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Short title: Whole-genome analysis of papillary kidney cancer 10 

Abstract: Papillary renal-cell carcinoma (pRCC) constitutes 10-15% of kidney tumors. To date, 11 

studies on it have largely focused on coding alterations in traditional drivers, particularly MET. 12 

However, for a significant fraction of tumors, researchers have been unable to determine clear 13 

molecular etiologies. To address this, we perform the first whole-genome analysis of pRCC. 14 

Elaborating on previous results on MET, in the coding regions of this gene we find more somatic 15 

alternations and a germline SNP predicting prognosis (rs11762213). Interestingly, we find no 16 

enrichment for small structural variants associated with MET. Next, we scrutinize non-coding 17 

mutations, discovering potentially impactful ones in regions associated with MET and a long 18 

non-coding RNA (NEAT1). Moreover, NEAT1 is implicated in other cancer and its mutations in 19 

pRCC are associated with increased expression and unfavorable outcome. Finally, we investigate 20 

genome-wide mutational patterns, finding they are governed mostly by methylation-associated 21 

C-to-T transitions. Also, we observe significantly more mutations in open chromatin in tumors 22 

with chromatin-modifier alterations.   23 
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Author Summary 24 

Renal cell carcinoma accounts for more than 90% of kidney cancers. Papillary renal cell 25 

carcinoma (pRCC) is the second most common subtype of renal cell carcinoma. Previous studies, 26 

focusing mostly on the protein-coding regions, have identified several key genomic alterations 27 

that are key to cancer initiation and development. However, researchers cannot find any key 28 

mutation in a significant portion of pRCC. Therefore, we carry out the first whole-genome study 29 

of pRCC to discover triggering DNA changes explaining these cases. By looking at the entire 30 

genome, we find additional potentially impactful alterations in and out of the protein-coding 31 

regions. These newly identified critical mutations from scrutinizing the entire genome help 32 

complete our understanding of pRCC genomes. Two alterations we found are associated with 33 

prognosis, which could aid clinical decisions. We are also able to recognize mutation patterns 34 

and signatures, which reflect the mutagenesis processes and give hints on how cancer develops. 35 

Our study provides valuable additional information to facilitate better tumor subtyping, risk 36 

stratification and potentially clinical management. 37 

 38 

Introduction 39 

Renal cell carcinoma (RCC) makes up over 90% of kidney cancers and currently is the 40 

most lethal genitourinary malignancy (1). Papillary RCC (pRCC) accounts for 10%-15% of the 41 

total RCC cases (2). Unfortunately pRCC has been understudied and there are no current forms 42 

of effective systemic therapy for this disease. pRCC are further subtyped into two major groups: 43 

type 1 and type 2 based on histopathological features. For many years, the only prominent 44 

oncogene in pRCC (specifically, type 1) that physicians were able to identify was MET, a 45 

tyrosine kinase receptor for hepatic growth factor. An amino acid substitution that leads to 46 
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constitutive activation and/or overexpression are two mechanisms of dysfunction of MET in 47 

tumorigenesis. Recently, the Cancer Genome Atlas (TCGA) published its first result on pRCC 48 

(3), which greatly improves our understanding of the genomic basis of this disease. Several more 49 

genes and specific sub-clusters were identified to be significantly mutated in pRCC. 50 

Nevertheless, a significant portion of pRCC cases still remains without any known driver. 51 

Therefore we think it is time to explore the rest 98% non-coding regions of the genome using 52 

whole genome sequencing (WGS). This is sensible because non-coding regions, previously 53 

overlooked in cancer, have been showed to be actively involved in tumorigenesis (4-6). 54 

Mutations in non-coding regions may cause disruptive changes in both cis- and trans-regulatory 55 

elements, affecting gene expression. Understanding non-coding mutations helps fill the missing 56 

“dark matter” in cancer research. 57 

Multiple endogenous and environmental mutation processes shape the somatic mutational 58 

landscape observed in cancers (7). Analyses of the genomic alterations associated with these 59 

processes give information on cancer development, shed light on mutational disparity between 60 

cancer subtypes and even indicate potential new treatment strategies (8). Additionally, genomic 61 

features such as replication time and chromatin environment govern mutation rate along the 62 

genome, contributing to spatial mutational heterogeneity. While identifying mutation signatures 63 

is possible using data from whole exome sequencing (WXS), whole genome sequencing (WGS) 64 

gives richer information on mutation landscape and minimizes the potential confounding effects 65 

of exome capture process and driver selection.  66 

In this study, we comprehensively analyzed 35 pRCC cases that were whole genome 67 

sequenced along with an extensive set of WXS data on multiple levels. We went from 68 

microscopic examination of driver genes to analyses of whole genome sequencing variants, and 69 
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finally, to investigation of high-order mutational features. First, we focused on MET, an 71 

oncogene which plays a central role in pRCC, especially in type 1. We found rs11762213, a 72 

germline exonic single nucleotide polymorphism inside MET, predicts cancer-specific survival 73 

(CSS) in type 2 pRCC. We also discovered several potentially impactful non-coding mutation 74 

hotspots in MET promoter and its first two exons. The previous TCGA study identifies a MET 75 

alternative transcription event as a driver event but without illustrating the etiology (3). We 76 

found that a cryptic promoter from a long interspersed nuclear element-1 (L1) triggers the 77 

alternative isoform expression. Surprisingly, we did not find a significant amount of structural 78 

variations affecting MET besides polysomy 7. Then we went onto cases not as easily explained 79 

as those with MET alterations. We analyzed nearly 150,000 non-coding mutations throughout the 80 

entire genomes and found several potentially high-impact mutations in non-coding regions. 81 

Further zooming out, we discovered pRCC exhibits mutational heterogeneity in both nucleotide 82 

context and genome location, indicating underlying vibrant mutational processes interplay. We 83 

found methylation is the leading factor influencing mutation landscape. Methylation status drives 84 

the intra-sample mutation variation by promoting more C-to-T mutations in the CpG context. 85 

APOBEC activity, although infrequently observed, leaves an unequivocal mutation signature in a 86 

pRCC genome but not in ccRCC. Last, we discovered samples with chromatin remodeler 87 

alternations accumulate more mutations in open chromatin regions.  88 

 89 

Results  90 

1. An exonic SNP in MET, rs11762213, predicts prognosis in type 2 pRCC. 91 

We begin with coding variants in the long known driver MET. The TCGA study of 161 92 

pRCC patients found 15 samples carrying somatic, nonsynonymous single nucleotide variant 93 
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(SNV) in MET. By analyzing 117 extra WXS samples (see Methods), we found six more 95 

nonsynonymous somatic mutations in six samples (Table S1). V1110I and M1268T were two 96 

recurrent mutations in this extra set. Both of them were observed in the TCGA study as well. 97 

Additionally, we found two samples carrying H112Y and Y1248C respectively. H1112Y has 98 

been observed in two patients the original TCGA study cohort and H1118R is a long-known 99 

germline mutation associated with hereditary papillary renal carcinoma (HPRC, 13). Y1248C 100 

has been observed in type 1 pRCC before (rs121913246) and the TCGA cohort has a case 101 

carrying Y1248H. All mutations occur in the hypermutated tyrosine kinase catalytic domain of 102 

MET. Two out of these six samples were identified as type 1 pRCC while the subtypes of the rest 103 

four were unknown.  104 

Although many MET somatic mutations are believed to play a central role in pRCC, 105 

some germline MET mutations have also been associated with the disease. In particular, a 106 

germline SNP, rs11762213, has been discovered to predict recurrence and survival in a mixed 107 

RCC cohort (14). ccRCC predominated the initial discovery RCC cohort. This conclusion was 108 

later validated in a ccRCC cohort but never in pRCC (9). We wondered whether this SNP has a 109 

prognostic effect in pRCC. Using an extensive WXS set of 277 patients (see Methods; Figure S1 110 

and Table S1;), we found 14 patients carry one risk allele of rs11762213 (G/A, Table 1, minor 111 

allele frequency (MAF) = 2.53%). No homozygous A/A was observed. Cancer specific deceases 112 

are concentrated in type 2 pRCC. Among 96 type 2 pRCC cases, seven patients carry the minor 113 

A allele (MAF = 3.65%, Table 1). Survival is significantly worse in type 2 patients carrying the 114 

risk allele of rs11762213 (p = 0.034, Figure 1B). But we did not find significant association of 115 

this germline SNP with survival in type 1 patients. We did not find statistically significant 116 

association of rs11762213 with MET RNA expression in either tumor samples or normal controls 117 
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(p > 0.1, two-sided rank-sum test). Met pY1235 levels in tumor samples, as measured by Reverse 118 

phase protein array (RPPA), were not significantly different in patients carrying the minor G 119 

allele compared to patients with A/A genotype (p > 0.1, two-sided rank-sum test).   120 

Characteristic G/A (n = 7) A/A (n = 89) 
Sex, No. (%)     

Male (%) 4 (57) 25 (28) 

Female (%) 3 (43) 64 (72) 
Age, median (IQR), y 54 (47-61) 65 (57-73) 
Race, No. (%)     

White 6 (86) 65 (73) 

Black 1 (14) 16 (18) 

Asian 0 4 (4) 

NA 0 4 (4) 
T stage, No. (%)     

T1 4 (57) 47 (53) 

T2 1 (14) 10 (11) 

T3 2 (29) 31 (35) 

T4 0 1 (1) 
N stage, No. (%)     

N0 3 (43) 20 (22) 

N1 0 15 (17) 

N2 1 (14) 2 (2) 

NX 3 (43) 52 (58) 
M stage, No. (%)     

M0 3 (43) 54 (61) 

M1 1 (14) 4 (4) 

MX/NA 3 (43) 31 (35) 
AJCC stage, No. (%)     

I 4 (57) 43 (48) 

II 0 7 (8) 

III 1 (14) 29 (33) 

IV 2 (29) 6 (7) 

NA 0 4 (4) 
Median follow-up for surviving patients, days (IQR) 243 (132-354) 579 (219-1247) 

 121 

Table 1. Patient clinical profiles of the type 2 pRCC cohort in rs11762213 survival analysis. AJCC: American 122 

Joint Committee on Cancer; IQR: interquartile range; NA: not available. Percentages may not add up to 100% 123 

because of rounding. 124 
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 125 

2. Epigenetic alterations and mutation hotspots in non-coding regions 126 

The TCGA study has identified a MET alternative translation isoform as a driver event 127 

(3). However, the etiology of this new isoform is unknown. We identified this isoform results 128 

from the usage of a cryptic promoter from an L1 element, likely due to a local loss of 129 

methylation (REF). This event was reported in several other cancer types (REF).  To test its 130 

relationship with methylation, we found a closet probe (cg06985664, ~3kb downstream) on the 131 

Methylation array show marginally statistically significant (p=0.055, one-side rank-sum test). 132 

Additionally, as expected, this event is associated with methylation group 1 (odds ration (OR)= 133 

4.54, 95%CI: 1.07-19.34, p<0.041), indicating genome-wide methylation dysfunction. This 134 

association is stronger in type 2 pRCC and it shows a significant association with the C2b cluster 135 

(OR= 17.5, 95%CI: 1.72-32.6, p<0.007). 136 

Despite the fact MET is the most common driver alteration, about 20% presumably MET-137 

driven yet MET wild-type pRCC samples were still left unexplained (3). Therefore, we scanned 138 

the MET non-coding regions. We observed one mutation in MET promoter region in a type 1 139 

pRCC sample (Figure 2A and Table S2). This sample shows no evidence of a nonsynonymous 140 

mutation in MET gene but it has copy number gain of MET. Additionally, we observed 6/35 141 

(17.1%) samples carry mutations in the intronic regions between exon 1-3 of MET (Figure 2A 142 

and Table S2). Previously it is been established that alternative splicing of these exons is a driver 143 

event (3). Therefore we speculated that these non-coding variants might correlate with the 144 

alternative splicing. However, likely being hindered by a small size, we were not able to find 145 

statistically significant association between the alternative splicing event and these intronic 146 

mutations.  147 
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We further expanded our scope and ran FunSeq (4-5) to identify potentially high-impact, 151 

non-coding variants in pRCC. First, we identified a high-impact mutation hotspot on 152 

chromosome 1. 6/35 (17.1%) samples have mutations within this 6.5kb region (Figure 2B and 153 

Table S2). This hotspot locates at the upstream of ERRFI1 (ERBB Receptor Feedback Inhibitor 154 

1) and overlaps with the predicted promoter region. ERRFI1 is a negative regulator of EGFR 155 

family members, including EGFR, HER2 and HER3, all have been implicated in cancer. Due to 156 

a very limited sample size here, our test power was inevitably low. We didn’t observe 157 

statistically significant changes among mutated samples in mRNA expression level, protein level 158 

and phosphorylation level of EGFR, HER2 and HER3.  159 

Another potentially impactful mutation hotspot is in NEAT1. We saw mutations inside 160 

this nuclear long non-coding RNA in 6/35(17.1%) samples (Figure 2C and Table S2). Several 161 

studies indicated NEAT1 is associated in many other cancers (15-16). It promotes cell 162 

proliferation in hypoxia (17) and alters the epigenetic landscape, increasing transcription of 163 

target genes (18).  164 

All the mutations we found fell into a putative promoter region of NEAT1. We noticed 165 

NEAT1 mutations were associated with higher NEAT1 expression (Figure 2D, p < 0.044, two-166 

sided rank sum test). We also found NEAT1 mutations were associated with worse prognosis 167 

(Figure 2E, p < 0.022, log-rank test). However, without mutation status, NEAT1 expression level 168 

is not significantly linked with pRCC survival. Nonetheless, NEAT1 is overexpressed in about 169 

6% ccRCC samples from the TCGA cohort. NEAT1 overexpression is significantly associated 170 

with shorted overall survival (Fig SXX). MALAT1, another noticeable lncRNA in cancer, is 171 

tightly co-expressed with NEAT1 in both pRCC and ccRCC. Overexpression of MALAT1 is 172 

reported to be associated with cancer progression (REF). 173 
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We used DELLY (10) to perform structural variants (SVs) discovery from WGS reads 179 

information (see Methods and Table S3). The SV discovery approach has higher sensitivity and 180 

resolution than array-based methods, which were employed in the TCGA analysis. In the end we 181 

found 343 somatic SV events, includes deletions, duplications, inversions and translocations. We 182 

confirmed three cases carrying deletions affecting CDKN2A called by TCGA array-based 183 

methods but not the other two cases, possibly due to large-scale events (aneuploidy). One 184 

sample, TCGA-B9-4116, which has extensive amplification of MET, showed multiple SVs of 185 

various classes hitting MET regions. However, surprisingly, we did not find SVs affecting MET 186 

except this one example. We postulate trisomy/polysomy 7 is the main mechanism of MET 187 

structural alteration rather than duplication in a smaller scale. Besides duplication, we did not 188 

expect to find deletion, inversion or translocation disrupting oncogene MET. These SVs are 189 

likely to cause loss-of-function rather than gain-of-function mutations. This is consistent with the 190 

putative role of MET as an oncogene, rather than a tumor suppressor.  (Will work on this after 191 

the SV results come back) 192 

 193 

3.  Mutation spectra and mutation processes of pRCC 194 

To further get a high-order overview of the mutation landscape, we summarized the 195 

mutation spectra of 35 whole genome sequenced pRCC samples (Figure 3A). C-to-T in CpGs 196 

showed the highest mutation rates, which were roughly ten to twenty-fold higher than mutation 197 

rates in other nucleotide contexts.  198 

We used principle components analysis (PCA) to reveal factors that explain the most 199 

inter-sample variation. The loadings on the first principle component (which explained 12.5% of 200 

the variation) demonstrated C-to-T in CpGs contributed the most to inter-sample variation 201 
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(Figure 3B). C-to-T in CpGs is highly associated with methylation. It reflects the spontaneous 203 

deamination of cytosines in CpGs, which is much more frequent in 5-methyl-cytosines (REF). 204 

So we further explored the association between C-to-T in CpGs and tumor methylation status. 205 

First we validated the TCGA identified methylation cluster 1 showed higher methylation lever 206 

than cluster 2 in all annotation regions (Figure S2, see Methods), prominently in CpG Islands 207 

(OR of sites being differentially hypermethylated: 1.29, 95%CI: 1.20-1.39, p<0.0001). We 208 

confirmed this association by showing samples from methylation cluster 1 had higher PC1 scores 209 

as well as higher C-to-T mutation counts and mutation percentages in CpGs (Figure 3C). This 210 

trend was further validated using a larger WXS dataset as well. Especially, the most 211 

hypermethylated group, CpG island methylation phenotype (CIMP), showed the greatest C-to-T 212 

in CpGs (Figure S2). As expected, C-to-T mutations in CpGs in group 1 showed higher but not 213 

statistically significant percentage overlapping with CpG islands compared with group 2 (1.8% 214 

versus 1.4%, p=0.14). Therefore, methylation status is the most prominent factor shaping the 215 

mutation spectra across patients. We further tried to explore the functional impact of the 216 

excessive mutations driven by methylation. C-to-T mutations in CpGs were more likely to be in 217 

the coding region (OR=1.54, 95%CI: 1.27-1.85, p<0.0001) and nonsynonymous (OR=1.47, 218 

95%CI: 1.17-1.84, p<0.001). Yet, C-to-T mutations in CpGs did not show functional bias 219 

between two methylation groups nor in non-coding regions (Figure SXX).  220 

Recently, several somatic mutation signatures were identified. Many have putative 221 

etiology, revealing the underlying mutation processes (7). We used a LASSO-based approach 222 

(see Methods) to decompose mutations into a linear combination of these canonical mutation 223 

signatures in both WGS and WXS samples (Figure S3). The leading signature was signature 5, 224 

which is consistent with previous studies (7). Interestingly, we found one type 2 pRCC case out 225 
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of 155 somatic WXS sequenced samples exhibited APOBEC-associated mutation signature 2 228 

and 13. APOBEC mutation pattern enrichment analysis (see Method) further confirmed the 229 

presence of APOBEC activity (Figure 3D). This sample was statistically enriched of APOBEC 230 

mutations (adjusted p-value < 0.0003). 231 

Prominent APOBEC activities were also incidentally detected in three upper track 232 

urothelial cancer (UC) samples sequenced and processed in the same pipeline with pRCC 233 

samples. UC often carries APOBEC mutation signatures and our result is consistent with TCGA 234 

bladder urothelial cancer study (19).  235 

The APOBEC-signature carrying pRCC case was centrally reviewed by six pathologists 236 

in the original study and confirmed to be type 2 pRCC (3). Thus this tumor is likely a special 237 

case of type 2 with genomic alterations share some similarities with UC. It has non-silent 238 

mutations in ARID1A and MLL2 and a synonymous mutation in RXRA, all are identified as 239 

significantly mutated genes in UC but not in pRCC. Potential pRCC driver events, for example 240 

low expression of CDKN2A and nonsynonymous alternations in significantly mutated genes of 241 

pRCC, are absent in this sample.  242 

Noticeably, all four samples with APOBEC activities showed significantly higher 243 

APOBEC3A and APOBEC3B mRNA expression level (p < 0.0022 and p < 0.0039 respectively, 244 

one-side rank sum test, Figure S4).  This is in concordance with previous studies of APOBEC 245 

mutagenesis in various types of cancer (12).  246 

Consistent with previous studies (12), we failed to detect statistically significant 247 

APOBEC activities in an extensive WXS dataset consisting of 418 clear cell RCC (ccRCC) 248 

samples, even after resampling to avoid p-value adjustment eroding the power. Very low levels 249 
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of APOBEC signatures (<15%) was found in less than 1%(4/418) samples. With a much larger 250 

sample size, this result was unlikely to be confounded by detecting power. 251 

 252 

 253 

4. Defects in chromatin remodeling affects mutation landscape 254 

Chromatin remodeling genes are frequently mutated in pRCC and many other cancers 255 

including ccRCC (20). Defects in chromatin remodeling cause dysregulation of chromatin 256 

environment. Open chromatin regions show lower mutation rate, presumably due to more 257 

effective DNA repair (21). Thus chromatin remodeler alternations could possibly alter the 258 

mutation landscape, specifically increase mutation rate in previously open chromatin regions. To 259 

test this hypothesis, we tallied the number of mutations inside DNase I hypersensitive sites 260 

(DHS) in HEK293, a cell line derived from human embryonic kidney cells, the closest match we 261 

could find in the ENCODE DHS database. 12/32 samples with non-silent mutations in eleven 262 

chromatin remodeling, cancer associated genes show higher genome-wide mutation counts (p < 263 

0.032, one-side rank-sum test), partially driven by higher mutation counts in DHS region (p < 264 

0.003, one-side rank-sum test). The median number of mutations in DHS region considerably 265 

increases by about 50% (75.5 versus 112) in samples carrying chromatin remodeling defects. 266 

The effect is significant after normalizing against the total mutation counts (p < 0.015, one-side 267 

rank-sum test, Figure 3E). 268 

Replication time is known to correlate greatly with mutation rate. Early replicating 269 

regions have lower mutation rate compared to late replicating ones. Researchers reason 270 

replication errors are more likely to be corrected by DNA repair system in early replicating 271 
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regions. With defects in mutated chromatin remodeling, we observed this trend became less 272 

pronounced (Figure S5). This is likely because dysregulation of the chromatin environment 273 

hinders replication error repair by changing the accessibility of newly synthesized DNA chains. 274 

However, a non-parametric permutation Kolmogorov–Smirnov test (see Methods) failed to 275 

detect a statistical significance (p > 0.05), likely because of the small number of samples and the 276 

prudence of our conserved test. 277 

 278 

Discussion  279 

We comprehensively analyzed both WGS and an extensive set of WXS of pRCC, 280 

scrutinizing local high-impact events as well as giving a macro overlook of the mutation 281 

landscape. Our work further completed the genomic alteration landscape of pRCC (Figure 4). 282 

Beyond traditionally driver events, we suggested several novel noncoding alterations potentially 283 

drive tumorigenesis. 284 

First, we elaborated on previous results of the long known driver MET. In an extended 285 

117 WXS dataset, we found six additional nonsynonymous somatic mutations in the 286 

hypermutated tyrosine kinase catalytic domain. These somatic mutations are highly recurrent, 287 

concentrated on a few critical amino acids. This is in line with MET being an oncogene and 288 

supports the central role of MET in pRCC. Then we found an exonic SNP in MET, rs11762213, 289 

to be a prognostic germline variance in type 2 pRCC. Previously, rs11762213 was found to 290 

predict outcome in a mixed RCC samples, predominated by ccRCC (14). Later, the result is 291 

confirmed in a large ccRCC cohort (9). However, it is never clear whether rs11762213 only 292 

predicts the outcome in ccRCC or other histological types as well. In this study, we concluded 293 

that the minor alternative allele of rs11762213 also forecasts unfavorable outcome in type 2 294 
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pRCC patients. The mechanism of this exonic germline SNP remains unsettled.  Remarkably, 295 

similar to ccRCC, type 2 pRCC is not primarily driven by MET. Not significantly mutated in 296 

ccRCC and type 2 pRCC, MET nonetheless seems to play a role in cancer development. This 297 

finding is potentially meaningful in clinical management of patients with the more aggressive 298 

type 2 pRCC. rs11762213 genotyping could become a reliable, low-cost risk stratification tool 299 

for these patients. Theoretically, the subgroup of patients with rs11762213 might benefit from 300 

MET inhibitors. 301 

Interestingly, rs11762213 is prevalent mostly in European and American populations but 302 

not in African populations and rare in populations in Asia. MAF of rs11762213 among African 303 

American patients in our cohort is 2.73%, higher than MAFs in general African populations 304 

observed in 1000 Genome phase 3 dataset (0.2%, 0% in Americans with African ancestry 305 

(ASW))) and the ExAC dataset (1.1%, excluding TCGA cohorts). This implies a possible effect 306 

of rs11762213 on pRCC incidence among African Americans that is worth further investigation.  307 

Besides, in MET non-coding regions, we also discovered mutations associated with MET 308 

promoter and first two introns. Although the implication is unknown, our analysis suggests there 309 

is a mutation hotspot in MET that calls for further research.  310 

Expanding our scope from coding to non-coding, we found several potentially significant 311 

non-coding mutation hotspots relevant to tumorigenesis throughout the entire genome. A 312 

mutation hotspot was found upstream of ERRFI1, an important regulator of the EGFR pathway, 313 

which may serve as a potential tumor suppressor. EGFR inhibitors have been used in papillary 314 

kidney cancer with an 11% response rate observed (22). These mutations potentially disrupt 315 

regulatory elements of ERRFI1 and thus play a role in tumorigenesis. However, likely limited by 316 

a small sample size, we were not able to detect statistically significant functional changes in 317 
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ERRFI1 and related pathways. Another non-coding hotpot is in NEAT1, a long non-coding RNA 327 

that has been speculated to involve in cancer. All mutations locate in a putative regulatory region 328 

of the gene. Patients carrying mutations in NEAT1 have significantly higher NEAT1 expression 329 

and worse prognosis. NEAT1 has been shown to be hypermutated in other cancers and some 330 

studies also linked high NEAT1 association with unfavorable prognosis in several other tumors 331 

(23-24).  332 

Last, focusing on the high-level landscape of mutations in pRCC, we identified mutation 333 

rate dispersion of C-to-T in CpG motif contributes the most to the inter-sample mutation spectra 334 

variations. We further pinned down the cause of dispersion by showing the hypermethylated 335 

cluster, identified in the previous TCGA study (3), has higher C-to-T rate in CpGs. This 336 

hypermethylated cluster is associated with later stage, type 2 pRCC, SETD2 mutation and worse 337 

prognosis (3). Although increased C-to-T in CpG is likely the result of hypermethylation, we 338 

cannot rule out the possibility the change of mutation landscape plays a role in cancer 339 

development. For example, C-to-T in methylated CpG causes loss of methylation, which could 340 

have effects on local chromatin environment, trans-elements recruitment and gene expression 341 

regulation. In our study, we observed C-to-Ts in CpG are enriched in coding regions, which 342 

supports their roles in cancer development.  343 

Significant APOBEC activities and consequential mutation signatures were observed in 344 

one type 2 pRCC case. APOBEC activities were known to be prevalent in UCs (12, 19). We also 345 

successfully detected prominent APOBEC signatures in all three UC samples processed in the 346 

same pipeline as pRCCs. Intriguingly, despite being considered to have the same cellular origin 347 

with pRCC, we were not able to detect significant APOBEC activities in ccRCC. This is in 348 

agreement with previous studies (12). APOBEC mutation signature was also found in a small 349 
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percentage of chromophobe renal cell carcinoma (25), although they are believed to have a 350 

different cellular origin. APOBEC activities have been linked with genetic predisposition and 351 

viral infection (26). Given a statistically robust signal in our conservative algorithm, it is 352 

plausible that a small fraction of otherwise driver mutation absent type 2 pRCCs might share 353 

some etiologically and gnomically similarity with UC. Standard treatment for UC involves 354 

cytotoxic chemotherapy and radiation while RCC shows low response rate to cytotoxic therapy. 355 

Pending further research, this finding might lead to actionably clinical implications. (still too 356 

strong?) 357 

Chromatin remodeling pathway is highly mutated in pRCC (3). Several chromatin 358 

remodelers, for example SETD2, BAP1 and PBRM1, have been identified as cancer drivers in 359 

pRCC. We investigate the relationship between samples with mutated chromatin remodelers and 360 

those without such mutations in terms of overall mutational spectrum. We demonstrated pRCC 361 

with defects in chromatin remodeling genes shows higher mutation rate in general, driven by an 362 

even stronger mutation rate increase in putative open chromatin regions. This is likely because 363 

chromatin remodeling defects affect open chromatin environment and impede DNA repairing in 364 

these regions. 365 

It is known that replication time strongly governs local mutation rate. Early replication 366 

regions have fewer mutations. But the difference dissipates when DNA mismatch repair becomes 367 

defective (21). In our study, we found this correlation weakened in chromatin remodeling genes 368 

mutated samples, presumably caused by failure of replication error repair in an abnormal 369 

chromatin environment. By adapting defects in chromatin remodeling genes, tumor alters its 370 

mutation rate and landscape, which might further provide advantage in cancer evolution. Yet, 371 

high mutation burden in functional important open chromatin regions also raises the chance that 372 
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tumor antigens activate host immune system. Researchers found tumors with DNA mismatch 384 

repair deficiency response better to PD-1 blockage (27). Thus chromatin remodeler alterations 385 

might as well correlate with higher response rate of immunotherapy,  386 

In this first whole genome study of pRCC, we found several novel non-coding alterations 387 

that might have meaningful clinical impacts. However, due to a limited sample size, our 388 

statistical tests were underpowered. As the cost of sequencing keeps dropping, we expect to have 389 

more pRCC whole genome sequenced in the near future (28). With a larger cohort, we hope to 390 

gain enough power to test the hypotheses we formed as well as further explore the noncoding 391 

regions of pRCC.  392 

 393 

Materials and Methods 394 

Data acquisition 395 

We downloaded pRCC and ccRCC WXS and pRCC WGS variation calls from TCGA 396 

Data Portal (https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp) and TCGA Jamboree 397 

respectively. pRCC RNAseq, RPPA and methylation data were downloaded from TCGA Data 398 

Portal as well. Repli-seq and DHS data were obtained from ENCODE 399 

(https://www.encodeproject.org/).  400 

 401 

Testing rs11762213 on prognosis and exploring somatic mutations in MET 402 

We downloaded pRCC clinical outcomes from TCGA Data Portal (https://tcga-403 

data.nci.nih.gov/tcga/tcgaDownload.jsp). pRCC samples that failed the histopathological review 404 

were excluded (3). In total, we included 277 patients in our analyses (Figure S1, Table S1). For 405 
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germline calls, the majority of samples, 163 out of 277, were supported by SNV callings from at 406 

least two centers (102 from three centers). 100% genotype concordance rate was observed. Also, 407 

162 curated rs11762213 genotypes were in agreement with automated callsets. With proved high 408 

confidence in accuracy of genotyping rs11762213 in germline, we recruited additional 114 409 

samples from single-center (BCM), automated calls to form an extensive patients set (Figure S1). 410 

For somatic SNVs in MET, after excluding cases that were recruited in the TCGA study, we 411 

formed an additional set encompassing 117 patients. Five callings were supported by two 412 

centers. The rest were supported by single-center  (BCM) automated calls.  413 

Cancer-specific survival was defined using the same criteria as described in a ccRCC 414 

study (9). Deaths were considered as cancer-specific if the “Personal Neoplasm Cancer Status” is 415 

“With Tumor”. If “Tumor Status” is not available, then the deceased patients were classified as 416 

cancer-specific death if they had metastasis (M1) or lymp node involvement (>= N1) or died 417 

within two years of diagnosis. An R package, “survival”, was used for the survival analysis.  418 

 419 

SV calling precedure 420 

We use DELLY2 (10) with default parameters for somatic SV calling. To avoid sample 421 

contamination or germline SVs, we filtered our callsets against the entire TCGA pRCC WGS 422 

dataset, regardless of sample match or pathological reviews. Lastly, we discharge all callings that 423 

were marked “LowQual” (PE/SR support below 3 or mapping quality below 20).  424 

 425 

Mutation spectra study  426 
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WGS Mutations were extracted from flanking 5’ and 3’ nucleotide context. The raw 427 

mutation counts were normalized by trinucleotide frequencies in the whole genome.  428 

To identify signatures in the mutation spectra, we used a robust, objective LASSO-based 429 

method. First, 30 known signatures were downloaded from COSMIC 430 

(http://cancer.sanger.ac.uk/cosmic/signatures). Then we solve a positive, zero-intercept linear 431 

regression problem with L1 regularizer to obtain signatures and corresponding weights for each 432 

genome. Specifically, we solve the problem:  433 

min
!
( 𝑆𝑊 −𝑀 ! + 𝜆 𝑊  ) 

Where M is the mutation matrix, containing the mutations of each sample in 96 434 

nucleotide contexts. S is the 96×30 signature matrix, representing the mutation probability in 96 435 

nucleotide contexts of the 30 signatures. W is the weighting matrix, representing the contribution 436 

of 30 signatures to each sample.  437 

The penalty parameter lambda (𝜆) was determined empirically using 10-fold cross-438 

validation individually for every sample. 𝜆 was chosen to maximize sparsity and constrained to 439 

keep mean-square error (MSE) within one standard error of its minimum. Last, we discharged 440 

signatures that composite less than 5% of the total detectable signatures. 441 

 442 

Methylation association analysis 443 

In total, we collected HumanMethylation450 BeadChip array data for 139 samples that 444 

are either methylation cluster 1 or 2. We used an R package “IMA” to facilitate analysis (11). 445 

After discharging sites with missing values or on sex chromosomes, we obtained beta-values on 446 

366,158 CpG sites in total. Then we test beta-values of each site by Wilcoxon rank sum test 447 
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between two methylation clusters. After adjusting p-value using Benjamini-Hochberg procedure, 448 

we called 9,324(2.55%) hypermethylation sites. These sites have an adjusted p-value of less than 449 

0.05 and mean beta-values in methylation cluster 1 are 0.2 or higher than the ones in methylation 450 

cluster 2. 451 

 452 

APOBEC enrichment analysis 453 

We used the method described by Roberts et al. (12). For every C>{T,G} and G>{A,C} 454 

mutation we obtained 20bp sequence both upstream and downstream. Then enrichment fold was 455 

defined as: 456 

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 𝐹𝑜𝑙𝑑 =  
𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛!"#/!"# × 𝐶𝑜𝑛𝑡𝑒𝑥𝑡!/!
𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛!/!×𝐶𝑜𝑛𝑡𝑒𝑥𝑡!"#/!"#

 

Here TCW/WGA stands for T[C>{T,G}]W and W[G>{A,C}]A. W stands for A or T. p-457 

value for enrichment were calculated using one-side Fisher-exact test. To adjust for multiple 458 

hypothesis testing, p-values were corrected using Benjamini-Hochberg procedure. 459 

WXS data for APOBEC enrichment and signature analysis was obtained from a high 460 

quality somatic callset: hgsc.bcm.edu_KIRP.IlluminaGA_DNASeq.1.protected.maf. This dataset 461 

includes 155 pRCC samples and three UC samples. We use 462 

hgsc.bcm.edu_KIRC.Mixed_DNASeq.1.protected.maf for ccRCC analyses. 463 

 464 

Chromatin remodeling genes and replication time association 465 
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 We identified chromatin remodeling genes based on its significance in pRCC and 466 

function. Our gene list included eleven genes. They are ARID1A, ARID2, BAP1, DNMT3A, 467 

KDM6A, MLL2, MLL3, MLL4, PBRM1, SETD2, SMARCB1.  468 

In order to avoid cell type redundancy, we only kept GM12878 as the representative of 469 

all lymphoblastoid cell lines. Eleven cell types were included in our analysis: BG02ES, BJ, 470 

GM12878, HeLaS3, HEPG2, HUVEC, IMR90, K562, MCF7, NHEK, SK-NSH. Wave 471 

smoothed replication time signal was averaged in a ±10kb region from every mutation. To avoid 472 

potential selection effects, we removed mutations in exome and flanking 2bp. Regions overlap 473 

with reference genome gaps and DAC blacklist (https://genome.ucsc.edu/) were removed as 474 

well. Last, we picked the median number from 11 cell types at each mutation position for further 475 

analysis.  476 

To test the significance of replication time of non-coding mutations between two groups, 477 

we adapted a conservative non-parametric Kolmogorov–Smirnov test (K-S test) using empirical 478 

p-value. We assigned all the mutation with its percentile among all mutations replication time 479 

shifted ±100kb from the origin (represents the background replication time). Then we calculate 480 

the K-S test statistics in two groups and compare. To obtain the empirical p-value, we randomly 481 

permutated the chromatin remodeling genes mutation labels for 1,000 times to estimate the test 482 

statistics distribution under null hypothesis. 483 

 484 
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Figure 1. Survival analysis of rs11762213 in pRCC patients.  575 

Genotypes are shown in the legend. Peto & Peto modification of the Gehan-Wilcoxon test. 576 

 577 

Figure 2. Noncoding alterations in pRCC.  578 

(A) A schematics diagram of non-coding mutations on MET. The germline SNP, rs11762213, is also shown. (B) A 579 

schematics diagram of non-coding mutations on ERRFI1. (C) A schematics diagram of non-coding mutations on 580 

NEAT1. One tumor carries two mutations on NEAT1. (D) Tumors with mutations on NEAT1 show higher NEAT1 581 

expression. (E) Survival analysis shows mutations in NEAT1 are associated with worse prognosis. To avoid potential 582 

confounding effects, we removed one subject who carries rs11762213 but not NEAT1 mutation. Log-rank test. 583 

  584 

Figure 3. Mutation spectra and mutation processes in pRCC.  585 

(A) The mutation spectrum of all pRCC WGS samples. Mutations are ordered in alphabetical order of the reference 586 

trinucleotides (with the mutated nucleotide in the middle, from A[C>A]A to T[T>G]T) from left to right. (B) We 587 

use PCA to maximize inter-sample variation. The loadings on the first principle component is strongly dominated by 588 

C>T in CpGs. (C) PC1, along with C>T in CpGs mutation counts and the fractions of such mutations among total 589 

mutations are significantly different between two methylation groups. (D) APOBEC mutation signatures are shown 590 

for both pRCC (along with three UC sampels, which have blue outer circles) and ccRCC TCGA cohorts. Red 591 

dashed line represents the median APOBEC enrichment. (E) Comparison of total mutation counts, mutations counts 592 

in open chromatin regions and percentages of mutations in open chromatin regions of total mutations between 593 

tumors with chromatin remodeling genes alterations and the ones without. 594 

 595 

Figure 4. The genomic alteration landscape of 32 whole genome sequenced pRCC samples.  596 

Grey cells represent genomic alterations. CN: copy number. Index: patient index, see Table S2 597 
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