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Abstract 
Summary: Genome-wide proximity ligation based assays like Hi-C have opened a window to the 3D organization of 
the genome. In so doing, they present data structures that are different from conventional 1D signal tracks. To exploit 
the 2D nature of Hi-C contact maps, matrix techniques like spectral analysis are particularly useful. Here, we present 
HiC-spector, a collection of matrix-related functions for analyzing Hi-C contact maps. In particular, we introduce a 
novel reproducibility metric for quantifying the similarity between contact maps based on spectral decomposition. The 
metric successfully separates contact maps mapped from Hi-C data coming from biological replicates, pseudo-
replicates and different cell types.   
Availability:	Source code in Julia and the documentation of HiC-spector can be freely obtained at 
https://github.com/gersteinlab/HiC_spector 
Contact:	pi@gersteinlab.org 

 
 

1 Introduction  
Genome-wide proximity ligation assays such as Hi-C have 
emerged as powerful techniques to understand the 3D organiza-
tion of the genome (Lieberman-Aiden et al., 2009; Kalhor et al., 
2011). While these techniques offer new biological insights, they 
demand different data structures and present new computational 
questions (Dekker et al., 2013; Ay and Noble, 2015). For in-
stance, a fundamental question of particular practical importance 
is, how can we quantify the similarity between two Hi-C data 
sets? In particular, given two experimental replicates, how can 
we determine if the experiments are reproducible? 

Data from Hi-C experiments are usually summarized by so-
called chromosomal contact maps. By binning the genome into 
equally sized bins, a contact map is a matrix whose elements 
store the population-averaged co-location frequencies between 
pairs of loci. Therefore, mathematical tools like spectral analysis 
can be extremely useful in understanding these chromosomal 
contact maps. The aim of this project is to provide a set of basic 
analysis tools for handling Hi-C contact maps. In particular, we 
introduce a simple but novel metric to quantify the reproducibil-
ity of the maps using spectral decomposition.  

2 Algorithms 

We represent a chromosomal contact map by a symmetric and 
non-negative adjacency matrix !. The matrix elements repre-
sent the frequencies of contact between genomic loci. Recent 
single-cell imaging experiment suggests that the frequency 
serves as a good proxy of spatial distance (Wang et al., 2016). In 
principle, the larger the value of !"#, the closer is the distance 
between loci $ and %. The starting point of spectral analysis is the 
Laplacian matrix &, which is defined as & = ( −!. Here ( is a 
diagonal matrix in which ("" = !"##  (the coverage of bin $ in 
the context of Hi-C). As in many other applications, the Laplaci-
an matrix further takes a normalized form ℒ = (+,/.&(+,/. 
(Chung, 1997). It can be verified that 0 is an eigenvalue of ℒ, 
and the set of eigenvalues of ℒ (0 ≤ 12 ≤ 1, ≤ ⋯ ≤ 14+,) is 
referred to as the spectrum of ℒ.	 

Given two contact maps !8 and !9, we propose to quantify 
their similarity by decomposing their corresponding Laplacian 
matrices ℒ8 and ℒ9 respectively and then comparing their ei-
genvectors. Let {128, 1,8, … , 14+,8 } and {129, 1,9, … , 14+,9 } be the 
spectra of ℒ8 and ℒ9, and {>28, >,8, … , >4+,8 } and 
{>29, >,9, … , >4+,9 } be their sets of normalized eigenvectors. A 
distance metric ?@ is defined as  

 ?@ A, B = >"8 − >"9
C+,

"D2
. (1) 

Here .  represents the Euclidean distance between the two 
vectors. The parameter r is the number of leading eigenvectors 
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picked from ℒ8 and ℒ9. In general, ?@	provides a metric to 
gauge the similarity between two contact maps.  >"8 and >"9 are 
more correlated if A and B are two biological replicates as com-
pared to the case when they are two different cell lines (see Fig-
ure S1).  

For the choice of r, like any principal component analysis, we 
expect the leading eigenvectors to be more important than the 
lower ranked eigenvectors. In fact, we observe that the Euclide-
an distance between a pair of high-order eigenvectors is the same 
as the distance between a pair of unit vectors whose components 
are randomly sampled from a standard normal distribution (see 
Figure S2). In other words, the high-order eigenvectors are es-
sentially noise terms, whereas the signal is stored in the leading 
vectors. As a rule of thumb, we found the choice E = 20 is good 
enough for practical purposes. Furthermore, as the distance be-
tween a pair of randomly sampled unit vectors presents a refer-
ence, we linearly rescale the distance metric into a reproducibil-
ity score Q ranges from 0 to 1 (see the Supplement). 
We used HiC-spector to calculate the reproducibility scores for 
more than a hundred pairs of Hi-C contact maps. As shown in 
Figure 1, the reproducibility scores between pseudo-replicates 
are greater than the scores for real biological replicates, which 
are greater than the scores between maps from different cell lines 
(see the Supplement for details). It is worthwhile to point out 
that two contact maps can be compared in terms of structures 
like TADs and loops. What we refer to as “reproducibility” is a 
direct comparison of the contact maps. The comparison of the 
high order structures usually strongly on the choices of methods 
and parameters.  

 

 
Figure 1 Reproducibility scores for 3 sets of Hi-C contact maps pairs. Contact 
maps came from Hi-C experiments performed in 11 cancer cell lines. Biologi-
cal replicates refer to a pair of replicates of the same experiment. Pseudo 
replicates are obtained by pooling the reads from two replicates together and 
performing down sampling. There are 11 biological replicates, 33 pairs of 
pseudo replicates, and 110 pairs of maps between different cell types. The 
boxplot shows the distribution of Q in 23 chromosomes, with red crosses as the 
outliers. 

Mathematically there are different ways to compare two ma-
trices. For instance, one could assume all matrix elements are 
independent and define a distance metric using Spearman corre-
lation. The intuition behind ?@ is essentially a better way to de-
compose a contact map. The normalized Laplacian matrix is 
closely related to a random-walk-process taking place in the 
underlying graph of !. The leading eigenvector refers to the 
steady state distribution; the next few eigenvectors correspond to 

the slower decay modes of the random walk process and capture 
the densely interacting domains that are highly significant in 
contact maps. Like typical dimensionality reduction, keeping the 
first few eigenvectors separates signal from noise. In fact, HiC-
spector can better separate biological replicates and non-
replicates compared to the correlation coefficient (see Figure S3 
and the Supplement). 

Apart from the reproducibility score, HiC-spector provides a 
number of matrix algorithms useful for analyzing contact maps. 
For instance, to perform a widely used normalization procedure 
for contact maps (Imakaev et al., 2012), we include the Knight-
Ruiz algorithm (Knight and Ruiz, 2012), which is a newer and 
faster algorithm for matrix balancing. Also, we have included 
the functions for estimating the average contact frequency with 
respect to the genomic distance, as well as identifying the so-
called A/B compartments (Lieberman-Aiden et al., 2009) using 
the corresponding correlation matrix. 

3 Implementation and Benchmark 
HiC-spector is a library written in Julia, a high-performance 
language for technical computing. A python script for the repro-
ducibility score is also provided for command line calculation. 
The bottleneck for evaluating Q is matrix diagonalization. The 
runtime is very efficient but depends on the size of contact maps 
(see Figure S5 for details).  

4 Materials and methods 
Hi-C data are generated by the ENCODE consortium (see Sup-
plementary Information). Contact maps in this study were gener-
ated using the tool cworld (https://github.com/dekkerlab/cworld-
dekker).  
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HiC-Spector: A matrix library for spectral and 

reproducibility analysis of Hi-C contact maps 
 
Supplementary Methods 
 
Data and the contact maps 
Hi-C data are generated by the ENCODE consortium. Data used in this study came 
from 11 cancer cell lines (A549, Caki2, G401, LNCaP, NCI-H460, Panc1, RPMI-7951, 
SK-MEL-5, SK-N-DZ, SK-N-MC, T47D). Raw reads can be downloaded from the 
ENCODE portal (https://www.encodeproject.org). See Supplementary Table 1 for 
details. Contact maps were generated by the tool cworld developed in the Dekker 
lab (https://githib.com/dekkerlab/cworld-dekker). The bin size was set to be 40kb. 
The analysis reported in Figure 1 was performed on a chromosome-by-chromosome 
basis. The intra-chromosomal contact maps were not normalized (balanced).  
 
Biological replicates, pseudo-replicates and non-replicates 
Pairs of experiments were divided into three classes: biological replicates, pseudo-
replicates, and non-replicates. Biological replicates refer to two experimental 
replicates of the same cell line. The 11 cancer cell lines resulted in 11 pairs of 
biological replicates. For pseudo-replicates, reads from a pair of biological replicates 
are pooled together and down sampled into two groups. The procedures were 
repeated three times for each cell line, arriving at 33 replicates.  For non-replicates, 
the 11 cell types result in 55 pairings. Because there are two replicates for each cell 
type, there will be 4 possible pairings for each pair of non-replicate cell type pairing. 
Two of them were used to generate 2*55=110 non-replicate pairs. For each pair of 
the experiment, 23 reproducibility scores were obtained corresponding to 
chromosome 1 to 22 and chromosome X. 
 
More details on Laplacian and the definition of Sd 
The starting point of spectral analysis is the Laplacian matrix 𝐿, which is defined as 
𝐿 = 𝐷 − 𝑊. Here 𝐷 is a diagonal matrix in which 𝐷𝑖𝑖 = ∑ 𝑊𝑖𝑗𝑗 . The Laplacian matrix 

further takes a normalized form ℒ = 𝐷−1/2𝐿𝐷−1/2. The normalized Laplacian matrix 
is closely related to a random-walk-process taking place in the underlying graph. 
The transition matrix for the random walk is 𝑃 = 𝑊𝐷−1.  The transition matrix and 
the normalized Laplacian matrix differ by only a similarity transform in which ℒ =
𝐷−1/2𝑃𝐷1/2 and therefore they share the same set of eigenvalues. The leading 
eigenvector captures the steady state distribution; the next few eigenvectors 
correspond to the slower decay modes of the random walk process and capture the 
domains that are highly important in contact maps.  
 
The spectral decomposition theorem provides a natural way to separate a matrix 
into components,  

http://www.encodeproject.org)/
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Like common dimensionality reduction, keeping the first few eigenvectors separate 
signal from noise. Spectral theorem offers a natural way to separate a matrix. A 
simple-minded approach is to treat all matrix elements independently and define a 
metric by correlation coefficient. Nevertheless, such a simple metric cannot separate 
contact maps between a pair of biological replicates from maps generated from two 
different cell lines (Figure S3). 
 
Though the leading eigenvectors tend to capture the large-scale structures of the 
graph, there are cases such that the eigenvectors are very localized. The localization 
can be captured by the so-called inverse participation ratio (IPR). Given a unit 
eigenvector 𝑣𝑖

𝐴 , the inverse participation ratio is defined as 
 

𝐼𝑃𝑅 =
1

∑ (𝑣𝑖𝑗
𝐴 )

4𝑁
𝑗=1

 

 

If the eigenvector concentrated on a single node (for instance, v=[1,0,0,…,0]), then 

𝐼𝑃𝑅 = 1. If the eigenvector is uniformly spread over the whole graph, i.e. 𝑣 = [
1

√𝑁
,

1

√𝑁
 

,… 
1

√𝑁
 ], then 𝐼𝑃𝑅 = 𝑁. To find the distance between two contact maps, the localized 

leading vectors (IPR less than or equal to 5) were filtered.  

 

The distance metric we employed between two matrices is slightly more complicated 

than the Euclidean distance displayed in Equation (1). Suppose 𝑑(𝑣𝐴 , 𝑣𝐵) is the standard 

Euclidean distance between 𝑣𝐴 and 𝑣𝐵 . The distance we employed is in fact 

min (𝑑(𝑣𝐴, 𝑣𝐵), 𝑑(𝑣𝐴 , −𝑣𝐵)). This is because the sign of an eigenvector is arbitrary (i.e. 

if 𝑣𝐴 is an eigenvector, −𝑣𝐵 is an eigenvector).  

 

Raw versus normalized matrices 

As a metric to define the reproducibility of experiments, we focus on raw maps. If 

contact maps are normalized (ICED) in a whole-genome-to-whole-genome fashion, intra-

chromosomal reproducibility scores are well defined. Nevertheless, if A and B are both 

normalized, the metric 𝑆𝑑(𝐴, 𝐵) cannot capture the distance properly. It is because the 

normalization procedure has drastically transformed the eigenvalues spectrum of a 

matrix. The leading eigenvectors of two normalized matrices appear to be very similar. 

Unless more eigenvectors are included, the metric 𝑆𝑑(𝐴, 𝐵) cannot capture the distance 

between two matrices. 

 
The relationship between Sd and the reproducibility score 
The distance between a pair of unit vectors whose components are randomly sampled 

from a standard normal distribution follows a distribution with mean  𝑙 = √2. Figure S2 

shows the Euclidean distance between pairs of eigenvectors. As the distance between a 



pair of high-order eigenvectors is close to 𝑙, in other words, they are essentially noise 

terms, whereas the signal is stored in the leading vectors. Based on 𝑙, the distance Sd  
between A and B is rescaled to a reproducibility score ranging from 0 to 1 by a 
linear function: 
 

𝑄(𝐴, 𝐵) = (1 −
1

𝑟

𝑆𝑑

𝑙
) 

 
Contribution of the diagonal elements 
It is known that the number of interactions between two loci in the same 
chromosome that are close together proximally is noisy. To explore this thread, we 
examined at the contribution of the diagonal elements. Using the 11 pairs of 

biological replicates, we recalculated the reproducibility scores for 253 (11x23) pairs of 

intra-chromosomal contact maps by removing the diagonal entries of the contact maps. 

The new set of reproducibility scores is well correlated (PCC=0.82) with the original set 

of reproducibility scores based on the full maps (Figure S4).  

 
Implementation and Benchmark 
The runtime is efficient but depends on the size of contact maps. Figure S5 shows a 
benchmark based on contact maps from two replicates of A549 using the Julia 
implementation. The elapsed time for calculating Q depends on the size of the 
chromosome. The calculation was performed on a laptop with 2.8GHz Intel Core i7 
and 16Gb of RAM. 
 



Supporting Figures 
 

 
Figure S1: Leading eigenvectors of contact maps. Blue refers to a pair of pseudo-replicates. The 
corresponding leading eigenvectors are more correlated as compared to red, which refers to a pair of 
contact maps originating from two different cell lines. 
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Figure S2: Euclidean distance between corresponding eigenvectors in a pair of Hi-C contact maps. The 
distance between leading eigenvectors is low. The red line is the distance between two random unit 
vectors whose components are sampled from a standard normal and then rescaled. The distance 
between two high-order eigenvectors is very close to the red line, suggesting they are noise instead of 
actual signal. 
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Figure S3: Correlation coefficients between pairs of Hi-C contact maps. Compared to Figure 1 in the main 
text, though a pair of pseudo-replicates are highly correlated, correlation coefficients cannot separate 
biological replicates with non-replicates. To find the correlation coefficient for a pair of matrices, all 
matrix elements are regarded independently. A pseudo-count of value 1 is added to each entry. 
Logarithm is taken before Pearson correlation coefficient is obtained. 

  



 

 
 
Figure S4: Sensitivity to noise along the diagonal. X-axis: Reproducibility scores for 11x23 contact maps 
obtained from 11 pairs of biological replicates. Y-axis: Reproducibility scores are recalculated in which 
the diagonal entries of the maps were removed. The two sets of scores are highly correlated (PCC=0.82). 

  
  



 

Figure S5: Elapsed time for calculating the reproducibility score for different chromosomes. The bin size 
used for binning the genome is 40kb. 

  



 

 

Table S1: Details of ENCODE Hi-C datasets. Each cell line has two replicates. 

cell type 
# interactions 

(millions) 
Library in ENCODE portal 

A549 
33 ENCLB571HTP 

30 ENCLB222WYT 

Caki2 
36 ENCLB555CZE 

47 ENCLB858SVS 

G401 
61 ENCLB506SDM 

53 ENCLB589RBY 

LNCaP 
18 ENCLB191OGC 

15 ENCLB473XWD 

NCI-H460 
42 ENCLB118KAE 

29 ENCLB104ZTM 

Panc1 
37 ENCLB951HSJ 

51 ENCLB134IVX 

RPMI-7951 
32 ENCLB210AAY 

49 ENCLB016TGU 

SK-MEL-5 
46 ENCLB296ZFT 

11 ENCLB462TWE 

SK-N-DZ 
16 ENCLB524GGK 

10 ENCLB952BSP 

SK-N-MC 
25 ENCLB215KZO 

13 ENCLB914GYK 

T47D 
34 ENCLB758KFU 

36 ENCLB183QHG 
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