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Integrating ENCODE data to interpret regulatory changes in 
cancer 

Abstract 

#/*=== abstract section 364 words ===*/ 

Articles have a summary, separate from the main text, of up to 150 words, which 

does not have references, and does not contain numbers, abbreviations, acronyms or 

measurements unless essential. 

[JZ2MG: 1. Did not mention that our data can be extended to other cancer types, not 

just 4+1, I think this is important; 2, logically we say richness of data and then directly 

three points as in the three para, feel something is missing] 

In general, one para, changes to 4 paras just for logic checkup. 

In cancer, the impact of mutations in a limited number of coding genes is well 

understood; in contrast, the preponderance of variants constitute poorly characterized 

mutations occur in non-coding regions. The new release of the ENCODE data enables us 

to bridge these knowledge gaps for a number of well-studied cancers of the blood, liver, 

lung, breast and cervix. For each of these cancer cell lines, ENCODE provides diversity 

of genome-wide assays (e.g., ChIP-seq, DNase-seq, Enhancer-seq, Hi-C, and ChIA-

PET), and these are applied to matched tumor-normal cell lines.  

First, the new data enables precise, tissue-matched non-coding background mutation 

rate calibration by removing the effects of confounders, such as replication timing. 

Furthermore, by integrating diverse ENCODE data, we are able to define high-

confidence regulatory elements and their linkages to genes. This allows us to create 

definitions of extended gene neighborhoods, which are more sensitive than just coding 

regions for mutation recurrence analysis. Using this approach, we can identify additional 

genes associated with patient prognosis, beyond well-known highly mutated oncogenes 

(e.g., BCL6 in leukemia).  

Second, we integrate the ENCODE data to build a hierarchical regulatory network, 

including both transcription factors (TFs) and RNA-binding proteins (RBPs). We find 

that more mutationally burdened TFs tend to be located at the bottom of the hierarchy 

(e.g., EZH2 and NR2C2), whereas those associated with the largest oncogenic gene-

expression changes tend to be at the top. Furthermore, by comparing tumor and normal 

network, we have identified highly “rewired” (i.e. target changing) TFs, such as IKZF1 

and MYC that hold prognostic value. Our results indicate that such rewiring events are 

mainly attributable to chromatin changes, instead of direct motif loss/gain effects from 

mutations.  

Third, we propose a prioritization scheme for key non-coding elements (as well as 

variants therein) according to their positions in regulatory networks and potentials to 

drive oncogenic expression changes. We then validate their functional impact in small-

scale experimental studies. In particular, we prioritize CTCF as a key TF for blood cancer 

and SUB1 as a key RNA-binding protein for liver and lung cancers and validated them 
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through siRNA knockdown experiments. Finally, we identify active enhancers and seven 

high impact mutations therein and validated their functional effects through luciferase 

assays in breast cancer.  

 

Articles are typically 3,000 words of text, beginning with up to 500 words of 

referenced text expanding on the background to the work (some overlap with the 

summary is acceptable), before proceeding to a concise, focused account of the findings, 

ending with one or two short paragraphs of discussion. 

 

In total 2673 words,   

#/*=== Introduction section 468 words ===*/ 

#/*=== Data section 426 words ===*/ 

#/*=== recurrence section 501 words ===*/ 

#/*=== Rewiring section 589 words ===*/ 

#/*=== expression section 250 (+111) words ===*/ 

#/*=== expression section 326 words ===*/ 

#/*=== expression section 143 words ===*/ 

 

Introduction 

Despite the millions of mutations discovered in cancer, only a very small fraction is 

readily interpretable in terms of their effects on known cancer-associated genes. An 

uncertainty lies in the degree to which the remaining variants contribute to cancer. Does 

this newly discovered pool of mutations simply constitute neutral passengers created as 

byproducts of oncogenic dysregulation? Or are there key variants among this pool that 

either directly drive tumorigenesis or otherwise affect the regulation of key cancer genes? 

The new data release of ENCODE Consortium may help to address these questions by 

providing accurate non-coding annotations and precisely linking these annotations to 

well-characterized protein coding genes.  

The key feature of the ENCODE annotation set is that it relies on a wide variety of 

diverse experimental assays. For instance, instead of calling enhancers from just one 

histone modification mark, it offers the potential to integrate many different assays, such 

as DNase-seq, ChIP-seq, Enhancer-seq, Hi-C and ChIA-PET to more accurately define 

enhancers and link them to coding genes. Despite the comprehensive catalog of 

functional characterization assays in ENCODE, it is still challenging to directly integrate 

the ENCODE data to interpret cancer genome. Optimally link these cell line specific 

data, especially those from first tier cell lines with supreme data richness, to relevant 

cancer types is necessary before accurate large-scale integration can be achieved. 

Admittedly, some “matchings” are imperfect because these cell lines might not be as 

accurate as tissues from patients. However, it is not currently possible to conduct such a 
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wide variety of assays on actual tissue. Thus, such matchings provide a valuable 

opportunity to obtain accurate non-coding annotation in cancer. 

Here, we endeavor to make the ENCODE resource as useful as possible for cancer 

research. We first match several cancers to top-tier ENCODE cell lines to better integrate 

relevant expression profiles and somatic mutations from known cohorts. We then develop 

a regression-based method to integrate comprehensive ENCODE data to calibrate an 

accurate background mutation rate (BMR), which can be released as a resource. This 

allows us to accurately find mutationally burdened regions in many cancers. We further 

use the wealth of ENCODE assays to accurately determine non-coding elements 

(enhancers in particular) and accurately link them to known genes. This enables us to 

delineate regulatory networks involving transcription factors (TFs) and, to a lesser extent, 

RNA-binding proteins (RBPs). We represent these networks in a variety of ways, 

including hierarchical models, wherein master regulators occupy the top of the hierarchy. 

For each regulator in the network, we then calculate a rewiring score that represents the 

degree to which a regulator differs between normal and cancerous cells. The top rewired 

regulators are found to be associated with patient prognoses. We finally propose a step-

wise workflow to prioritize key regulators, functional elements, and mutations therein 

and validate their impacts through small-scale experiments. 

Data for comprehensive functional characterization in ENCODE  

We first surveyed diverse sets of genome-wide assays spanning across 367 cell types 

released for ENCODE (details see supplementary file). To accurately characterize 

noncoding elements, we mainly focused blood, breast, liver, lung, and cervical cancers 

because their relevant tier 1 cell lines in ENCODE demonstrate best data breadth and 

depth (Fig 1A). We list the optimally matched tumor-normal pairs for each cancer type, 

and summarize the available experimental assays after de-duplication and unified 

processing. We observe that every cancer type contains a lot of highly heterogeneous 

data, but they also lack data from certain experimental assays (Fig 1A). Therefore, it is 

necessary to provide sensible normalization before large-scale integration and develop 

appropriate algorithms to learn from other sub-optimally matched data.  

To tackle the heterogeneity amongst data types, we first construct a comprehensive 

data matrix by normalizing raw signals of genomic features that severely confound 

somatic mutagenic processes (see Supp. File/Section(?) X ). In contrast to previous 

approaches relying on single histone modification marks \{cite chromHMM}, we propose 

an ensemble-based method called ESCAPE, which performs large-scale data integration 

to identify active enhancers accurately. This integration involves prediction using a 

diverse collection of histone ChIP-seq, DNase-seq and Enhancer-seq. We further link 

these to genes not by simple correlation but by optimally investigating how the histone 

modification marks on the enhancer help predict the gene expression of the potential 

target gene. This group of potential linkages is then filtered through the results of the Hi-

C experiments, which provide lower resolution but also a more accurate physical picture 

of the connections. (see Supp. File/Section(?) X). To achieve improved functional 

interpretation, we use these high-quality linkages to construct what we term “extended 

gene neighborhood” – coding regions matched with key regulatory elements, such as 

enhancers, promoters, and binding sites from regulators (Fig1 B). In addition, we also 
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explore the binding profiles in ENCODE data, and construct high-confidence gene 

regulatory networks for both TFs RBPs (Fig 1C and Fig X in Supp. File/Section(?) X). 

Finally, for each of the main ENCODE cell lines, our publically-disseminated 

resource consists of a list of accurately determined enhancers, a list of burdened regions, 

the regulatory TF network, as well as the most rewired TFs in this regulatory network 

(see supplementary materials). Collectively, these resources allow us to prioritize a few 

key elements as being associated with oncogenesis, some of which have been validated 

using small-scale experimental assays (see table S1).  

Multi-level data integration better enables recurrent variant analysis in cancer 

#/*=== recurrence section 501 words ===*/ 

One of the most powerful ways of identifying key elements and deleterious 

mutations in cancer is through recurrence analysis, which attempts to identify those 

regions of the genome that are more heavily mutated than expected. There are two 

challenges associated with such analysis. First, the mutation process introduces 

confounding factors (in the form of both external genomic factors and local context 

effects), which can result in many false positives or negatives (see Supp. File/Section(?) 

X). Secondly, traditional burden tests often neglect the interplay among annotation 

categories, thereby testing regions separately. Consequently, these tests are sometimes 

unable to identify distributed mutation signals from biologically relevant regions, thereby 

limiting the functional interpretation of the burdened regions. 

In contrast, we integrate the ENCODE resources at two levels for better recurrence 

analysis. First, we predict an accurate local BMR by regressing out the confounding 

effects of features in a cancer-specific manner (see Supp. File/Section(?) X). Specifically, 

we prepare a covariate matrix by normalizing 475 features from ENCODE to remove 

those effects that may confound the BMR. We then separated the whole genome into 64 

categories according to the local 3-mers and run separate regression models to further 

deal with internal context effects. In contrast to methods that use unmatched data \{cite 

MutsigCV}, our regression-based approach demonstrates that matched data usually 

provides higher BMR prediction precision (Fig 2A, see also Supp. File/Section(?) X). In 

breast cancer, for example, the correlation between observed and predicted mutation 

counts over 1-megabase bins (𝜌) using replication-timing signals (from MCF-7) increases 

from XX to XXX relative to that using data from HeLa-S3. Furthermore, despite the 

possibly high correlations in signal tracks, various functional characterization assays 

from ENCODE usually represent different biological mechanisms that affect mutagenic 

processes (see Supp. File/Section(?) X). Thus, it is important to integrate these features to 

infer BMR (Fig 1B). For example, 𝜌 only ranges from xxx-xxx using matched replication 

timing, but its range increases to xxx-xxx by adding 1 PC from the remaining covariates. 

It progressively increases to the xxx-xxx regime by adding PCs to the full model through 

forward selection (Fig 1B, see Supp. File/Section(?) X). Such noticeable improvements in 

BMR estimation significantly improve burden analyses (see below).  

Rather than separately testing standalone annotation categories, we employ our 

extended gene (detailed above) as joint test units (see Supp. File/Section(?) X). Such a 

scheme allows for the accumulation of weak mutation signals distributed across multiple 
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biologically relevant functional elements, which may otherwise be lost if evaluated under 

individual tests (Fig. Sx in Supp. section X). We demonstrate that our scheme can 

effectively remove false positives and discover meaningful burdened regions (Fig 2C). 

For example, in the context of leukemia, our analysis identifies well-known highly 

mutated genes (such as TP53 and ATM) as well as other genes (such as BCL6) that are 

missed by the analysis of coding regions. In addition, BCL6 demonstrates strong 

prognostic value with respect to patient survival (Fig. 2D), indicating that the extended 

gene should be used as an annotation set for recurrence analysis. 

Extensive rewiring events of several transcription factors in cancer  

In each cell type, we organized the TF regulatory network into a hierarchy by 

comparing the inbound and outbound edges of each factor, thereby enabling us to 

investigate the global topology of TF regulation (Fig. 1E, see also Supp. File/Section(?) 

X). TFs in different levels of the hierarchy reflect the extent to which they directly 

regulate the expression of other TFs \{cite 25880651}. For example, TFs in the top layer 

have more outbound than inbound edges in the network, and thus play larger roles in 

regulating other TFs (Supp. Fig. xx). In this representation, two patterns readily emerge. 

In leukemia, top-level TFs tend to more strongly influence the differential expression 

between tumor and normal cells. The average Pearson correlation between TF binding 

events and tumor-normal expression changes increases from 0.125 in the bottom layer to 

0.270 in the top layer (Table Sx). TFs in the bottom layer are more frequently associated 

with burdened binding sites in general, perhaps reflecting their increased resilience to 

mutation (see Supp. Section X, Table Sx). 

When comparing the common regulators in matched tumor and normal networks, 

rewiring (i.e., target changing) analysis may help to identify cancer-associated 

deregulation. Hence, we investigate rewiring events in TF networks using multiple 

formulations (see Supp. File/Section(?) X). Specifically for leukemia, out of the 69 

common TFs in K562 and GM12878 from ENCODE, we remove the general TFs and 

restricted our rewiring analysis to the remaining 61 (see Supp. File/Section(?) X). We 

first rank TFs according to their respective number of lost and gained edges (Fig. 3 A, see 

also Supp. File/Section(?) X). Several oncogenes (such as MYC and NRF1) are among 

the top edge gainers. In contrast, IKZF1 (somatic mutations in which serve as a hallmark 

of high-risk acute lymphoblastic leukemia, or ALL) is the most significant edge loser, 

with up to xxx% of lost edges in K562 (Fig 3A). On the other hand, several ubiquitously 

distributed TFs (such as YY1) retain their regulatory linkages (as shown in Fig 3A). We 

observe a similar trend in TFs using a distal, proximal and combined network (see details 

in supplementary file). Similarly, we also observe highly rewired TFs in lung and liver 

cancer (see fig XX) though we do not have as many common TFs between tumor and 

normal cell lines for these tissues.  

Alternatively, we also used a mixed-membership model to look more abstractly at 

local gene neighborhoods to re-rank the TFs (see Supp. File/Section(?) X). Similar 

patterns are observed using this model. We also observed that MYC (a well-known 

oncogene) becomes a top gainer (Fig 3A). To study the consequences of network 

rewiring under this model, we performed the survival analysis on xxx AML patients, in 
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which we find IKZF1 to be significantly associated with tumor progression (see Supp. 

File/Section(?) X). 

A remaining uncertainty lies in the underlying causes of this rewiring. It is necessary 

to investigate whether it is a direct effect of mutations, which could knock out a binding 

site. Or it is due to indirect effects of chromatin changes, which could cover and uncover 

binding sites. We find that the majority of rewiring events result from changes in 

chromatin status, rather than from variant-induced loss or gain events (Fig. 3A). For 

example, JUND is a top gainer in K562 (with xxx gains and xx losses). We find that a lot 

of the gain/loss events are associated with substantial expression changes (of at least 2-

fold) and changes to chromatin states. However, only xxx percent of them could be 

potentially due to direct motif loss/gain effects. (Fig. 3D).  

Integrating ENCODE data with patient expression profiles identifies key 
regulators in cancer 

To optimally leverage ENCODE data for studying various cancer types, we extended 

our network analysis from strictly matched tumor-normal cell lines to more generalized 

networks. We can use both TF networks and those derived from RBPs – these are newly 

available data types in ENCODE, but for which we have no matched tumor normal pairs 

(see suppl. for description of merged networks).  

 Using a regression-based learning method (see Supp. File/Section(?) X), we 

integrated thousands of patient expression profiles from multiple cohorts to 

systematically search for TFs and RBPs that drive tumor-specific expression patterns 

(Table Sx). In particular, for each regulator-cancer type pair, we select the best 

explanatory binding profile and estimate the fraction of patients with differentially 

regulated target genes (see Supp. File/Section(?) X). The overall trends for the key TFs 

and RBPs detected are given in Fig. 4A. The predicted impacts of regulators on tumor 

gene expression are highly consistent with previous findings. For example, we find that 

the target genes of MYC are significantly up-regulated in numerous cancers (star in Fig 

Sx), which is consistent with the known role of MYC as an oncogenic TF. In addition to 

recapitulating existing knowledge from previous studies, our analysis also predicts 

previously unidentified functions for regulators in cancer. For example, the predicted 

targets of the RBP SUB1 were significantly up-regulated in many cancer types (Figure 

3C). As another example, the predicted targets of the TF CTCF were found to be 

significantly up-regulated in multiple tumors (star in Supp. Fig. 2).  

[JZ2MG: loregic to be here!] 

The combinatorial regulation of many TFs jointly determines the “ON” and “OFF” 

states of all genes as part of maintaining homeostasis in healthy cells. The disruption of 

co-regulatory relationships for key elements in cancer cell lines ultimately results in 

erroneous gene expression patterns. We quantified the co-association status of each TF, 

and observe major co-association changes in some of the key TFs when comparing the 

regulatory networks of K562 to GM12878. For example, ZNFXXX is a suppressor TF 

that shows only marginal co-binding events in GM12878. Its number of binding sites 

increases from xxx to xxx in K562. In addition, up to xxx% of its binding sites co-bind 

with other TFs.  
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Step-wise prioritization schemes pinpoint deleterious SNVs in cancer 

#/*=== conclusion section 326 words ===*/ 

The above description of the regulatory network and the optimum determination of 

mutation recurrence provide a way to prioritize key genomic features. The workflow in 

Fig.5 A describes this prioritization scheme in a systematic fashion. First, we start by 

searching for key regulators that: a) are most frequently rewired; b) sit within network 

hubs or on top of the network hierarchy; or c) significantly drive oncogenic expression 

changes. We then prioritize functional elements that are associated with highly prioritized 

regulators, undergo large regulatory and chromatin changes, or (most importantly) are 

highly mutated in tumor cohorts. Finally, on a nucleotide level, we can pinpoint impactful 

SNVs for small-scale functional characterization by their ability to disrupt or create 

specific binding sites, or which occur in positions of particularly high conservation or 

chromatin changes. 

Using this framework, we subject a number of key regulators (such as CTCF and 

SUB1) to knock down experiments to validate their regulation effects (Fig 4D). We then 

identified several active enhancers in noncoding regions, and validated their ability to 

initiate transcription using luciferase assays (see Supp. File/Section(?) X). In addition, we 

further selected key SNVs within these enhancers that are important for gene expression 

control (table Sx). Of the 8 motif-disrupting SNVs that we tested, we observed 6 variants 

with consistent up- or down-regulated activity relative to the wild type (Fig. 5B and 

Supp. File/Section(?) X). One particularly interesting region is in chromosome 6, 13.5xxx 

(Fig. 5C). This enhancer is located in the noncoding region. Both histone modification 

and DHS signals implicate its regulatory role as being active (Fig. 5C). Note that both our 

HisShape enhancer prediction method and the ESPC algorithm (on EnhancerSeq 

experiment) predict this to be an enhancer (Fig. 5D). Hi-C and ChIA-PET data indicate 

that this region is regulating an downstream gene SYCP2. 21 out of the 52 ChIP-Seq 

experiments demonstrate that the region has high regulatory traffic, and motif analysis 

predicts this C to G mutation can significantly disrupts the FOLS2 binding affinity (see 

Supp. File/Section(?) X). A luciferase assay demonstrates that this mutation introduces an 

xx-fold reduction in expression relative to wild type expression levels, indicating a strong 

repressive effect on this enhancer’s functionality.  

Conclusion 

#/*=== conclusion section 143 words ===*/ 

In the context of oncogenesis, this study highlights the values of ENCODE as a 

resource for cancer research, and leverages ENCODE to provide a step-wise 

prioritization scheme to pinpoint key regulatory elements and SNVs for small-scale 

validations. One of the key aspects of our analysis is that we demonstrate how our 

intricate analysis can be improved, either by adding new data types or simply scaling an 

individual data types. In particular, we anticipate that higher quality non-coding 

annotations (through progressively more accurate Enhancer-seq experiments and deeper 

Hi-C experiments) will enable better linkages. Likewise, the recurrence analysis can be 

further improved by collecting better-matched data sets and expanding the size of tumor 

cohorts. In that the analyses presented here improve upon data integration, it provides 
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future investigations with a blueprint for similar studies going forward. By amassing 

ever-larger data sets, we may obtain a more accurate picture of the cancer genome 

through large-scale data integration. 
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