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Abstract 
Summary: Genome-wide proximity ligation based assays like Hi-C have opened a window to the 3D organization of 
the genome. In so doing, they present data structures that are different from conventional 1D signal tracks. To exploit 
the 2D nature of Hi-C contact maps, matrix techniques like spectral analysis are particularly useful. Here, we present 
HiC-spector, a collection of matrix-related functions for analyzing Hi-C contact maps. In particular, we introduce a 
novel reproducibility metric for quantifying the similarity between contact maps based on spectral decomposition. The 
metric successfully separates contact maps mapped from Hi-C data coming from biological replicates, pseudo-
replicates and different cell types.   
Availability:	Source code in Julia and the documentation of HiC-spector can be freely obtained at 
https://github.com/gersteinlab/HiC_spector 
Contact:	pi@gersteinlab.org 

 
 

1 Introduction  
Genome-wide proximity ligation assays such as Hi-C have 
emerged as powerful techniques to understand the 3D organiza-
tion of the genome (Lieberman-Aiden et al., 2009; Kalhor et al., 
2011). While these techniques offer new biological insights, they 
demand different data structures and present new computational 
questions (Dekker et al., 2013; Ay and Noble, 2015). For in-
stance, a fundamental question of particular practical importance 
is, how can we quantify the similarity between two Hi-C data 
sets? In particular, given two experimental replicates, how can 
we determine if the experiments are reproducible? 

Data from Hi-C experiments are usually summarized by so-
called chromosomal contact maps. By binning the genome into 
equally sized bins, a contact map is a matrix whose elements 
store the population-averaged co-location frequencies between 
pairs of loci. Therefore, mathematical tools like spectral analysis 
can be extremely useful in understanding these chromosomal 
contact maps. The aim of this project is to provide a set of basic 
analysis tools for handling Hi-C contact maps. In particular, we 
introduce a simple but novel metric to quantify the reproducibil-
ity of the maps using spectral decomposition.  

2 Algorithms 
We represent a chromosomal contact map by a symmetric and 

non-negative adjacency matrix 𝑊. The matrix elements repre-
sent the frequencies of contact between genomic loci and there-
fore serve as a proxy of spatial distance. In principle, the larger 
the value of 𝑊!", biologically the closer is the distance between 
loci 𝑖 and 𝑗. The starting point of spectral analysis is the Laplaci-
an matrix 𝐿, which is defined as 𝐿 = 𝐷 −𝑊. Here 𝐷 is a diago-
nal matrix in which 𝐷!! = 𝑊!"!  (the coverage of bin 𝑖 in the 
context of Hi-C). As in many other applications, the Laplacian 
matrix further takes a normalized form ℒ = 𝐷!!/!𝐿𝐷!!/! 
(Chung, 1997). It can be verified that 0 is an eigenvalue of ℒ, 
and the set of eigenvalues of ℒ (0 ≤ 𝜆! ≤ 𝜆! ≤ ⋯ ≤ 𝜆!!!) is 
referred to as the spectrum of ℒ.  

Given two contact maps 𝑊! and 𝑊!, we propose to quantify 
their similarity by decomposing their corresponding Laplacian 
matrices ℒ! and ℒ! respectively and then comparing their ei-
genvectors. Let {𝜆!!, 𝜆!!,… , 𝜆!!!! } and {𝜆!! , 𝜆!! ,… , 𝜆!!!! } be the 
spectra of ℒ! and ℒ!, and {𝑣!!, 𝑣!!,… , 𝑣!!!! } and 
{𝑣!! , 𝑣!! ,… , 𝑣!!!! } be their sets of normalized eigenvectors. A 
distance metric 𝑆! is defined as  

 𝑆! 𝐴,𝐵 = 𝑣!! − 𝑣!!
!!!

!!!

. (1) 

Here .  represents the Euclidean distance between the two 
vectors. The parameter r is the number of leading eigenvectors 
picked from ℒ! and ℒ!. In general, 𝑆!  provides a metric to 
gauge the similarity between two contact maps.  𝑣!! and 𝑣!! are 
more correlated if A and B are two biological replicates as com-
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pared to the case when they are two different cell lines (see Fig-
ure S1).  

For the choice of r, like any principal component analysis, we 
expect the leading eigenvectors are more important than the 
lower ranked eigenvectors. In fact, we observe that the Euclide-
an distance between a pair of high-order eigenvectors is the same 
as the distance between a pair of unit vectors whose components 
are randomly sampled from a standard normal distribution (see 
Figure S2). In other words, the high-order eigenvectors are es-
sentially noise terms, whereas the signal is stored in the leading 
vectors. As a rule of thumb, we found the choice 𝑟 = 20 is good 
enough for practical purposes. Furthermore, as the distance be-
tween a pair of randomly sampled unit vectors presents a refer-
ence, we linearly rescale the distance metric into a reproducibil-
ity score Q ranges from 0 to 1 (see the Supplement). 

We used HiC-spector to calculate the reproducibility scores 
for more than a hundred pairs of Hi-C contact maps. As shown 
in Figure 1, the reproducibility scores between pseudo-replicates 
are greater than the scores for real biological replicates, which 
are greater than the scores between maps from different cell lines 
(see the Supplement for details).

 
Figure 1 Reproducibility scores for 3 sets of Hi-C contact maps pairs. Contact 
maps came from Hi-C experiments performed in 11 cancer cell lines. Biologi-
cal replicates refer to a pair of replicates of the same experiment. Pseudo 
replicates are obtained by pooling the reads from two replicates together and 
performing down sampling. There are 11 biological replicates, 33 pairs of 
pseudo replicates, and 110 pairs of maps between different cell types. The 
boxplot shows the distribution of Q in 23 chromosomes, with red crosses as the 
outliers. 

Mathematically there are different ways to compare two ma-
trices. For instance, one could assume all matrix elements are 
independent and define a distance metric using Spearman corre-
lation. The intuition behind 𝑆! is essentially a better way to de-
compose a contact map. The normalized Laplacian matrix is 
closely related to a random-walk-process taking place in the 
underlying graph of 𝑊. The leading eigenvector refers to the 
steady state distribution; the next few eigenvectors correspond to 
the slower decay modes of the random walk process and capture 
the densely interacting domains that are highly significant in 
contact maps. Like typical dimensionality reduction, keeping the 
first few eigenvectors separates signal from noise. In fact, HiC-
spector can better separate biological replicates and non-
replicates compared to the simple-minded correlation coefficient 
(see Figure S3 and the Supplement). 

Apart from the reproducibility score, HiC-spector provides a 
number of matrix algorithms useful for analyzing contact maps. 

For instance, to perform a widely used normalization procedure 
for contact maps (Imakaev et al., 2012), we include the Knight-
Ruiz algorithm (Knight and Ruiz, 2012), which is a newer and 
faster algorithm for matrix balancing. Also, we have included 
the functions for estimating the average contact frequency with 
respect to the genomic distance, as well as identifying the so-
called A/B compartments (Lieberman-Aiden et al., 2009) using 
the corresponding correlation matrix. 

3 Implementation and Benchmark 
HiC-spector is a library written in Julia, a high-performance 
language for technical computing. A python script for the repro-
ducibility score is also provided for command line calculation. 
The bottleneck for evaluating Q is matrix diagonalization. The 
runtime is efficient but depends on the size of contact maps (see 
Figure S5 for details).  

4 Materials and methods 
Hi-C data are generated by the ENCODE consortium (see Sup-
plementary Information). Contact maps in this study were gener-
ated using the tool HiC-Pro (Servant et al., 2015).  
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HiC-Spector: A matrix library for spectral and 
reproducibility analysis of Hi-C contact maps 
	
Supplementary	Methods	
	
Data	and	the	contact	maps	
Hi-C	data	are	generated	by	the	ENCODE	consortium.	Data	used	in	this	study	came	
from	11	cancer	cell	lines	(A549,	Caki2,	G401,	LNCaP,	NCI-H460,	Panc1,	RPMI-7951,	
SK-MEL-5,	SK-N-DZ,	SK-N-MC,	T47D).	Raw	reads	can	be	downloaded	from	the	
ENCODE	portal	(https://www.encodeproject.org).	See	Supplementary	Table	1	for	
details.	Contact	maps	were	obtained	from	raw	reads	using	the	pipeline	HiC-Pro.	The	
bin	size	was	set	to	be	40kb.	The	analysis	reported	in	Figure	1	was	performed	on	a	
chromosome-by-chromosome	basis.	The	intra-chromosomal	contact	maps	were	not	
normalized.		
	
Biological	replicates,	pseudo-replicates	and	non-replicates	
Pairs	of	experiments	were	divided	into	three	classes:	biological	replicates,	pseudo-
replicates,	and	non-replicates.	Biological	replicates	refer	to	two	experimental	
replicates	of	the	same	cell	line.	The	11	cancer	cell	lines	resulted	in	11	pairs	of	
biological	replicates.	For	pseudo-replicates,	reads	from	a	pair	of	biological	replicates	
are	pooled	together	and	down	sampled	into	two	groups.	The	procedures	were	
repeated	three	times	for	each	cell	line,	arriving	at	33	replicates.		For	non-replicates,	
the	11	cell	types	result	in	55	pairings.	Because	there	are	two	replicates	for	each	cell	
type,	there	will	be	4	possible	pairings	for	each	pair	of	non-replicate	cell	type	pairing.	
Two	of	them	were	used	to	generate	2*55=110	non-replicate	pairs.	For	each	pair	of	
the	experiment,	23	reproducibility	scores	were	obtained	corresponding	to	
chromosome	1	to	22	and	chromosome	X.	
	
More	details	on	Laplacian	and	the	definition	of	Sd	
The	starting	point	of	spectral	analysis	is	the	Laplacian	matrix	𝐿,	which	is	defined	as	
𝐿 = 𝐷 −𝑊.	Here	𝐷	is	a	diagonal	matrix	in	which	𝐷!! = 𝑊!"! .	The	Laplacian	matrix	
further	takes	a	normalized	form	ℒ = 𝐷!!/!𝐿𝐷!!/!.	The	normalized	Laplacian	matrix	
is	closely	related	to	a	random-walk-process	taking	place	in	the	underlying	graph.	
The	transition	matrix	for	the	random	walk	is	𝑃 =𝑊𝐷!!. 	The	transition	matrix	and	
the	normalized	Laplacian	matrix	differ	by	only	a	similarity	transform	in	which	
ℒ = 𝐷!!/!𝑃𝐷!/!	and	therefore	they	share	the	same	set	of	eigenvalues.	The	leading	
eigenvector	captures	the	steady	state	distribution;	the	next	few	eigenvectors	
correspond	to	the	slower	decay	modes	of	the	random	walk	process	and	capture	the	
domains	that	are	highly	important	in	contact	maps.		
	
The	spectral	decomposition	theorem	provides	a	natural	way	to	separate	a	matrix	
into	components,		



ℒ = 𝜆!

!

!!!

𝑣!!𝑣!!
!	

	
Like	common	dimensionality	reduction,	keeping	the	first	few	eigenvectors	separate	
signal	from	noise.	Spectral	theorem	offers	a	natural	way	to	separate	a	matrix.	A	
simple-minded	approach	is	to	treat	all	matrix	elements	independently	and	define	a	
metric	by	correlation	coefficient.	Nevertheless,	such	a	simple	metric	cannot	separate	
contact	maps	between	a	pair	of	biological	replicates	from	maps	generated	from	two	
different	cell	lines	(Figure	S3).	
	
The distance metric we employed between two matrices is slightly more complicated 
than the Euclidean distance displayed in Equation (1). Suppose 𝑑(𝑣!, 𝑣!) is the standard 
Euclidean distance between 𝑣! and 𝑣!. The distance we employed is in fact 
min (𝑑 𝑣!, 𝑣! ,𝑑 𝑣!,−𝑣! ). This is because the sign of an eigenvector is arbitrary (i.e. 
if 𝑣! is an eigenvector, −𝑣! is an eigenvector).  
 
Raw versus normalized matrices 
As a metric to define the reproducibility of experiments, we focus on raw maps. If 
contact maps are normalized (ICED) in a whole-genome-to-whole-genome fashion, intra-
chromosomal reproducibility scores are well defined. Nevertheless, if A and B are both 
normalized, the metric 𝑆! 𝐴,𝐵  cannot capture the distance properly. It is because the 
normalization procedure has drastically transformed the eigenvalues spectrum of a 
matrix. The leading eigenvectors of two normalized matrices appear to be very similar. 
Unless more eigenvectors are included, the metric 𝑆! 𝐴,𝐵  cannot capture the distance 
between two matrices. 
	
The	relationship	between	Sd	and	the	reproducibility	score	
The distance between a pair of unit vectors whose components are randomly sampled 
from a standard normal distribution follows a distribution with mean  𝑙 = 2. Figure S2 
shows the Euclidean distance between pairs of eigenvectors. As the distance between a 
pair of high-order eigenvectors is close to 𝑙, in other words, they are essentially noise 
terms, whereas the signal is stored in the leading vectors. Based on 𝑙, the distance Sd		
between	A	and	B	is	rescaled	to	a	reproducibility	score	ranging	from	0	to	1	by	a	
linear	function:	
	

𝑄(𝐴,𝐵) = 1−
1
𝑟
𝑆!
𝑙  

	
Contribution	of	the	diagonal	elements	
It	is	known	that	the	number	of	interactions	between	two	loci	in	the	same	
chromosome	that	are	close	together	proximally	is	noisy.	To	explore	this	thread,	we	
examined	at	the	contribution	of	the	diagonal	elements.	Using the 11 pairs of 
biological replicates, we recalculated the reproducibility scores for 253 (11x23) pairs of 
intra-chromosomal contact maps by removing the diagonal entries of the contact maps. 



The new set of reproducibility scores is well correlated (PCC=0.88) with the original set 
of reproducibility scores based on the full maps (Figure S4).  
	
Implementation	and	Benchmark	
The	runtime	is	efficient	but	depends	on	the	size	of	contact	maps.	Figure	S5	shows	a	
benchmark	based	on	contact	maps	from	two	replicates	of	A549	using	the	Julia	
implementation.	The	elapsed	time	for	calculating	Q	depends	on	the	size	of	the	
chromosome.	The	calculation	was	performed	on	a	laptop	with	2.8GHz	Intel	Core	i7	
and	16Gb	of	RAM.	
	



Supporting	Figures	
	

	
Figure	S1:	Leading	eigenvectors	of	contact	maps.	Blue	refers	to	a	pair	of	pseudo-replicates.	The	
corresponding	leading	eigenvectors	are	more	correlated	as	compared	to	red,	which	refers	to	a	pair	of	
contact	maps	originating	from	two	different	cell	lines.	
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Figure	S2:	Euclidean	distance	between	corresponding	eigenvectors	in	a	pair	of	Hi-C	contact	maps.	The	
distance	between	leading	eigenvectors	is	low.	The	red	line	is	the	distance	between	two	random	unit	
vectors	whose	components	are	sampled	from	a	standard	normal	and	then	rescaled.	The	distance	
between	two	high-order	eigenvectors	is	very	close	to	the	red	line,	suggesting	they	are	noise	instead	of	
actual	signal.	
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Figure	S3:	Correlation	coefficients	between	pairs	of	Hi-C	contact	maps.	Compared	to	Figure	1	in	the	main	
text,	though	a	pair	of	pseudo-replicates	are	highly	correlated,	correlation	coefficients	cannot	separate	
biological	replicates	with	non-replicates.	To	find	the	correlation	coefficient	for	a	pair	of	matrices,	all	
matrix	elements	are	regarded	independently.	A	pseudo-count	of	value	1	is	added	to	each	entry.	
Logarithm	is	taken	before	Pearson	correlation	coefficient	is	obtained.	
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Figure	S4:	Sensitivity	to	noise	along	the	diagonal.	X-axis:	Reproducibility	scores	for	11x23	contact	maps	
obtained	from	11	pairs	of	biological	replicates.	Y-axis:	Reproducibility	scores	are	recalculated	in	which	
the	diagonal	entries	of	the	maps	were	removed.	The	two	sets	of	scores	are	highly	correlated	(PCC=0.88).	

	 	



	
Figure	S5:	Elapsed	time	for	calculating	the	reproducibility	score	for	different	chromosomes.	The	bin	size	
used	for	binning	the	genome	is	40kb.	

	 	



	

	

Table	S1:	Details	of	ENCODE	Hi-C	datasets.	Each	cell	line	has	two	replicates.	

cell type # interactions 
(millions) Library in ENCODE portal 

A549 
33 ENCLB571HTP 
30 ENCLB222WYT 

Caki2 36 ENCLB555CZE 
47 ENCLB858SVS 

G401 61 ENCLB506SDM 
53 ENCLB589RBY 

LNCaP 18 ENCLB191OGC 
15 ENCLB473XWD 

NCI-H460 42 ENCLB118KAE 
29 ENCLB104ZTM 

Panc1 37 ENCLB951HSJ 
51 ENCLB134IVX 

RPMI-7951 32 ENCLB210AAY 
49 ENCLB016TGU 

SK-MEL-5 46 ENCLB296ZFT 
11 ENCLB462TWE 

SK-N-DZ 16 ENCLB524GGK 
10 ENCLB952BSP 

SK-N-MC 25 ENCLB215KZO 
13 ENCLB914GYK 

T47D 34 ENCLB758KFU 
36 ENCLB183QHG 




