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[bookmark: _Toc473789926]Details about data summary from ENCODE
[bookmark: _Toc473789927]Summary of data from each experimental assay
We have integrated uniformly processed and quality-controlled datasets from ENCODE and Roadmap Epigenomics Mapping Consortium (REMC) to build one of the most comprehensive representation of how functional regulatory elements interplay in human genome. All dataset used in the analysis were mapped to a standardized version of the GRCh37 (hg19) reference human genome. We used ENCODE dataset that were submitted and released up to October 31st, 2016 (Oct 2016 freeze).
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[bookmark: _Toc473789929]ChIP-seq
Transcription Factor (TF)
We collected 1,040 TF ChIP-seq experiments released for ENCODE. Detailed information about the data are listed below.
There are 888 TF ChIP-seq experiments released for ENCODE 2. We used a subset of 801 experiments that either had no treatment or ethanol treatment only. There were 570 TF ChIP-seq experiments released for ENCODE 3, which had no treatment.
For a common TF target in top-tier cell lines, ENCODE has multiple of the same experiments from different labs. We carefully deduplicated dataset by selecting one TF ChIP-seq experiment per each sample by the following prioritization scheme. When ENCODE 3 experiment was available, it was prioritized over ENCODE 2 experiment. When there was the same type of experiments were done by different labs, we prioritized using the following order determined by the total number of ChIP-seq experiments deposited on ENCODE: stanford, haib, broad, usc, uw, uta, uchicago, hms, yale. We removed epitope-tagged experiment if endogenous antibody was available.
After deduplication, there are 860 unique TF ChIP-seq experiments.
Signal tracks
All ENCODE 3 data was processed using standardized ENCODE 3 ChIP-seq pipeline and the code is available at https://github.com/ENCODE-DCC/chip-seq-pipeline. To minimize the processing bias between ENCODE 2 and 3 dataset, we generated p-value and fold-over-control signal tracks for 6 key cell lines (K562, GM12878, MCF-7, HepG2, HeLa-S3, A549) from 386 ENCODE 2 TF ChIP-seq experiments using MACS2 (v2.1.1.20160309). We merged available replicates and input-normalized each experiment using corresponding control experiment. We used the same parameters as ENCODE 3 processing pipeline, but the fragment size (extsize) was uniformly set to 200.
ENCODE 2: n=386 (MACS2 re-processed)
ENCODE 3: n=434

Uniform peaks
The SPP peak caller was used along with the IDR framework for calling peaks and thresholding based on reproducibility. IDR threshold of 0.02 was used (Optimal IDR thresholded peaks).
ENCODE2: n=599
ENCODE3: n=434

QC metric
Blacklist-filtered peak files (/net/gerstein/JZ435/Data/bin/gapBlack/merge.blacklist.bed)
Few exceptions:
Missing optimal IDR peak
https://www.encodeproject.org/experiments/ENCSR328SUD/

Histone Modification
We selected a unique set of 61 histone ChIP-seq experiments of 6 key cell lines (K562, GM12878, MCF-7, HepG2, HeLa-S3, A549) in ENCODE 2 and uniformly re-processed p-value and fold-over-control signal tracks using MACS2 (v2.1.1.20160309). We merged available replicates and input-normalized each experiment using corresponding control experiment. We used uniformly set the fragment size (extsize) as 200.
[bookmark: _Toc473789930]DNase-seq

For DNase-seq peaks and signal tracks, we used the processing described in Roadmap Epigenome Release 9 (http://egg2.wustl.edu/roadmap/web_portal/processed_data.html#ChipSeq_DNaseSeq).
In specific detail, we used the signal processing engine of the MACSv2.0.10 peak caller to generate genome-wide signal coverage tracks (https://github.com/taoliu/MACS/). Each DNase-seq dataset was normalized using simulated background datasets generated by uniformly distributing equivalent number of reads across the mappable genome.
Negative log10 of the Poisson p-value of ChIP-seq or DNase counts relative to expected background counts local. These signal confidence scores provides a measure of statistical significance of the observed enrichment.
Please note that the -log10(p-value) scores provide a convenient way to threshold signal (e.g. 2 corresponds to a p-value threshold of 1e-2), similar to what is used in identifying enriched regions (peak calling). We recommend using the signal confidence score tracks for visualization.
[bookmark: _Toc473789931]Transcription
RNA-seq
We selected 157 RNA-seq experiments on either polyA or non-polyA long (greater than 200bp) mRNA from ENCODE that are uniformly processed in ENCODE Processing Pipeline. All RNA-seq dataset is mapped to hg19 using STAR and used the signal track of the first replicate. For paired-end dataset, we merged signal from plus and minus strand signal of unique reads.

RAMPAGE
Repli-seq
Repli-chip
[bookmark: _Toc473789932]Methylation

WGBS
We used whole genome bisulphite (WGBS) methylation calls from Roadmap release 9 (http://egg2.wustl.edu/roadmap/web_portal/). [/fastscratch/dl598/ENCODE/wgbs]
RRBS
DNA methylation status was assayed at more than 500,000 CpG dinucleotides in the
genome using Reduced Representation Bisulfite Sequencing (RRBS). Genomic DNA was digested with the methyl-insensitive restriction enzyme MspI and then small genomic DNA fragments were purified by gel electrophoresis and used to construct an Illumina sequencing library. The library fragments were treated with sodium bisulfite and amplified by PCR to convert every unmethylated cytosine to a thymidine while leaving methylated cytosines intact. The sequenced fragments were aligned to a customized reference genome sequence. For each assayed CpG, the number of sequencing reads covering that CpG and the percentage of those reads that were methylated were reported.

For higher reproducibility, we removed CpGs represented by less than 10 sequencing reads (10X coverage, score=10) or less than 50% methylated, then all replicates were merged.
[bookmark: _Toc473789933]3D Chromatin Structure
Hi-C
We selected 12 Hi-C experiments from ENCODE3. All Hi-C dataset contains 2 replicates and they were merged and uniformly processed to call topologically associated domains (TADs) in 40k, 100k, 500k resolutions.
Please note: SK-N-DZ experiment appears to be done slightly different from others because it has two replicates and only one is treated with “dimethyl sulfoxide” (https://www.encodeproject.org/experiments/ENCSR105KFX/)
ChIA-PET
ChIA-PET dataset of CTCF and POLR2A were collected for 4 top-tier cell lines, K562, GM12878, HeLa-S3, and MCF-7. For K562 and MCF-7, ChIA-PET v1 (short-read) dataset was collected from ENCODE Project Consortium (2012) and processed as described in Li et al. (2012). For GM12878 and HeLa-S3, ChIA-PET v2 (long-read) dataset was collected from GEO with accession GSE72816 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72816, Cell 2015, http://www.cell.com/cell/abstract/S0092-8674(15)01504-4) and processing was performed similar to Li et al. (2012) with minimal modifications.


[bookmark: _Toc473789934]RNAi knockdown
siRNA
shRNA
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[bookmark: _Toc473789936]Computational prediction of enhancers
We developed a framework to impute enhancer regions across the genome through aggregated signals of epigenetic features. The unprecedented large number of massively parallel reporter assays (MPRA) has demonstrated that regulatory regions are generally depleted of histone proteins while regions around it tend to contain histone proteins with certain post-translational modifications. This characteristic is revealed in many ChIP-Seq experiments as enriched peak-trough-peak (double peak) signal at the distal regulatory regions for many activating histone marks. A supervised machine-learning model is well suited to identify this pattern.
For each histone modification, we aggregated the ChIP-Seq signals around STARR-seq identified peak regions in the S2 cell-line of fly. The two maxima in each region is aligned, interpolated and smoothened before averaged to generate metaprofile. An additional flipping step was applied to maintain the asymmetry of the two maxima since it might be associated with the directionality of transcription. The metaprofile is then used to scan the whole genome to find matched patterns through a shape-matching filter. A 10-fold cross validation is performed to assess the accuracy of prediction through this method. In predicting active STARR-Seq peaks, H3K27ac is the most accurate feature for predicting active regulatory regions (AUROC=0.92). Other features including H3K4me1, H3K4me2 also achieved high performance.
To achieve higher accuracy, we further developed an ensemble method to combine the normalized pattern-matching result from several different epigenetic marks with linear SVM. This include ChIP-Seq signals for H3K27ac, H3K4me1, H3K4me2, H3K4me3, H3K9ac and DHS signals associated with active regulatory regions. The ChIP-Seq data is available through ENCODE Consortia (https://www.encodeproject.org) and Roadmap Epigenomics (http://www.roadmapepigenomics.org). The integrated model performs better than each of the individual histone marks, and different integration methods performs similarly. We use linear SVM to assemble the signals to form a discriminant function, where the sign of the result value is used to predict whether a specific region is an enhancer. 
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[bookmark: _Toc473789937]Whole genome Enhancer-seq data processing 
Enhancer-seq dataset contains two samples for each cell line. First is screen library that contains the sequencing of plasmids from which the enrichment is performed. This screen library serves as a control in the peak calling. Second is the actual enhancer-seq enriched sequencing data that contains the actual enhancer signal. We have removed low quality reads and mapped them using BWA version 0.7.12 \ref{BWA}. We have used the reference genome from 1000 Genomes Project’s decoy genome\ref{1kG}. We removed the reads with mapping quality 20 and removed PCR duplicates and estimated fragment length distribution using MUSIC algorithm \cite{music}. We then generated the signal tracks for enhancer-seq and library and performed peak calling. For peak calling, we used the following strategy: We first identified the peak candidates using MUSIC’s punctate peak calling algorithm. We then computed the fold change on each peak candidate as the ratio of total signal in the enhancer-seq signal and screening library signal. We refer to this as FC. To set a threshold for the fold change to select candidate peaks, we exchanged screening library and enhancer-seq and we computed the fold change on the candidate peaks, which we refer to as FC_random. These fold change scores serve as a random distribution of fold change scores. Then for a FC threshold fc, we estimated the false discovery rate as the ratio of number of peaks that for which FC_random > fc and the number of peaks for which FC > fc. We set the FDR threshold at 0.1% and filtered the peaks that do not satisfy the FC threshold selected using this FDR threshold.
[image: NCODE_Cancer_EnhancerSeq_Page_2.png]
[bookmark: _Toc473789938]MCF-7 Enhancer-seq data processing 
For MCF-7 Enhancer-seq experiment, total of 10,825 target regions consisting of 9,825 candidate enhancer regions and 1,000 negative control regions were selected tested for regulatory potential. Candidate enhancer regions were selected based on inducibility of DHS excluding both 1kb upstream and downstream of TSS. Negative control regions were selected from 500 randomly selected regions and 500 non-E2-responsive DHS regions. Details of the selection procedure can be found in supplementary figure X.
[image: ]
Candidate enhancer regions were primed and inserted into 3’ UTR. Schematics of the experimental procedure can be found in supplementary figure X.
Data analysis
Expression level was quantified and normalized using Fragments Per Kilobase of transcript per Million mapped reads or FPKM. Fold change was normalized based on basal transcription level and input expression level as shown in the following formula:



Basal transcription level was calculated using the following formula:



To precisely select the center of candidate enhancers, we iteratively tested for the optimal core peak width, using pooled peak FPKM fold change as a function of input coverage. Various bin size between 200 to 500bp were tested, and we found that, at bin size of 400bp, positive and negative controls were optimally segregated as shown in supplementary figure X.
[image: ]
Supplementary figure X. Enhancer-seq peak selection
For each 400bp core signal region, each side of the peak was extended by 300bp to make a 1kb window. These 1kb window was then overlapped with histone enrichment signal based enhancer prediction to call the 834 high-confidence enhancer sets for MCF-7.
[bookmark: _Toc473789939]Enhancer Target prediction
[bookmark: _Toc473789940]Enhancer Gene linkage prediction
Enhancer targets were predicted using JEME (Cao et al., under revision). Briefly, the expression levels around each transcription start site (TSS) in 49 ENCODE and Roadmap Epigenomics cell lines were modeled based on histone modification data at nearby enhancers. These models gave a weight for each enhancer that indicates the global degree of this enhancer in regulating the TSS. These weights were then combined with genomic distance and cell-line-specific data to predict the enhancers that regulate a TSS in a particular cell line in a second-level model. The parameter values of these second-level models were learned from published ChIA-PET data from the corresponding cell lines. A 5-fold cross-validation procedure was used to evaluate the accuracy of the predicted enhancer-target pairs.
[bookmark: _Toc473789941]Enhancer gene linkage pruning using Hi-C data
Enhancer target predictions are further filtered by using Hi-C data. Contact maps of individual chromosomes (in 5kb bins) for both K562 and GM12878 cell lines were obtained from (Rao et al. Cell 2014). MCF7 contact maps (40kb) were obtained from (Barutcu et al. Genome Biol. 2015). Element (i,j) in a contact map represents the frequency of interactions between genomic loci i and j. For all possible (i,j), we used the tool Fit-Hi-C to estimate the statistical significance the contact frequency based on the coverage of the loci as well as their genomic distance (Ay Ges. Res. 2014) and kept the interactions with q-value<0.1. We then used the list of significant loci to filter the enhancer-target predictions. Only enhancer-gene pairs in which enhancer and gene are respectively belong to a pair of significantly interacting loci are kept for further analysis.
[bookmark: _Toc473789942]Extended gene generation 

TF/RBP networks
TF network
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[bookmark: _Toc473789944]Variant calling
[bookmark: _Toc473789945]Germline 
We called germline single nucleotide variants (SNVs) for a set of 88 liver cancer samples (Table 1) that were whole genome DNA sequenced at the Beijing Genomics Institute (BGI) Shenzhen for a mutation analysis published in [ref: PMID 23788652]. The authors made the raw sequence data available in FASTQ format from the European Nucleotide Archive (ENA) under accession ERP001196. We downloaded these files and conducted a germline variant calling procedure in accordance with the Broad Institute’s Best Practices for read-to-variant workflows (https://software.broadinstitute.org/gatk/best-practices/index.php). Read alignments were generated using the Burrows-Wheeler Aligner (BWA v0.7.15; http://bio-bwa.sourceforge.net/), using the BWA-MEM algorithm. After that, we proceeded with preprocessing for variant calling, including cleaning out duplicate reads using Picard tools (MarkDuplicates tools v2.6.0), and base recalibration with the Genome Analysis Tookit (GATK; v3.6.0). Variant calls for individual samples were derived with the GATK HaplotypeCaller, followed by joint genotyping with the GenotypeGVCFs tool. The final variant set was subjected to standard quality filtration in accordance with the standard configuration of the GATK VariantFiltration tool. Each step was performed on the Mt Sinai Minerva scientific compute cluster, and utilized hundreds of CPU cores per compute step. Table 2 summarizes the distribution of germline variant calls per sample.

Table 1 List of cancer whole genome DNA sequence data obtained for variant calling.
	Cancer type
	Number of samples
	Median number of variants per sample
	Source

	Liver - germline
	88
	XXX
	BGI Shenzhen (Kan et al. 2013)

	Liver - somatic
	88
	XXX
	BGI Shenzhen (Kan et al. 2013)

	Breast
	116
	8485
	TCGA

	Lung
	197
	83,402
	TCGA

	Chronic lymphocytic leukemia (CLL)
	150
	XXX
	ICGC



Table 2 Summary of distribution of variant calls per cancer sample
	Cancer Type
	Summary statistics of variants per sample

	
	Min
	1st Qu
	Median
	Mean
	3rd Qu
	Max

	Liver - germline
	XXX
	XXX
	XXX
	XXX
	XXX
	XXX

	Liver - somatic
	XXX
	XXX
	XXX
	XXX
	XXX
	XXX

	Breast
	1898
	5779
	8485
	13,290
	14,370
	294,100

	Lung
	159
	40,490
	83,400
	229,200
	295,000
	2,127,000

	Chronic lymphocytic leukemia (CLL)
	XXX
	XXX
	XXX
	XXX
	XXX
	XXX



[bookmark: _Toc473789946]Somatic
In addition to the aforementioned liver cancer samples, we obtained the BAM files for 116 Breast Invasive Carcinoma whole genomes, and 197 lung cancer whole genomes (147 Lung Adenocarcinoma, 50 Lung Squamous Cell Carcinoma). Furthermore, BAM files corresponding to 150 chronic lymphocytic leukemia (CLL) whole genomes were obtained from the International Cancer Genome Consortium (ICGC) via the European Genome-Phenome Archive (EGA). Somatic variant calls were derived from the Broad Institute’s Mutect (v1.1.4) and Strelka (v1.0.15). This variant calling compute was performed on the Mt Sinai Minerva scientific compute cluster, and utilized hundreds of CPU cores per compute step. Table 2 summarizes the distribution of somatic variant calls per sample.
[bookmark: _Toc314467815][bookmark: _Toc473789947]Local context effect significantly affect local mutation rate (JZ)
We observed that BMR is significantly associated with local context effect in all cancer types up to several orders, which largely contributes to the mutation rate heterogeneity. For example, the average pooled mutation rate ranges from 2.92e-03 to 1.58e-04 (1.8 fold). The observed mutation has been plotted in the following radial plot for each cancer type. In general,  G/C positions are more prone to mutations as compared to A/T positions, but the local context effect within G/C positions still has strong effect (2.40e-04 and 2.40e-04 vs. 1.21e-03 and 1.20e-03). In addition, we also observed that the local context effect varies significantly across multiple cancer types. Hence, it is important to separate cancer types during the BMR estimation process.
[image: https://lh4.googleusercontent.com/AnN0kzyt0UP5CnNw6h-yvxrJPAclqRmTQB7ZAMiC8OL04AgA8DtjF6A-7jRzIZLAbLiZUbY8YIquMPxUjq7MgzVcojzVqgGTqEATpJurCFb3bjJt4FxdAhg7LnIOUszRR6ISNrCA]
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[bookmark: _Toc473789948]Local mutation rates are highly correlated with many genomic features
It has been reported that local mutation rates are associated with many well-known genomic features, such as mRNA expression, GC content, replication timing, and chromatin organization [3]. We found that the WGS data in our datasets also demonstrated similar characteristics. For example, Fig. S4 shows how mutation counts at a 1mb resolution (the first 70 bins on chromosome 1) are correlated with several genomic features
[image: ]
[bookmark: _Toc473789949]Background mutation rate estimation and P value calculation
[bookmark: _Toc473789950]Covariate data collection 
We collected a total of 475 genomic features across various cell types from both ENCODE and Roadmap Epigenomics consortium (REMC) to build a covariate matrix of the background mutation rate (BMR). To build a covariate matrix, we used uniformly processed and de-duplicated signal tracks from either untreated or ethanol-treated and averaged over specified bin size. For chromatin features, we used XXX uniformly processed DNase-seq and histone ChIP-seq fold-enrichment signals from REMC. For mRNA expression (JZ: RNA-seq data needs to be updated, all other dataset is current except RNA-seq), we selected 157 RNA-seq experiments on either polyA or non-polyA long (greater than 200bp) mRNA from ENCODE that are uniformly processed in ENCODE Processing Pipeline. All RNA-seq dataset is mapped to hg19 using STAR and used the signal track of the first replicate. For paired-end dataset, we merged signal from plus and minus strand signal of unique reads. For genome-wide methylation, we used 37 uniformly processed fractional methylation signal tracks from REMC. For replication timing, we selected 43 wavelet smoothed signal from Replichip experiments in ENCODE. More details of data processing steps can be found in section X, and list of dataset collected in Supplementary table X.
[bookmark: _Toc473789951]covariate table creation 
We aim to provide effective training of our model that is convenient for users. Different from the calibrated training data selection mentioned in [6], we divided the whole genome into bins with fixed length, such as 1mb, 100kb, 50kb, etc. Only autosomal chromosomes and chromosome X were included in our analysis to remove the gender imbalance in mutation data or covariates. 
Repetitive regions on human genome are known to generate artifacts in high throughput sequencing analysis mainly due to their low mappability. We downloaded the mappability consensus excludable table used in the ENCODE project from http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDacMapabilityConsensusExcludable.bed.gz. Any fixed length bins that overlap with this table would be removed from the training process. We also downloaded the gap regions of hg19 from the UCSC genome browser, which include gaps from telomere, short_arm, heterochromatin, contig, and scaffold. The fixed length bins that intersect with these gap regions were also removed in our analysis.
All the bigWig files generated in step one were used to calculate the average signal using the bigWigAverageOverBed tool for each fixed length bin we generated above. When calculating the GC percentage, if the sequence information is not available at a certain position (such as the Ns), such position will be excluded in the averaging process. In the end, we summarized all the covariates values in each bin into a covariate table, with columns indicating different features and rows representing different training bins.
[bookmark: _Toc314467818][bookmark: _Toc473789952]PCA analysis of the covariate matrix
It has been reported that many genomic signal tracks demonstrate noticeable correlations across features and tissues [9]. Hence we first centered and scaled the covariate matrix  and then performed PCA on it to obtain . Then the cumulative proportion of variance explained by the PCs was given in Fig. S7 A. As expected, there is lots of redundancy in the covariate table. The first PC may explain as much as 55.69% of variance. And it takes up to 15 and 106 PCs to capture 90% and 99% of variance.
We also calculated the Pearson correlation of PC  with mutation counts in cancer type  as . Then the absolute correlation value  were averaged over different cancer types as  to rank the PCs. The top 20 PCs with highest  were selected and boxplot for each of the PCs was given in Fig. 7B.Figure S7. (A) Cumulative proportion of variance explained by the number of PCs; (B) Boxplot of Pearson correlations of top PCs to mutation counts data in different cancer types.
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[bookmark: _Toc473789953]Training model details
First we divide the whole genome into bins with fixed length . In this stage,  is usually large, such as 1 Mb. Any bins overlapping either of the two blacklist regions are removed. Then, 381 features are extracted from both REMC and ENCODE, and the average signal in the bins is calculated (details in Text S1 Section S2). We let  denote the average signal strength for the  bin and  covariate, where  and .
Suppose there are  different diseases (or disease types) in the collected WGS data, and  unique samples, for example different patients, for each disease (or disease type such as liver cancer or lung cancer) . Let  and   denote the observed mutation count and rate for the  bin defined above for sample  in disease . In previous efforts, scientists assume that mutation rate  is constant across different regions of the human genome, samples, and diseases, so they have that   for . Hence  follows a Poisson distribution with the probability mass function (PMF) given in equation (1).

                                    (1)
However, somatic genomes are highly heterogeneous because mutation rates vary considerably among various diseases, samples, and regions of the same genome, severely violating the assumption in equation (1). As a result, fitting of  is usually very poor because overdispersion is often observed [5]. Simply assuming a constant mutation rate will generate numerous false positives. Instead, in our model we assume that different  are random variables that follow a Gamma distribution with probability density function (PDF)

                                    (2), 
where  and . In equation (2),  and  are the shape and scale parameters respectively. Assume that  is the overall mutation rate from all samples in bin  of disease . Its distribution can be readily obtained through convolution as 

                       (3).
If we let  represent the total mutation counts in region  from all disease samples, , then the conditional distribution of  given  can be written as

                                         (4).
By integrating (3) into (4), the marginal distribution of  can be denoted as a negative binomial distribution ([15], page 50 in [16]). 

                      (5a).
Equation (5a) is the PDF of a negative binomial distribution with  and . To better interpret (5a), we define  and . Then equation (5a) can be rewritten as (5b).

            (5b)
The mean and variance of  from (5b) can be described as  and  respectively. Our model in equation (5b) is convenient due to its explicit interpretability. First, it assumes that the individual mutation rates are heterogeneous by modeling  as i.i.d. Gamma distributed random variables. Unlike the constant mutation rate assumption where , our model captures the extra variance of  due to population heterogeneity. Our model in (5b) also clearly separates the two main parameters  and  with physically interpretable meanings: the mean and overdispersion, respectively. Here a larger  indicates a more severe degree of overdispersion, which is usually due to larger differences in mutation rates.
After modeling  with a negative binomial distribution, we then estimate the local mutation rate by correcting the covariate matrix  described above. Again  denotes the average signal strength in the  bin and  covariate, where  and . Because the genomic features in the covariate matrix are highly correlated and may introduce multicollinearity if directly used in regression, we first apply principal component analysis (PCA) to matrix . We define  to be the covariate matrix after PCA and  as each element in . 
A generalized regression scheme is used here. Suppose  and  are two link functions. We then use linear combinations of covariate matrix  to predict the transformed mean parameter, , and overdispersion parameter, , as

                    (6).
Here we use a log link function for both  and , so the regression model in (6) is a negative binomial regression. Note that  contains 381 genomic features in all available tissues. In the following analysis, we use all features to run the regression in (6) to achieve better performance. The GAMLSS package in R is used to estimate the parameters in (6) as . Generally, there are biological reasons to explain how  changes with covariates. For example, single-stranded DNA in the later replicated regions usually suffers from accumulative damage resulting in larger . It is more difficult to interpret such a relationship with . Hence, we simplify equation (6) by assuming  is constant in our real data analysis.

[bookmark: _Toc473789954]Testing details
Suppose there are  regions to be tested. We use the local mutation rate to evaluate the mutation burden. For the  target region (), one way of calculating the covariates is to extend it into length  (illustrative figure given in Fig. S2). Then we calculate the average signal for feature  as  for this extended bin, and after PCA projection let  represent the value for the  PC.  The local mutation parameters  and  in the extended bin for the  target region can be calculated as

                        (7).
In real data analysis, the length of the  test region  is much shorter than the length of the training bins (up to 1Mb). Hence  needs to be adjusted by a factor of . Then  and the adjusted  can be used to calculate the disease specific P value, . This above scheme is usually computationally expensive because there are usually millions of target regions to be tested. Therefore, we also propose an approximation method alterntatively to replace the optimal  and  in our analysis (details see section S4 in Text S1).
Sometimes it is necessary to analyze several related diseases (or disease types) to provide a combined P value. One typical example is in pan-cancer analysis.  In the above section, we calculated the P value for disease/disease type  as  for test region . Fisher’s method can be used to combine these P values. Specifically, the test statistic is

                                     (8).   
Here  follows a centered chi-square distribution with  degrees of freedom, where  is the total number of diseases/disease types. The final P value, , can be calculated from . To better illustrate how NIMBus works, Fig. 1 gives its workflow.
As a fair comparison to our NIMBus model, the global and local Poisson models were used on the same data to identify mutational hotspots. The global Poisson model assumes the observed mutation counts follows a Poisson distribution and the Poisson rate is constant across the genome. Similarly, the local Poisson model also ignores the mutation rate heterogeneity within patients and the small bins, but it uses a Poisson regression against the same set of covariates to compensate large-scale mutational heterogeneity.
[bookmark: _Toc473789955]P value summaries
[bookmark: _Toc473789956]Details about TF network rewiring analysis
[bookmark: _Toc473789957]Rewiring analysis based on simple counts
We used 2,500bp upstream and downstream of transcription start site (TSS) based on Gencode v19 annotation as a boundary for proximal regulatory region. We defined a target gene linkage if TF ChIP-seq peak was found within the boundary. However, we discovered, in Gencode, there were numbers of genes that have more than 50 alternative TSS, which gave these genes unfair advantages of having more target gene linkages than others since their proximal regulatory regions can span up to 250kbp. Therefore, we selected one canonical TSS for each gene based on the total number of aggregated ENCODE TF ChIP-seq peaks. While this method is far from perfect, we believe this is the best method to capture the high-level TF network rewiring and quantify epigenetics changes around TSS. In addition to TSS-based TF-gene linkages, 

[bookmark: _Toc473789958]Rewiring analysis based on mixed membership algorithm 
We use mixed membership algorithm to investigate the rewiring changes between GM12878 and K562 cell lines. TF-target matrix (M x V) is converted from enhancer and TSS regulatory network, where M is the number of TF and V is the number of unique target genes for all TFs. Each row represents a target gene of a TF i=1,2,…, M. The regulatory pattern of each TF is comprised of K latent communities. Each community includes contributions from N target gene and N varies for different TF.
The target gene of TF w_i, vector w={w_{i,1}^v,w_{i,2}^v,…, w_{i,n}^v} and =1 means target, 0 means non-target. The observation denote TF i, target gene j with status v.  Similarly Z_i,j,v is the community distribution of each target gene j for TF I with status v. \beta (K x V) denotes the probability of target gene j belong community k, which is parameter of multinomial distribution. \theta_i each  and denote the distribution of communities for TF i.  \theta ~ Dirichlet (\alpha), where \alpha is the super-parameter of \theta  .
[image: https://lh3.googleusercontent.com/Q2otFL7oLJMkPIMSHoQpT8nOf27rwBS80Sk2OZJ0bRsTrfWqkYoLE9clhT-CZvL68gKtr6OxS9nIFu0cCHHShTN94WNZVNFDGnc5TENdX6x6thmuKNiLt74gtX518YWbhU4QQxCN]
When inferring the latent gene community model, we are most interested in the communities’ parameter \beta , the Dirichlet parameter \alpha and the latent community distribution \theta of TF . So the key is to find the posterior distribution  of latent variables.
Variational EM algorithm (implemented using mixedMem R package) is used to infer the \alpha and \theta as described in \cite{Blei et al., 2003, Erosheva et al., 2004}. However, computational benefits of EM lead to optimization uncertain and make it easily converge to local maxima. We have no priori knowledge for the \theta and \alpha, which is impossible to use near plausible value to find reasonable optimum. To hack this, we repeat multiple times (100) and use median of rewiring changes from all the non-early stops simulation to represent the most optimal regulatory changes of TF.
The rewiring of TF regulation is defined by the changes of distribution in K gene communities using distance_i = math.cbrt(\sum_{i,j} ((math.cbrt(q_{k562,i,j})-math.cbrt(q_{gm12878,i,j}))**3)), q_i is the distribution of communities for TF i.

[bookmark: _Toc473789959]Patient survival analysis based on TF activities
In this analysis, we systematically calculated TF activity in 6 different AML datasets using the ENCODE ChIP-seq data. 292 ChIP-seq experiments from K562 (231 TFs) and 120 ChIP-seq experiments from GM12878 (101 TFs) were used to generate TF binding weight profiles from the TIP output. Specifically, the binding score of a TF to each gene (outputted by the TIP algorithm) was z-transformed and a one-sided z-test was carried out to generate p-values corresponding to each TF-gene binding interaction. P-values were -log10-transformed and trimmed at -10 or 10. Weight profiles were re-scaled by subtracting each value in a TF weight profile by the minimum and dividing by the range so that all values fell between 0 and 1. These weight profiles were used as input into the BASE algorithm to calculate TF activity scores for AML patient samples derived from the following gene expression datasets:


GEO -- GSE37642 (GPL_96) (Herold, n=422)
NCI caArray -- willm-0019 (Wilson n=170)
GEO -- GSE14468 (Wouters, n=526) 

Survival analysis was performed for each TF to identify those that were significantly associated with AML patient mortality. Namely, the TF’s iRASs (activity scores) across patient samples were used as the independent variable in a Cox proportional hazards model. A hazard ratio <1 indicates that a TF’s activity is associated with favorable prognosis and a hazard ratio of >1 indicates that a TF’s activity is associated with unfavorable prognosis in AML patient samples. Since a separate model was fit to each TF’s iRASs, p-values corresponding to the hazard ratios were adjusted for multiple hypothesis testing by using the Benjamini-Hochberg correction procedure. 
In the results, we report the HR, P-value, and Adjusted P-value for each TF and their association with patient survival in each of the 3 AML gene expression datasets. The column labeled “number_datasets_significant_P005” indicates the number of datasets in which the TF’s activity was observed to be significantly associated with AML patient prognosis at P<0.05. In particular, the EZH2, STAT1, and NR2C2 TFs were found to be significantly associated with prognosis in all 3 datasets. 15 other TFs were found to be significant in 2 datasets.

[bookmark: _Toc473789960]Details about expression aggregation analysis
[bookmark: _Toc473789961]TCGA data collection
[image: ]All TCGA expression, methylation and mutation data were downloaded from GDAC firehose (http://gdac.broadinstitute.org) with data version of 2016_01_28. For cancer types with normal control samples profiled, the expression values of each gene are substracted with the average value of all normal controls. For cancer types without any normal samples profiled, the expression profile of each gene is transformed to zero mean and unit deviation. The DNA methylation values are also normalized in the same way as RNASeq data, according to the availability of normal control samples in each cancer type. For copy number alteration (CNA), GDAC firehose doesn’t provide standardardized data and we downloaded the data matrix from cBioportal with data version of 2016_10_20 (http://www.cbioportal.org).
[bookmark: _Toc473789962]Regulatory network construction from ChIPSeq and eCLIP data
For regulatory analysis, we only considered transcription factors (TF), chromatin regulators (CR), and RNA binding proteins (RBP). In total, there are 978 TF/CR ChIPSeq profiles and 159 RBP eCLIP profiles downloaded from ENCODE DCC until Janurary 4th, 2017 (https://www.encodeproject.org). All ChIP-seq and eCLIP peak scores are linearly scaled into range (0,1]. The regulatory score between TF peaks and gene promoters were built with “connect_host” commands from RABIT package following an exponential decay model (Supplementary Figure 5a). The regulatory score between RBPs and genes were built through counting eCLIP peaks within gene 3’UTR regions (Supplementary Figure 5b). All regulatory potential scores stay within range (0,1].
ChIPSeq and eCLIP profiles were excluded from further analysis if the total sum of regulatory scores across all human genes are less than 100. All general TFs including Pol2 and Pol3 were excluded from further analysis. For certain TF, there exists many ChIP-seq profiles profiled in different conditions. We run a hierarchical clustering among all of its ChIP-seq profiles and cut the hierarcical tree at correlation distance of 0.2. Only profiles in the largest cluster are used for further analysis. The final size of regulatory networks constructed are shown in Supplementary Table 2. 
In order to systematically search for transcription factors (TF) that drive tumor specific gene expression patterns, we used a previously developed integration framework RABIT (Regression Analysis with Background InTegration, http://rabit.dfci.harvard.edu). In the RABIT framework, for a given TF ChIP-seq binding profile, candidate target genes are identified by weighting the number of binding sites by their distance to the transcription start site (TSS) of each gene. For a given eCLIP RBP binding profile, candidate genes are identified through searching the binding sites within the gene 3’UTR regions. RABIT uses three steps to identify TFs (or RBPs) that drive tumor specific gene expression patterns at both the individual tumor level and the whole cancer type level. In Step one, RABIT screens for TFs that significantly affect the gene expression patterns in each tumor, and select the most relevant ChIP-seq (or eCLIP) profile if multiple profiles exists for the same regulator. In Step two, RABIT further selected a subset of TFs among those screened in Step one to achieve an optimized model error. In Step three, RABIT investigates how well the public ChIP-seq profiles can capture the active TF targets in each cancer type, and clean up insignificant TFs. The final output of RABIT framework is a set of TFs or RBPs that shape the tumor-specific expression patterns at individual tumor level in each cancer type



[image: ]

Figure 1: Inference of RNA binding proteins driving cancer expression patterns. Using ENCODE eCLIP data and TCGA tumor profiles, we applied RABIT framework to identify RNA binding proteins (RBP), whose target genes are differentially regulated in cancer. (a) The fractions of patients with target genes up or down regulated are shown for each combination of RBP and cancer type. (b) The patient fractions with target genes differentially regulated are shown for all cancer types and RBPs whose fraction values are larger than 50% in at least one cancer. (c) All lung adenocarcinoma patients are divided to two groups according to SUB1 activity predicted by RABIT. The overall survival was shown by KM plot. The association between SUB1 activity and survival was tested through Cox-PH regression. (d) In the left panel, the cumulative distributions of gene expression after SUB1 knock down in HepG2 cell are shown for predicted SUB1 targets and none targets. In the right panel, the cumulative distributions of mRNA decay rates in HepG2 cell are shown. The comparison between two categories is done through Wilcoxon rank-sum test.

     [image: ]
Supplementary Figure 1: Fractions of patients with targets differentially regulated. The patient fractions with target genes differentially regulated are shown for all cancer types and RBPs. In each cell of a combination between one RBP and a cancer type, red upper triangle represents the fraction of patients with targets up-regulated and blue lower triangle represents the fraction of patients with target down-regulated. Only RBPs whose fraction values are larger than 50% in at least one cancer are shown.


[image: ]

Supplementary Figure 2: eCLIP peaks of SUB1. (a) The composition of SUB1 peaks over different gene regions is shown for each replicate. (b) For each gene region, the relative enrichment (fraction of SUB1 peaks / fraction of all peaks) of SUB1 peaks is shown. (c) The distribution of SUB1 peaks over 3’UTR regions is shown. The mean across all RNA binding proteins profiled by eCLIP experiments are shown as background with standard deviation as error bars.




[image: ]
Supplementary Figure 3: Inference of RNA binding proteins driving cancer expression patterns. Based on ENCODE ChIPSeq data and TCGA profiles, we applied RABIT framework to identify transcription factors (TF) whose target genes are differentially regulated in cancer. The fractions of patients with TF targets differentially regulated are shown. Only TFs with targets differentially regulated in over 40% patients in at least two cancer types are included. 



[image: ]
Supplementary Figure 4: The potential role of ZNF687 in cancer. (a) The breast tumors were classified into sub types according to PAM50 classification and ER status. The target activity scores predicted by RABIT are shown for each sub type by boxplots (b) In each TCGA cancer type, the fractions of patients detected with different types of ZNF687 alterations are shown.

	[bookmark: RANGE!A1:E16]Cancer
	Coef
	Stderr
	t-value
	p-value

	THCA
	4.79
	0.46
	10.46
	9.03E-23

	OV
	4.47
	0.61
	7.37
	1.53E-12

	LUAD
	2.87
	0.46
	6.22
	3.25E-09

	PRAD
	2.90
	0.48
	6.02
	4.56E-09

	HNSC
	2.61
	0.46
	5.72
	2.73E-08

	KIRP
	3.60
	0.63
	5.73
	5.66E-08

	GBM
	2.93
	0.54
	5.47
	2.60E-07

	LIHC
	3.22
	0.64
	5.02
	1.18E-06

	BLCA
	3.21
	0.66
	4.83
	3.91E-06

	LUSC
	2.80
	0.66
	4.25
	6.39E-05

	KIRC
	1.91
	0.50
	3.83
	1.62E-04

	STAD
	2.16
	0.57
	3.76
	2.14E-04

	ESCA
	1.67
	0.54
	3.09
	2.34E-03

	UCEC
	1.47
	0.52
	2.84
	5.28E-03

	KICH
	1.64
	0.58
	2.80
	6.71E-03



	[image: ]
	[bookmark: _Ref347322239]Supplementary Figure 5: regulatory network construction. (a) For ChIP-seq data, A regulatory potential score is calculated between each pair of ChIP-seq peak and gene TSS by multiplying the ChIP-seq intensity score with an exponential decay score exp(-A*Distance) of their distance between. The coefficient A is set as log(2)/10K, so that a binding peak 10K bps away from gene TSS will decay by 50%. For each gene TSS, if there are several peaks of a TF nearby, we merged their regulatory potential scores by noisy-or: . (b) For eCLIP data, only binding peaks over gene 3’UTR regions were considered for possible regulatory role of transcript stability. For each gene 3’UTR region, if there are several peaks of a RBP, we merged their regulatory potential scores by noisy-or operation.




Supplementary Table 1: Correlation between SUB1 expression and target activity. In each cancer type, the association between SUB1 expression and SUB1 regulatory activity predicted by RABIT was tested through t-test in linear regression. Only significant associations above FDR threshold 0.05 are shown.

[bookmark: RANGE!A1:E4]

	[bookmark: RANGE!A1:E3]
	Profile
	Regulator
	Condition
	Target

	ChIPSeq
	762
	496
	44
	21348

	eCLIP
	159
	112
	2
	14593



[bookmark: _Ref347322383]Supplementary Table 2: Statistics of regulatory networks. For each data type, column “Profile” represents the number of experimental profiles (ChIP-seq or eCLIP) that passed our quality controls. Column “Regulator” represents the number of regulators (TF, CR or RBP) analyzed. Column “Condition” represents the number of experimental conditions included in profiles. Column “Target” represents the total number of human genes profiled as targets of analyzed regulators.

[bookmark: _Toc473789963]Details about SNV validation
[bookmark: _Toc473789964]Variant prioritization
[bookmark: _Toc473789965]Motif analysis using MotifTools (D-score)
To prioritize the variant within high-confidence enhancer sets, we first searched for recurrent non-coding variants or multiple non-coding variant occurring in a known TF motif. However, we could not find any somatic variants that are either recurrent or recurrent within a TF motif (Supplementary figure X).
[image: ]
Supplementary figure X. Variant prioritization scheme based on Enhancer-seq
Alternatively, we prioritized somatic variants based on its motif breaking power, or D-score, where D stands for disruptive-ness or deleterious-ness. Motif disruption score was calculated based on the difference between sequence specificities of reference to alternative sequence.





= 


Positive D-score denotes a variant is decreasing the likelihood of TF to bind the motif (motif-break), and negative D-score denotes a variant is increasing the likelihood of TF to bind the motif (motif-gain). For assessing D-score, uniform nucleotide background were assumed (A:C:G:T=1:1:1:1), and the p-value threshold of 1e-3 was used. For position weight matrix (PWM), JASPAR TF profiles (2016 core non-redundant vertebrates, http://jaspar.genereg.net/html/DOWNLOAD/JASPAR_CORE/pfm/nonredundant/pfm_vertebrates.txt) were used, and variants that affect multiple TF binding profiles were averaged over all D-scores. More details about the tool and code can be found in https://github.com/hoondy/MotifTools.

[image: ]
Supplementary figure X. MotifTools D-score

[bookmark: _1mpcxy2mivd3][bookmark: _hkwwpyfenknn][bookmark: gqbdnixgjocp]Somatic variants were further prioritized using conservation score (high positive GERP score).
	SAMPLE
	CHR
	POS
	REF
	ALT
	TEST_START
	TEST_END
	NOTE

	Sample01
	chr16
	85604242
	C
	G
	85603992
	85604491
	issue with plasmid isolation

	Sample02
	chr21
	27541982
	G
	A
	27541732
	27542231
	 

	Sample03
	chr8
	21541726
	A
	G
	21541476
	21541975
	issue with plasmid isolation

	Sample04
	chr17
	38474408
	C
	G
	38474158
	38474657
	 

	Sample05
	chr20
	43971343
	G
	C
	43971093
	43971592
	 

	Sample06
	chr7
	1598567
	C
	T
	1598317
	1598816
	 

	Sample07
	chr20
	58563412
	C
	T
	58563162
	58563661
	 

	Sample08
	chr7
	150759483
	C
	G
	150759233
	150759732
	 

	Sample09
	chr7
	5596005
	T
	G
	5595755
	5596254
	 

	Sample10
	chr6
	134700462
	G
	T
	134700212
	134700711
	 



Supplementary table X. validated mutations in MCF-7 and luciferase assay tested region
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