type 2 with genomic alterations share some similarities with UC. It has non-silent
271	mutations in ARID1A and MLL2 and a synonymous mutation in RXRA, all are identified as
272	significantly mutated genes in UC but not in pRCC. Potential pRCC driver events, for example
273	low expression of CDKN2A and nonsynonymous alternations in significantly mutated genes of
274	pRCC, are absent in this sample.
275	Noticeably, all four samples with APOBEC activities showed significantly higher
276	<i>APOBEC3A</i> and <i>APOBEC3B</i> mRNA expression level ($p < 0.0022$ and $p < 0.0039$ respectively,
277	one-side rank sum test, Figure S4). This is in concordance with previous studies of APOBEC
278	mutagenesis in various types of cancer (12).
279	Consistent with previous studies (12), we failed to detect statistically significant
280	APOBEC activities in an extensive WXS dataset consisting of 418 clear cell RCC (ccRCC)
281	samples, even after resampling to avoid p-value adjustment eroding the power. Very low levels
282	of APOBEC signatures (<15%) was found in less than 1%(4/418) samples. With a much larger
283	sample size, this result was unlikely to be confounded by detecting power.
284	

- 286 4. Defects in chromatin remodeling affects mutation landscape

287	Chromatin remodeling genes are frequently mutated in pRCC and many other cancers
288	including ccRCC (20). Defects in chromatin remodeling cause dysregulation of chromatin
289	environment. Open chromatin regions show lower mutation rate, presumably due to more
290	effective DNA repair (21). Thus chromatin remodeler alternations could possibly alter the
291	mutation landscape, specifically increase mutation rate in previously open chromatin regions. To
292	test this hypothesis, we tallied the number of mutations inside DNase I hypersensitive sites
293	(DHS) inteleven normal fetal kidney cortex samples (The NIH Roadmap Epigenomics Mapping
294	Consortium, REF), which represent the normal, physiological condition. 9/35 samples with
295	<u>disruptive</u> mutations in <u>ten</u> chromatin remodeling, cancer associated genes show higher genome-
296	wide mutation counts ($p < 0.021$, one-side rank-sum test), partially driven by higher mutation
297	counts in DHS region ($p < 0.0023$, one-side rank-sum test). The median number of mutations in
298	DHS region considerably increases by 60% (67.5 versus 108) in samples carrying chromatin
200	remodeling defects. The effect is significant after normalizing against the total mutation counts
299	remodering dereets. The effect is significant after normalizing against the total mutation counts
300	(p < 0.01 one-side rank-sum test, Figure 3E).
300301	(p < 0.01 one-side rank-sum test, Figure 3E). Replication time is known to correlate greatly with mutation rate. Early replicating
 300 301 302 	(p < 0.01 one-side rank-sum test, Figure 3E). Replication time is known to correlate greatly with mutation rate. Early replicating regions have lower mutation rate compared to late replicating ones. Researchers reason
300 301 302 303	 (p < 0.01% one-side rank-sum test, Figure 3E). Replication time is known to correlate greatly with mutation rate. Early replicating regions have lower mutation rate compared to late replicating ones. Researchers reason replication errors are more likely to be corrected by DNA repair system in early replicating
300 301 302 303	 (p < 0.012, one-side rank-sum test, Figure 3E). Replication time is known to correlate greatly with mutation rate. Early replicating regions have lower mutation rate compared to late replicating ones. Researchers reason replication errors are more likely to be corrected by DNA repair system in early replicating regions. With defects in mutated chromatin remodeling, we observed this trend became less
300 301 302 303 304	 (p < 0.012; one-side rank-sum test, Figure 3E). Replication time is known to correlate greatly with mutation rate. Early replicating regions have lower mutation rate compared to late replicating ones. Researchers reason replication errors are more likely to be corrected by DNA repair system in early replicating regions. With defects in mutated chromatin remodeling, we observed this trend became less pronounced (p<0.031, one-side rank-sum test, Figure S5). This is likely because dysregulation of
300 301 302 303 304 305 306	(p < 0.012, one-side rank-sum test, Figure 3E). Replication time is known to correlate greatly with mutation rate. Early replicating regions have lower mutation rate compared to late replicating ones. Researchers reason replication errors are more likely to be corrected by DNA repair system in early replicating regions. With defects in mutated chromatin remodeling, we observed this trend became less pronounced (p<0.031, one-side rank-sum test, Figure S5). This is likely because dysregulation of the chromatin environment hinders replication error repair by changing the accessibility of newly
300 301 302 303 304 305 306 307	$(p < 0.01 \underline{9}, one-side rank-sum test, Figure 3E).$ Replication time is known to correlate greatly with mutation rate. Early replicating regions have lower mutation rate compared to late replicating ones. Researchers reason replication errors are more likely to be corrected by DNA repair system in early replicating regions. With defects in mutated chromatin remodeling, we observed this trend became less pronounced (p<0.031, one-side rank-sum test, Figure S5). This is likely because dysregulation of the chromatin environment hinders replication error repair by changing the accessibility of newly synthesized DNA chains.
300 301 301 302 303 303 304 305 306 307 308 308	(p < 0.012; one-side rank-sum test, Figure 3E). Replication time is known to correlate greatly with mutation rate. Early replicating regions have lower mutation rate compared to late replicating ones. Researchers reason replication errors are more likely to be corrected by DNA repair system in early replicating regions. With defects in mutated chromatin remodeling, we observed this trend became less pronounced (p<0.031, one-side rank-sum test, Figure S5). This is likely because dysregulation of the chromatin environment hinders replication error repair by changing the accessibility of newly synthesized DNA chains.

Shantao 2/18/2017 7:22 PM
Deleted:
Shantao 2/18/2017 7:22 PM
Deleted: HEK293, a cell line derived from human embryonic kidney cells, the closest match we could find in the ENCODE DHS database.
Shantao 2/18/2017 7:24 PM
Deleted: 12
Shantao 2/18/2017 7:24 PM
Deleted: 2
Shantao 2/18/2017 7:24 PM
Deleted: non-silent
Shantao 2/18/2017 7:24 PM
Deleted: eleven
Shantao 2/18/2017 7:25 PM
Deleted: 32
Shantao 2/18/2017 7:25 PM
Deleted: 0
Shantao 2/18/2017 7:38 PM
Deleted: about 50
Shantao 2/18/2017 7:38 PM
Deleted: 75
Shantao 2/18/2017 7:38 PM
Deleted: 12
Shantao 2/18/2017 7:25 PM
Deleted: 5

Shantao 2/18/2017 9:16 PM Formatted: Font:Bold Shantao 2/18/2017 9:16 PM Formatted: Font:Bold

325	With the richness of SNVs in WGS samples, we inferred 35 individual evolution trees (Figure
326	SXX). Three trees have a largest population faction <0.5 (likely due to low mutation number,
327	high sequence error and/or high heterogeneity) and thus excluded from downstream analysis. We
328	could further classify the trees into four types based on topology (Figure 4A, 4B): no branch, less
329	subclones (10, 32.3%), short branches (12, 37.5%), no branch, more subclones (5, 15.6%) and
330	<u>long branches (5, 15.6%).</u>
331	Short branch type is significantly enriched in Type I pRCC (p<0.011, two-tailed fisher exact test)
332	while the more heterogeneous types: long branches and no branch, more subclones type are
333	significantly depleted in Type I ($p \le 0.0034$, two-tailed fisher exact test). This indicates type I
334	tumors are more homogenous and show less complex evolution features compared to type II and
335	unclassified samples,
336	
336 337	Discussion
336337338	Discussion We comprehensively analyzed both WGS and an extensive set of WXS of pRCC,
336337338339	Discussion We comprehensively analyzed both WGS and an extensive set of WXS of pRCC, scrutinizing local high-impact events as well as giving a macro overlook of the mutation
 336 337 338 339 340 	Discussion We comprehensively analyzed both WGS and an extensive set of WXS of pRCC, scrutinizing local high-impact events as well as giving a macro overlook of the mutation landscape. Our work further completed the genomic alteration landscape of pRCC (Figure 4B).
 336 337 338 339 340 341 	Discussion We comprehensively analyzed both WGS and an extensive set of WXS of pRCC, scrutinizing local high-impact events as well as giving a macro overlook of the mutation landscape. Our work further completed the genomic alteration landscape of pRCC (Figure 4B). Beyond traditionally driver events, we suggested several novel noncoding alterations potentially
 336 337 338 339 340 341 342 	Discussion We comprehensively analyzed both WGS and an extensive set of WXS of pRCC, scrutinizing local high-impact events as well as giving a macro overlook of the mutation landscape. Our work further completed the genomic alteration landscape of pRCC (Figure 4B). Beyond traditionally driver events, we suggested several novel noncoding alterations potentially drive tumorigenesis.
 336 337 338 339 340 341 342 343 	Discussion We comprehensively analyzed both WGS and an extensive set of WXS of pRCC, scrutinizing local high-impact events as well as giving a macro overlook of the mutation landscape. Our work further completed the genomic alteration landscape of pRCC (Figure 4B). Beyond traditionally driver events, we suggested several novel noncoding alterations potentially drive tumorigenesis_ First, we elaborated on previous results of the long known driver <i>MET</i> . In an extended
 336 337 338 339 340 341 342 343 344 	Discussion We comprehensively analyzed both WGS and an extensive set of WXS of pRCC, scrutinizing local high-impact events as well as giving a macro overlook of the mutation landscape. Our work further completed the genomic alteration landscape of pRCC (Figure 4B). Beyond traditionally driver events, we suggested several novel noncoding alterations potentially drive tumorigenesis. First, we elaborated on previous results of the long known driver <i>MET</i> . In an extended 117 WXS dataset, we found six additional nonsynonymous somatic mutations in the
 336 337 338 339 340 341 342 343 344 345 	Discussion We comprehensively analyzed both WGS and an extensive set of WXS of pRCC, scrutinizing local high-impact events as well as giving a macro overlook of the mutation landscape. Our work further completed the genomic alteration landscape of pRCC (Figure 4B). Beyond traditionally driver events, we suggested several novel noncoding alterations potentially drive tumorigenesis_ First, we elaborated on previous results of the long known driver <i>MET</i> . In an extended 117 WXS dataset, we found six additional nonsynonymous somatic mutations in the hypermutated tyrosine kinase catalytic domain. These somatic mutations are highly recurrent,

Shantao 2/17/2017 6:50 PM

Deleted: However, a non-parametric permutation Kolmogorov–Smirnov test (see Methods) failed to detect a statistical significance (p > 0.05), likely because of the small number of samples and the prudence of our conserved test.

353	supports the central role of MET in pRCC. Then we found an exonic SNP in MET, rs11762213,
354	to be a prognostic germline variance in type 2 pRCC. Previously, rs11762213 was found to
355	predict outcome in a mixed RCC samples, predominated by ccRCC (14). Later, the result is
356	confirmed in a large ccRCC cohort (9). However, it is never clear whether rs11762213 only
357	predicts the outcome in ccRCC or other histological types as well. In this study, we concluded
358	that the minor alternative allele of rs11762213 also forecasts unfavorable outcome in type 2
359	pRCC patients. The mechanism of this exonic germline SNP remains unsettled. A previous study
360	proposes it disrupt a putative enhancer and thus affect <u>MET</u> expression. However, researchers
361	cannot find significant difference in <u>MET</u> expression in either tumor or normal tissues. We
362	noticed there is other gene within 100 kb of this SNP. Given the significant role of <u>MET in</u>
363	pRCC, we also think rs11762213 is affecting survival through MET, although the mechanism
364	unknown.
365	Remarkably, similar to ccRCC, type 2 pRCC is not primarily driven by MET. Not as
366	significantly mutated in ccRCC and type 2 pRCC, MET nonetheless seems to play a role in
367	cancer development. ccRCC responses to MET inhibitors (REF). This finding is potentially
368	meaningful in clinical management of patients with the more aggressive type 2 pRCC.
369	rs11762213 genotyping could become a reliable, low-cost risk stratification tool for these
370	patients. Also, rs11762213 might become a biomarker for predicting patient response to MET
371	inhibitors.
372	Interestingly, rs11762213 is prevalent mostly in European and American populations but
373	not in African populations and rare in populations in Asia. MAF of rs11762213 among African
374	American patients in our cohort is 2.73%, higher than MAFs in general African populations
375	observed in 1000 Genome phase 3 dataset (0.2%, 0% in Americans with African ancestry

Shantao 2/18/2017 9:07 PM Formatted: Font:Italic Shantao 2/18/2017 9:08 PM Formatted: Font:Italic Shantao 2/18/2017 9:11 PM Formatted: Font:Italic Shantao 2/18/2017 9:12 PM Formatted: Font:Italic

Shantao 1/24/2017 1:54 AM Deleted: central Shantao 2/18/2017 9:09 PM Formatted: Font:Italic Shantao 1/24/2017 1:55 AM Deleted: of

Shantao 1/24/2017 1:55 AM Deleted: Potentially Shantao 2/18/2017 7:45 PM Deleted: , patients with Shantao 1/24/2017 2:32 AM Deleted: also benefit from

381	(ASW))) and the ExAC dataset (1.1%, excluding TCGA cohorts). This implies a possible effect
382	of rs11762213 on pRCC incidence among African Americans that is worth further investigation.
383	Besides, in MET non-coding regions, we first find a cryptic promoter from a
384	retrotransposon in the second intron initiates the alternative splicing event, which is classified as
385	a driver event by the TCGA study (3). Methylation is a major source of silencing
386	retrotransposon activities in human genome (REF). Indeed, we observed evidence for a local
387	loss of methylation and global methylation dysregulation in samples expressing alternative
388	isoforms. Therefore, we showed methylation change might drive pRCC growth through MET
389	pathway.
390	We also discovered mutations associated with MET promoter and first two introns.
391	Although the implication is unknown, our analysis suggests there is a mutation hotspot in MET
392	that calls for further research.
393	Expanding our scope from coding to non-coding and use FunSeq to group SNVs by
394	functional elements, we found several potentially significant non-coding mutation hotspots
395	relevant to tumorigenesis throughout the entire genome. A mutation hotspot was found upstream
396	of ERRFI1, an important regulator of the EGFR pathway, which may serve as a potential tumor
397	suppressor. EGFR inhibitors have been used in papillary kidney cancer with an 11% response
398	rate observed (22). These mutations potentially disrupt regulatory elements of <i>ERRFI1</i> and thus
399	play a role in tumorigenesis. However, likely limited by a small sample size, we were not able to
400	detect statistically significant functional changes in ERRFI1 and related pathways. Another non-
401	coding hotpot is in NEATI, a long non-coding RNA that has been speculated to involve in
402	cancer. All mutations locate in a putative regulatory region of the gene. Patients carrying
403	mutations in NEAT1 have significantly higher NEAT1 expression and worse prognosis. High

Shantao 1/24/2017 2:11 AM

Deleted: Perhaps this variant could play a role in the significant racial disparities are known to exist in the overall incidence, histologic distribution, and survival of African Americans with kidney cancer.

Shantao 2/18/2017 7:50 PM Deleted: w

410	expression of <u>NEAT1</u> predicts significantly worse survival in ccRCC as well. NEAT1 has been	
411	shown to be hypermutated in other cancers and some studies also linked high NEAT1 association	
412	with unfavorable prognosis in several other tumors (23-24). Last, a downstream lncRNA,	
413	MALAT1, shows tight co-expression pattern with NEAT1 in both pRCC and ccRCC. MALAT1 is	
414	in COSMIC consensus cancer gene list and annotated as related with pediatric RCCs.	\backslash
415	WGS provides many times more SNVs compared to WXS, and noncoding SNSs are less	
416	constrains by selection pressure. Thus it gives us a great opportunity to look into the high-level	
417	landscape of mutations in pRCC. We identified mutation rate dispersion of C-to-T in CpG motif	
418	contributes the most to the inter-sample mutation spectra variations. We further pinned down the	
419	cause of dispersion by showing the hypermethylated cluster, identified in the previous TCGA	
420	study (3), has higher C-to-T rate in CpGs. This hypermethylated cluster is associated with later	
421	stage, type 2 pRCC, SETD2 mutation and worse prognosis (3). Although increased C-to-T in	
422	CpG is likely the result of hypermethylation, we cannot rule out the possibility the change of	
423	mutation landscape plays a role in cancer development. For example, C-to-T in methylated CpG	
424	causes loss of methylation, which could have effects on local chromatin environment, trans-	
425	elements recruitment and gene expression regulation. In our study, we observed C-to-Ts in CpG	
426	are enriched in coding regions, which indicates they have higher functional impacts in cancer	
427	genome.	
428	Significant APOBEC activities and consequential mutation signatures were observed in	
429	one type 2 pRCC case. APOBEC activities were known to be prevalent in UCs (12, 19). We also	
430	successfully detected prominent APOBEC signatures in all three UC samples processed in the	
431	same pipeline as pRCCs. Intriguingly, despite being considered to have the same cellular origin	

432 with pRCC, we were not able to detect significant APOBEC activities in ccRCC. This is in

Shantao 2/18/2017 8:02 PM Formatted: Font:Italic

Shantao 2/18/2017 8:03 PM Formatted: Font:Italic Shantao 2/18/2017 8:03 PM Formatted: Font:Italic Shantao 2/18/2017 8:04 PM Formatted: Font:Italic

hantao 2/18/2017 8:20 PM

Deleted: Last, focusing on the high-level landscape of mutations in pRCC, w

agreement with previous studies (12). APOBEC mutation signature was also found in a small	
percentage of chromophobe renal cell carcinoma (25), although they are believed to have a	
different cellular origin. APOBEC activities have been linked with genetic predisposition and	
viral infection (26). Given a statistically robust signal in our conservative algorithm, it is	
plausible that a small fraction of otherwise driver mutation absent type 2 pRCCs might share	
some, etiologically and gnomically similarity with, UC. Standard treatment for UC involves	
cytotoxic chemotherapy and radiation while RCC shows low response rate to cytotoxic therapy.	
Pending further research, this, finding, might, lead to actionably clinical implications, (still too	
strong?),	
Chromatin remodeling pathway is highly mutated in pRCC (3). Several chromatin	
remodelers, for example SETD2 and PBRM1, have been identified as cancer drivers in pRCC.	
We investigate the relationship between samples with mutated chromatin remodelers and those	
without such mutations in terms of overall mutational spectrum. We demonstrated pRCC with	
defects in chromatin remodeling genes shows higher mutation rate in general, driven by an even	
stronger mutation rate increase in putative open chromatin regions in normal kidney tissues. This	
is likely because chromatin remodeling defects affect normal open chromatin environment and	
impede DNA repairing in these regions.	
impede DNA repairing in these regions. It is known that replication time strongly governs local mutation rate. Early replication	
impede DNA repairing in these regions. It is known that replication time strongly governs local mutation rate. Early replication regions have fewer mutations. But the difference dissipates when DNA mismatch repair becomes	
impede DNA repairing in these regions. It is known that replication time strongly governs local mutation rate. Early replication regions have fewer mutations. But the difference dissipates when DNA mismatch repair becomes defective (21). In our study, we found this correlation weakened in chromatin remodeling genes	
impede DNA repairing in these regions. It is known that replication time strongly governs local mutation rate. Early replication regions have fewer mutations. But the difference dissipates when DNA mismatch repair becomes defective (21). In our study, we found this correlation weakened in chromatin remodeling genes mutated samples, presumably caused by failure of replication error repair in an abnormal	
 impede DNA repairing in these regions. It is known that replication time strongly governs local mutation rate. Early replication regions have fewer mutations. But the difference dissipates when DNA mismatch repair becomes defective (21). In our study, we found this correlation weakened in chromatin remodeling genes mutated samples, presumably caused by failure of replication error repair in an abnormal chromatin environment. By adapting defects in chromatin remodeling genes, tumor alters its 	
	agreement with previous studies (12). APOBEC mutation signature was also found in a small percentage of chromophobe renal cell carcinoma (25), although they are believed to have a different cellular origin. APOBEC activities have been linked with genetic predisposition and viral infection (26). Given a statistically robust signal in our conservative algorithm, it is plausible that a small fraction of otherwise driver mutation absent type 2 pRCCs might share some etiologically and gnomically similarity with UC. Standard treatment for UC involves cytotoxic chemotherapy and radiation while RCC shows low response rate to cytotoxic therapy. Pending further research, this, finding might lead to actionably clinical implications (still too strong?). Chromatin remodeling pathway is highly mutated in pRCC (3). Several chromatin remodelers, for example <i>SETD2</i> , and <i>PBRM1</i> , have been identified as cancer drivers in pRCC. We investigate the relationship between samples with mutated chromatin remodelers and those without such mutations in terms of overall mutational spectrum. We demonstrated pRCC with defects in chromatin remodeling genes shows higher mutation rate in general, driven by an even stronger mutation rate increase in putative open chromatin regions in normal kidney tissues. This is likely because chromatin remodeling defects affect normal open chromatin environment and

Shantao 1/24/2017 2:18 AM Deleted: b Shantao 1/24/2017 2:18 AM Deleted: e Shantao 1/24/2017 2:18 AM Deleted: genomically Shantao 1/24/2017 2:19 AM Deleted: to Shantao 1/24/2017 2:19 AM Deleted: ince s Shantao 1/24/2017 2:22 AM Formatted: Highlight Shantao 1/24/2017 2:19 AM Deleted: <mark>,</mark> Shantao 1/24/2017 2:19 AM Deleted: this Shantao 1/24/2017 2:20 AM Deleted: could have Shantao 1/24/2017 2:20 AM Deleted: a very Shantao 1/24/2017 2:20 AM **Deleted:** meaningful clinical impact. Shantao 2/18/2017 8:05 PM Deleted: , BAP1

Shantao 1/24/2017 2:24 AM **Deleted:** due to

high mutation burden in functional important open chromatin regions also raises the chance that
tumor antigens activate host immune system. Researchers found tumors with DNA mismatch
repair deficiency response better to PD-1 blockage (27), while these tumors also accumulates
more mutations in early replicated regions (21). Thus chromatin remodeler alterations might as
well correlate with higher response rate of immunotherapy,
In this first whole genome study of pRCC, we found several novel non-coding alterations
that might have meaningful clinical impacts. However, due to a limited sample size, our

477 statistical tests were underpowered. As the cost of sequencing keeps dropping, we expect to have

478 more pRCC whole genome sequenced in the near future (28). With a larger cohort, we hope to

gain enough power to test the hypotheses we formed as well as further explore the noncodingregions of pRCC.

481

482 Materials and Methods

483 Data acquisition

484 We downloaded pRCC and ccRCC WXS and pRCC WGS variation calls from TCGA

485 Data Portal (https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp) and TCGA Jamboree

486 respectively. pRCC RNAseq, RPPA and methylation data were downloaded from TCGA Data

487 Portal as well. Repli-seq and DHS data were obtained from ENCODE

488 (https://www.encodeproject.org/).

489

490 Testing rs11762213 on prognosis and exploring somatic mutations in MET

491	We downloaded pRCC clinical outcomes from TCGA Data Portal (https://tcga-
492	data.nci.nih.gov/tcga/tcgaDownload.jsp). pRCC samples that failed the histopathological review
493	were excluded (3). In total, we included 277 patients in our analyses (Figure S1, Table S1). For
494	germline calls, the majority of samples, 163 out of 277, were supported by SNV callings from at
495	least two centers (102 from three centers). 100% genotype concordance rate was observed. Also,
496	162 curated rs11762213 genotypes were in agreement with automated callsets. With proved high
497	confidence in accuracy of genotyping rs11762213 in germline, we recruited additional 114
498	samples from single-center (BCM), automated calls to form an extensive patients set (Figure S1).
499	For somatic SNVs in MET, after excluding cases that were recruited in the TCGA study, we
500	formed an additional set encompassing 117 patients. Five callings were supported by two
501	centers. The rest were supported by single-center (BCM) automated calls.
502	Cancer-specific survival was defined using the same criteria as described in a ccRCC
503	study (9). Deaths were considered as cancer-specific if the "Personal Neoplasm Cancer Status" is
504	"With Tumor". If "Tumor Status" is not available, then the deceased patients were classified as
505	cancer-specific death if they had metastasis (M1) or lymp node involvement (>= N1) or died
506	within two years of diagnosis. An R package, "survival", was used for the survival analysis.
507	

508	SV calling procedure	Shantao 2/17/2017 7:05 PM	
509	We remapped the reads using bwa 0.7.12, which support split read mapping. Then	Shantao 2/17/2017 7:07 PM Formatted: Indent: First line: 0"	
510	we used DELLY (10) with default parameters for somatic SV calling. To avoid sample	 Shantao 2/17/2017 7:07 PM	
511	contamination or germline SVs, we filtered our callsets against the entire TCGA pRCC WGS	Deleted: .	[1]
512	dataset, regardless of sample match or pathological reviews. We discharge all callings that were	Deleted: 2	
513	marked "LowQual" (PE/SR support below 3 or mapping quality below 20). Last, to further	Deleted: Lastly, we	

|--|

520 overlapping with 1000 Genome Phase III SV callsets (only 1/425 found),

Shantao 2/17/2017 7:07 PN Deleted:

521

522 Mutation spectra study

- 523 WGS Mutations were extracted from flanking 5' and 3' nucleotide context. The raw
- 524 mutation counts were normalized by trinucleotide frequencies in the whole genome.
- 525 To identify signatures in the mutation spectra, we used a robust, objective LASSO-based
- 526 method. First, 30 known signatures were downloaded from COSMIC
- 527 (http://cancer.sanger.ac.uk/cosmic/signatures). Then we solve a positive, zero-intercept linear
- 528 regression problem with L1 regularizer to obtain signatures and corresponding weights for each
- 529 genome. Specifically, we solve the problem:

$$\min_{W}(\|SW - M\|_2 + \lambda \|W\|)$$

530 Where M is the mutation matrix, containing the mutations of each sample in 96 531 nucleotide contexts. S is the 96×30 signature matrix, representing the mutation probability in 96 nucleotide contexts of the 30 signatures. W is the weighting matrix, representing the contribution 532 533 of 30 signatures to each sample. The penalty parameter lambda (λ) was determined empirically using 10-fold cross-534 validation individually for every sample. λ was chosen to maximize sparsity and constrained to 535 keep mean-square error (MSE) within one standard error of its minimum. Last, we discharged 536 signatures that composite less than 5% of the total detectable signatures. 537

540 Methylation association analysis

541	In total, we collected HumanMethylation450 BeadChip array data for 139 samples that
542	are either methylation cluster 1 or 2. We used an R package "IMA" to facilitate analysis (11).
543	After discharging sites with missing values or on sex chromosomes, we obtained beta-values on
544	366,158 CpG sites in total. Then we test beta-values of each site by Wilcoxon rank sum test
545	between two methylation clusters. After adjusting p-value using Benjamini-Hochberg procedure,
546	we called 9,324(2.55%) hypermethylation sites. These sites have an adjusted p-value of less than
547	0.05 and mean beta-values in methylation cluster 1 are 0.2 or higher than the ones in methylation
548	cluster 2.

549

550 APOBEC enrichment analysis

551 We used the method described by Roberts et al. (12). For every $C>\{T,G\}$ and $G>\{A,C\}$ 552 mutation we obtained 20bp sequence both upstream and downstream. Then enrichment fold was 553 defined as:

$$Enrichment Fold = \frac{Mutation_{TCW/WGA} \times Context_{C/G}}{Mutation_{C/G} \times Context_{TCW/WGA}}$$

554	Here TCW/WGA stands for $T[C>{T,G}]W$ and $W[G>{A,C}]A$. W stands for A or T. p-
555	value for enrichment were calculated using one-side Fisher-exact test. To adjust for multiple
556	hypothesis testing, p-values were corrected using Benjamini-Hochberg procedure.
557	WXS data for APOBEC enrichment and signature analysis was obtained from a high
558	quality somatic callset: hgsc.bcm.edu_KIRP.IlluminaGA_DNASeq.1.protected.maf. This dataset

- includes 155 pRCC samples and three UC samples. We use 559
- hgsc.bcm.edu_KIRC.Mixed_DNASeq.1.protected.maf for ccRCC analyses. 560

Chromatin remodeling genes and replication time association 562

563	We identified chromatin remodeling genes based on its significance in pRCC and	Shantao 2/17/2017 7:03 PM
564	function. Our gene list is the intersection of gene lists in the original TCGA pRCC study	Deleted:
565	molecular feature table (supplementary table 3) with the chromatin remodeling and SNI/SWF	Formatted: Indent: First line: 0.5"
566	pathway gene lists (supplementary table 4). Our gene set include ten genes; SETD2, KDM6A,	Shantao 2/17/2017 7:05 PM
567	PBRM1, SMARCB1, ARID1A, ARID2, MLL2 (KMT2D), MLL3(KMT2C), MLL4(KMT2B),	Formatted: Font:Italic
568	EP300. We found adding BAP1 into the list won't change the significance of our tests. We	Shantao 2/17/2017 7:03 PM
569	defined chromatin remodeling defect as nonsynonymous mutations in these genes. For missense	Formatted: Highlight
570	mutations, we filtered out mutations with polyphen score less then 0.8 (benign).	Chantan 2/17/2017 7:01 DM
571	In order to avoid cell type redundancy, we only kept GM12878 as the representative of	Deleted: included eleven genes. They are <i>ARID1A, ARID2, BAP1, DNMT3A, KDM6A,</i> <i>MIL2, MIL3, MIL4, PRRMI SETD2</i>
572	all lymphoblastoid cell lines. Eleven cell types were included in our analysis: BG02ES, BJ,	<u>SMARCBI.</u> Shantao 2/17/2017 7:03 PM
573	GM12878, HeLaS3, HEPG2, HUVEC, IMR90, K562, MCF7, NHEK, SK-NSH. Wave	Formatted: Highlight
574	smoothed replication time signal was averaged in a ± 10 kb region from every mutation. To avoid	
575	potential selection effects, we removed mutations in exome and flanking 2bp. Regions overlap	
576	with reference genome gaps and DAC blacklist (https://genome.ucsc.edu/) were removed as	
577	well. Last, we picked the median number from 11 cell types at each mutation position for further	
578	analysis.	
579	To test the significance of replication time of non-coding mutations between two groups,	Shantao 2/17/2017 6:51 PM Deleted: we adapted a conservative non- parametric Kolmogorov-Smirnov test (K-S
580	we assigned all the mutation with its local replication time and then defined the ones stand above	test) using empirical p-value.

eted: we adapted a conservative nonnetric Kolmogorov-Smirnov test (K-S test) using empirical p-value. Shantao 2/17/2017 6:51 PN Deleted: W

590	90	per	cen	tile	in	all	poole	ed	mutations	as	"mutations	in	early	replicated	re	gions"	Then we	е

sample and compare between two groups using rank-sum test,

- 591 calculate the percentage of "mutations in early replicated regions" in total mutations for each
- 592
- 593
- 594 **Evolution tree inference:**

number loss.

- 595 We use PhyloWGS (REF) to infer the evolution trees for each individual tumor. To mitigate the
- 596 effects on copy number change, we removed all the SNVs inside the copy number change
- 597 regions as defined by assay-based method in the original TCGA study (REF). To be prudent, we
- 598 defined any region with an absolute log tumor copy number to normal ratio larger than 0.3. Last,
- 599 we removed all SNVs with allele frequency higher than 0.6 as they are likely affected by copy
- 600
- 601

602	Author contributions: SL, BMS and MG conceived and designed the study. SL carried out the
603	computation and data analysis, SL, BMS and MG interpreted the results. SL wrote the
604	manuscript. BMS and MG co-directed this work. All authors have read and approved the final
605	manuscript. Competing interests: The authors declare no competing interests.
606	Acknowledgments: This work was supported by the National Institutes of Health, AL Williams
606 607	Acknowledgments: This work was supported by the National Institutes of Health, AL Williams Professorship, and in part by the facilities and staffs of the Yale University Faculty of Arts and
606 607 608	Acknowledgments: This work was supported by the National Institutes of Health, AL Williams Professorship, and in part by the facilities and staffs of the Yale University Faculty of Arts and Sciences High Performance Computing Center. We thank Patrick Mcgillivray for his help in
606 607 608 609	Acknowledgments: This work was supported by the National Institutes of Health, AL Williams Professorship, and in part by the facilities and staffs of the Yale University Faculty of Arts and Sciences High Performance Computing Center. We thank Patrick Mcgillivray for his help in manuscript preparation.

- 610
- 611 References

Shantao 2/17/2017 6:52 PM

Deleted: its percentile among all mutations replication time shifted ± 100 kb from the origin (represents the background replication time)

Shantao 2/17/2017 6:52 PM

Deleted: K-S test Shantao 2/17/2017 6:54 PM Deleted: statistics Shantao 2/17/2017 6:54 PM

Deleted: in

Shantao 2/17/2017 6:54 PM **Deleted:** and compare

Shantao 2/17/2017 6:52 PM

Deleted: To obtain the empirical p-value, we randomly permutated the chromatin remodeling genes mutation labels for 1,000 times to estimate the test statistics distribution under null hypothesis. Shantao 2/18/2017 8:10 PM

Formatted: Font:Bold

626	1.	Siegel, R, Naishadham, D, Jemal, A. Cancer statistics, 2015. CA: a cancer journal for
627		clinicians. 2015; 65(1), 5-29.
628	2.	Shuch B, Amin A, Armstrong AJ, Eble JN, Ficarra V, Lopez-Beltran A, et al.
629		Understanding pathologic variants of renal cell carcinoma: distilling therapeutic
630		opportunities from biologic complexity. European urology. 2015;67(1):85-97.
631	3.	Cancer Genome Atlas Research Network. Comprehensive molecular characterization of
632		papillary renal-cell carcinoma. N Engl J Med. 2016;2016(374):135-45.
633	4.	Khurana E, Fu Y, Colonna V, Mu XJ, Kang HM, Lappalainen T, et al. Integrative
634		annotation of variants from 1092 humans: application to cancer genomics. Science.
635		2013;342(6154):1235587.
636	5.	Fu Y, Liu Z, Lou S, Bedford J, Mu XJ, Yip KY, et al. FunSeq2: a framework for
637		prioritizing noncoding regulatory variants in cancer. Genome biology. 2014;15(10):1.
638	6.	Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA. Highly recurrent
639		TERT promoter mutations in human melanoma. Science. 2013;339(6122):957-9.
640	7.	Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR. Deciphering
641		signatures of mutational processes operative in human cancer. Cell reports.
642		2013;3(1):246-59.
643	8.	Alexandrov LB, Nik-Zainal S, Siu HC, Leung SY, Stratton MR. A mutational signature
644		in gastric cancer suggests therapeutic strategies. Nature communications. 2015;6.
645	9.	Hakimi AA, Ostrovnaya I, Jacobsen A, Susztak K, Coleman JA, Russo P, et al.
646		Validation and genomic interrogation of the MET variant rs11762213 as a predictor of
647		adverse outcomes in clear cell renal cell carcinoma. Cancer. 2016;122(3):402-10.

648	10. Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: structural
649	variant discovery by integrated paired-end and split-read analysis. Bioinformatics.
650	2012;28(18);i333-9.

- 11. Wang D, Yan L, Hu Q, Sucheston LE, Higgins MJ, Ambrosone CB, et al. IMA: an R
 package for high-throughput analysis of Illumina's 450K Infinium methylation data.
 Bioinformatics. 2012;28(5):729-30.
- Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P, et al. An
 APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers.
 Nature genetics. 2013;45(9):970-6.
- Schmidt L, Junker K, Weirich G, Glenn G, Choyke P, Lubensky I, et al. Two North
 American families with hereditary papillary renal carcinoma and identical novel
 mutations in the MET proto-oncogene. Cancer research. 1998;58(8):1719-22.
- 14. Schutz FA, Pomerantz MM, Gray KP, Atkins MB, Rosenberg JE, Hirsch MS, et al.
 Single nucleotide polymorphisms and risk of recurrence of renal-cell carcinoma: a cohort
 study. The lancet oncology. 2013;14(1):81-7.
- Guo S, Chen W, Luo Y, Ren F, Zhong T, Rong M, et al. Clinical implication of long non coding RNA NEAT1 expression in hepatocellular carcinoma patients. International
 journal of clinical and experimental pathology. 2015;8(5):5395.
- Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape of
 somatic mutations in 560 breast cancer whole-genome sequences. Nature.
- 668 2016;534(7605):47-54.

669	17.	Choudhry H, Albukhari A, Morotti M, Haider S, Moralli D, Smythies J, et al. Tumor
670		hypoxia induces nuclear paraspeckle formation through HIF-2 α dependent transcriptional
671		activation of NEAT1 leading to cancer cell survival. Oncogene. 2015;34(34):4482-90.
672	18.	Chakravarty D, Sboner A, Nair SS, Giannopoulou E, Li R, Hennig S, et al. The oestrogen
673		receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer.
674		Nature communications. 2014;5.
675	19.	Cancer Genome Atlas Research Network. Comprehensive molecular characterization of
676		urothelial bladder carcinoma. Nature. 2014;507(7492):315-22.
677	20	. Sato Y, Yoshizato T, Shiraishi Y, Maekawa S, Okuno Y, Kamura T, et al. Integrated
678		molecular analysis of clear-cell renal cell carcinoma. Nature genetics. 2013;45(8):860-7.
679	21.	Supek F, Lehner B. Differential DNA mismatch repair underlies mutation rate variation
680		across the human genome. Nature. 2015;521(7550):81-4.
681	22.	Gordon MS, Hussey M, Nagle RB, Lara PN, Mack PC, Dutcher J, et al. Phase II study of
682		erlotinib in patients with locally advanced or metastatic papillary histology renal cell
683		cancer: SWOG S0317. Journal of Clinical Oncology. 2009;27(34):5788-93.
684	23.	Li Y, Li Y, Chen W, He F, Tan Z, Zheng J, et al. NEAT expression is associated with
685		tumor recurrence and unfavorable prognosis in colorectal cancer. Oncotarget.
686		2015;6(29):27641.
687	24.	He C, Jiang B, Ma J, Li Q. Aberrant NEAT1 expression is associated with clinical
688		outcome in high grade glioma patients. Apmis. 2016;124(3):169-74.
689	25.	Davis CF, Ricketts CJ, Wang M, Yang L, Cherniack AD, Shen H, et al. The somatic
690		genomic landscape of chromophobe renal cell carcinoma. Cancer cell. 2014;26(3):319-
691		30.

692	26. Henderson S, Chakravarthy A, Su X, Boshoff C, Fenton TR. APOBEC-mediated
693	cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-
694	driven tumor development. Cell reports. 2014;7(6):1833-41.
695	27. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade
696	in tumors with mismatch-repair deficiency. New England Journal of Medicine.
697	2015;372(26):2509-20.
698	28. Muir P, Li S, Lou S, Wang D, Spakowicz DJ, Salichos L, et al. The real cost of
699	sequencing: scaling computation to keep pace with data generation. Genome biology.
700	2016;17(1):1.
701	
702	
703	
704	
705	
706	
707	
708	
709	
710	
711	
712	
713	
714	
715	
716	

718	Figure 1. <u>MET noncoding alterations and Survival analysis of rs11762213 in pRCC patients.</u>	
719	(A) A schematics diagram of non-coding mutations on MET. The germline SNP, rs11762213, is also shown. Thin	
720	black lines indicate retrotransponson initiated alternative isoform.	
721	(B) Genotypes are shown in the legend. Peto & Peto modification of the Gehan-Wilcoxon test.	
722		
723	Figure 2. Noncoding alterations in pRCC.	
724	(A) A schematics diagram of non-coding mutations on <i>ERRF11</i> (B) A schematics diagram of non-coding mutations	
/21		Shantao 2/18/2017 9:59 PM
725	on NEAT1. One tumor carries two mutations on NEAT1. (C) Tumors with mutations on NEAT1 show higher NEAT1	Deleted: (A) A schematics diagram of non-
726	expression. (D) Survival analysis shows mutations in NEAT1 are associated with worse prognosis. To avoid	rs11762213, is also shown.
727	notential confounding effects, we removed one subject who carries rel1762213 but not NEATL mutation. Log-rank	Shantao 2/18/2017 10:00 PM
121	potential confounding creets, we removed one subject who carries 1511/02215 out not where the house in the subject where subject where the subject w	Deleted: B Shantao 2/18/2017 10:00 PM
728	test.	Deleted: C
729		Shantao 2/18/2017 10:00 PM
720	Element 2 Materia and and the annual in a DCC	Deleted: D
/30	Figure 5. Mutation spectra and mutation processes in pRCC.	Shantao 2/18/2017 10:00 PM
731	(A) The mutation spectrum of all pRCC WGS samples. Mutations are ordered in alphabetical order of the reference	Deleted: E
732	trinucleotides (with the mutated nucleotide in the middle, from A[C>A]A to T[T>G]T) from left to right, Then we	
733	use PCA to maximize inter-sample variation. The loadings on the first principle component is strongly dominated by	Shantao 2/18/2017 10:00 PM Deleted: (B)
734	CNT in CrGs (R) PC1 along with CNT in CrGs mutation counts and the fractions of such mutations among total	Shantao 2/18/2017 10:00 PM
/34	C 1 in cpos. (2) 1 C1, along with C 1 in cpos inutation counts and the fractions of such inutations among total	Deleted: W
735	mutations are significantly different between two methylation groups. (C) APOBEC mutation signatures are shown	Shantao 2/18/2017 10:00 PM
736	for both pRCC (along with three UC sampels, which have blue outer circles) and ccRCC TCGA cohorts. Red	Shantao 2/18/2017 10:00 PM
737	dashed line represents the median APOBEC enrichment. (D) Comparison of total mutation counts, mutations counts	Deleted: D
738	in open chromatin regions and percentages of mutations in open chromatin regions of total mutations between	Shantao 2/18/2017 10:00 PM Deleted: E
739	tumors with chromatin remodeling genes alterations and the ones without	
737	tantois with enrollatin remodering gones are and the ones without.	
/40		
741	Figure 4. <u>Evolution trees and genomic alteration landscape of <u>35</u> whole genome sequenced pRCC samples.</u>	Chapter 2/18/2017 40:04 DM
742	(A) Two individual evolutions trees. Cancer related mutations firstly appear in each population is marked by	Deleted: The
742	companyed in a colore (D) Inday, estimatin day, ess Table 52	Shantao 2/18/2017 10:01 PM
/43	corresponding colors (B) and an index, see rable 52	Deleted: 32
744		Shantao 2/18/2017 10:01 PM

Deleted: Grey cells represent genomic alterations. CN: copy number.