
 1 

Using	  the	  ENCODE	  regulatory	  data	  to	  interpret	  non-‐coding	  
somatic	  variants	  in	  cancer	  

[JZ2MG]#####	  around	  2800	  word	  without	  abstract	  ###	  

Long	  Abstract	  

 
 

Short	  Abstract	  

 

Introduction	  

Recent developments of whole genome sequencing (WGS) and personal genomics 
have opened the opportunities to identify deleterious mutations therein that are important 
for carcinogenesis, which in turn enables development of targeted therapies in clinical 
studies. Despite the collaborative efforts of many consortia to catalogue human genome 
at multi-dimensional scale, the overwhelmingly large number of mutations are found in 
noncoding regions, where their functional impact remains difficult to characterize. 
Hence, it is important to decipher how these noncoding regions interact and how they are 
perturbed in cancerous cells to better dissect the somatic mutational landscape and 
provide personalized therapy for cancer patients. Since the inception, the ENCODE 
project has provided unprecedented opportunity to identify numerous noncoding cis-
acting regulatory elements (CREs) through deep sequencing of entire human genome 
from comprehensive functional characterization assays. The ENCODE resources may 
potentially bridge the gap between the fast growing set of discovered noncoding variants 
with unknown functional impact and the limited number of well-known cancer genes for 
the cancer community. 

[DL2MG: I thought there were a gap between previous paragraph and this. We may 
include previous examples of how non-coding elements/functional assays can help 
analyze oncogenesis.] 

We here present an integrative framework to specifically tailor all the ENCODE 
resources for cancer analysis and prioritize CREs and SNVs related to tumorigenesis at 
multiple resolutions. In the large scale, we first set up a loosely matched tumor and 
normal gene regulation network in a cancer specific way to identify transcription factors 
(TF) that undergo dramatic changes during the transition from tumorous to normal cells. 
Patient survival analysis demonstrated that the top rewired TFs is closely associated with 
cancer prognoses. We then integrated ENCODE ChIP-seq and eCLIP data with patient-
specific expression profiles from numerous sources to further prioritize the TFs or RNA 
binding proteins (RBPs) that drives tumor and normal differential expression. At the 
middle scale, we further consolidated highly heterogeneous genomic features that 
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confound the mutation process in cancer genomes to dissect the somatic mutational 
landscape and predict the true background mutation rate (BMR) under local sequence 
context. By integrating the most comprehensive non-coding annotations to coding genes, 
we can precisely quantify the recurrence level for each protein-coding gene as whole. 
Lastly, we scrutinized to the single base pair resolution to prioritize mutations that 
potentially disrupt regulatory events the most. Experimental validation at different scales 
demonstrated the effectiveness of our multi-resolution scheme to pinpoint the key 
regulatory elements and variants in various cancer types. 

Comprehensive	  functional	  characterization	  data	  in	  ENCODE	  	  

[JZ2MG: logic: 1st para: table1 is what ENCODE has as raw data, 2nd is OUR effort 
to further process the ENCODE data and release to the cancer community] 

Efforts of the ENCODE project has led to a surge in functional annotation data of the 
human genome, from transcription level to chromatin and nuclear organization level. 
Since over XXX percent of the cell lines provided by ENCODE are cancer cell lines, the 
raw data from ENCODE may serve as an invaluable resource for cancer research. Here 
we created a comprehensive list of raw datasets (Figure 1A) for use in further analysis. In 
addition to the raw data being highly relevant to cancer, ENCODE annotations also 
demonstrates great breadth, expanding genomic insight from only the coding region (1-
2% of genome) to over xxx percent of the noncoding annotated regions of the genome. 
This significant increase in data provided by ENCODE could benefit variant functional 
interpretation. 

Despite the impressive coverage of ENCODE data, it is still challenging to integrate 
this data directly in cancer research. Cancer is a heterogeneous disease and functional 
characterization data usually changes from different cancer types, so it is important to use 
the optimally matched cell line in a cancer specific way. However, ENCODE is imperfect 
for such analysis. We observe there is only loosely matched tumor/normal pairs for some 
cancer types, and most cell lines may lack data from a certain experimental assays. 
Therefore, it become necessary to create biologically relevant tumor-normal pairs and 
create learning algorithms to get information from tissues/cell line with suboptimal 
matching. Another issue arises due to the heterogeneous nature of the raw data from 
various experimental assays, which requires rigorous de-duplication, unified processing, 
and normalization before accurate large-scale integration can be achieved. Finally, the 
CRE annotations, such as transcription factor binding sites and enhancers, from the 
ENCODE data are provided as standalone regions in the genome, lacking linkage to 
protein-coding genes, leaving the biological interpretation of mutations in CRE 
annotation regions still challenging. 

 [JZ2MG: logic of this para: WE further processed the raw signals and then the 
annotations. Although we use first use annotation and then data matrix in our following 
session] 

In this paper, we address these issues described above to maximize the usage of 
ENCODE data as a resource for cancer research (Figure 1 B-D). In order to tackle the 
heterogeneity amongst data types, we summarized the raw signals of genomic features 
that confounds the somatic mutagenesis into a covariate matrix, which can be 
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immediately used for background mutation rate correction. On the annotation side, we 
pruned the computationally predicted enhancer list by adding large-scale Enhancer-seq 
results, and then provided accurate enhancer-gene linkage by integrating various 
experimental assay data, such as ChIP-seq, DNase-seq, Hi-C and ChIA-pet. Furthermore, 
we used uniformly processed peaks and signal tracks from xxx ChIP-seq experiments to 
build a TF-gene regulatory network, which includes both proximal and distal CREs. 
Across different cell lines, we also integrate noncoding CREs and protein-coding genes 
to generate a high confidence extended gene annotation, known as the epiGene. These 
publicly accessible annotations we created could greatly benefit cancer research due to 
their widespread coverage and accuracy, as well as due to their application in discerning 
key biological CREs and SNVs that play explanatory roles in tumorigenesis. 

[DL2MG: We need to disc. I like the definition, but “epigene” is used as other 
meanings in some literature, the hereditary unit. 
http://www.biopolymers.org.ua/content/en/12/6/005/] 

Extensive	  rewiring	  events	  in	  several	  transcription	  factors	  in	  cancer	  	  

[JZ2MG: where to put this para? Not suitable in data summary and also not quite 
suitable here] 

To investigate the network topology of TF regulation, we first form the 
transcriptional regulatory network into hierarchy with TFs at different levels reflecting 
the degree to which they regulate other TFs \{cite 25880651}. For example, TFs in the 
top layer have more outbound edges than inbound edges in TF-TF network, representing 
larger roles in regulating other TFs rather than being regulated (supplementary Fig. xx). 
In this representation, we can see two patterns readily emerge. The top-level regulator 
TFs more strongly influence the tumor/normal differential expression than others. The 
average Pearson correlation of the binding events of TFs and gene expression changes 
was as high as 0.270 in the top layer, but it drops to 0.125 in the bottom layer.  In 
contrast, the TFs at the bottom layer of the hierarchy were more frequently associated 
with burdened binding sites in general, perhaps reflecting their increased resilience to 
cellular mutation.  

The human regulatory network specifies the combinatorial control of gene 
expression states from various regulatory elements constitutes the wiring diagram for a 
cell. Changes in the regulatory network during the transition from normal to tumor cells 
could help to decipher to discover the deregulation in cancer. Hence, we investigated the 
gain and loss of TF in cis-regulatory regions, the so-called rewiring events, in matched 
tumor and normal networks through multiple formulations. In the simple counting 
methods, we first ranked 61 TFs according to their number of loss/gain edges in the 
network of K562 and GM12878 (Fig3 A). For example, several oncogenes, such as 
RCOR1, REST, and ZBTB33, were among the top gainer TFs. Transcription factor 
IKZF1, whole mutant form serves as a hallmark of high-risk acute lymphoblastic 
leukemia (ALL), loses up to xxx percent of edges during the transition from tumor to 
normal cells. On the contrary, some non-specific cell type TFs such as RAD21 and YY1 
retained their regulatory linkages (as show in Fig3 X). We observed similar trend of TFs 
using distal, proximal and combined network. Besides, we further used a mixed 
membership model to look more abstractly at the local neighborhood of all the 
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connections to re-rank the TFs, and similar pattern was found and the well-known 
oncogene MYC become the top gainer and IKZF1 as the top loser. To show the 
consequence of network rewiring, we analyzed the survival analysis showed that the 
highly rewired TF IKZF1 is significantly associated with tumor progression  

Upon further investigation, we aim to explore the contributing factors to rewiring in 
tumor/cancer pairs and check the degrees of direction mutational effect during this 
process. We found that the majority of rewiring events were due to chromatin status 
change rather than from motif loss or gain events due to mutations. For example, JUND 
is a top rewiring TF that gained a large number of targets in K562. We found that up to 
30.5 and 58.1 percent of the gain/loss events are associated with at least 2-fold expression 
change, and xxx percent has huge chromatin changes. Among those edges, only xxx 
variants were found in 100 CLL sample and among these up to xxx motif gain/loss 
variants could potentially affect rewiring events. All these analysis indicates the limited 
role of mutational effect during the transition from normal to cancer cells. 

Integrating	  ENCODE	  data	  and	  patient	  expression	  data	  helps	  to	  identify	  key	  CREs	  	  	  

In order to systematically search for TFs and RNA binding proteins (RBP) that drive 
tumor specific expression patterns, we utilized a computational framework RABIT, 
developed to integrate cancer genomics data with regulatory profiling data1. We first 
collected 762 ChIP-Seq profiles from ENCODE representing 445 TFs, and 159 eCLIP 
profiles representing 112 RBPs. For a given TF ChIP-Ssq profile, candidate target genes 
are identified by weighting the number of binding sites by their distance to the 
transcription start site of genes. For a RBP eCLIP profile, we counted the number of 
binding sites on mRNA 3’ UTR region to identify candidate target genes. Then, between 
each pair of regulator and cancer type, RABIT estimates the fraction of patients with 
target genes differentially regulated. For example, in liver and lung cancer, the target 
genes of RBP SUB1 are significantly up regulated in most tumors. In contrast, the targets 
of RBP RBFOX2 are significantly down regulated for most brain tumors (Figure 3B). 

The impact of regulators on tumor gene expression predicted by our integration is 
highly consistent with previous knowledge. For example, RABIT predicted the target 
genes of MYC to be significantly up regulated in numerous cancers (star in 
Supplementary Figure S2), consistent with the known role of MYC as an oncogenic TF2. 
Besides capturing knowledge from previous studies, our analysis also predicted 
previously unidentified functions for regulators in cancer. For example, the predicted 
targets of RBP SUB1 were significantly up regulated in many cancer types (Figure 3C). 
SUB1 was previously considered as a TF3, however the ENCODE eCLIP experiments 
have pulled down many SUB1 peaks over gene 3’UTR regions (Supplementary Figure 
1A and B), and these targets are predicted to be up regulated through the RABIT 
integration analysis. As another example of novel predictions in our integration analysis, 
the predicted targets of TF ZNF687 were significantly up regulated in breast and prostate 
tumors (star in Supplementary Figure 2). Thus, the integration analysis between 
ENCODE and TCGA data has revealed many previously unidentified regulators with 
possible roles in driving the cancer specific expression patterns. 

[JZ2MG: loregic to be here!] 
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The combinatorial regulation of many TFs jointly determines the ON and OFF states 
of all genes to maintain the correct biological processes of normal cells. The disruption of 
co-regulatory relationships of key elements in cancer cell lines will result in erroneous 
gene expression pattern. We quantified the co-association status of each TF and observed 
huge co-association changes in some of the key TFs when comparing the regulatory 
network of K562 and GM12878. For example, ZNFXXX is a suppressor TF that shows 
only marginal co-binding events in GM12878. However, it not only increases its binding 
sites from xxx to xxx in K562, but also up to xxx percent of its binding sites co-bind with 
other TFs. Such unique patterns of co-association in cancer cell lines indicate differential 
combinatorial code.  

Multi-‐level	  data	  integration	  from	  ENCODE	  benefits	  variants	  recurrence	  analysis	  
in	  cancer	  

One of the most powerful ways of identifying to identify key elements and 
deleterious mutations in cancer is by employing recurrence analysis, which attempts to 
discern which regions in the genome are more heavily mutated than expected. There are 
two challenges associated with such analysis. The mutation process is severely 
confounded by both external genomic factors and local context effects, which will result 
in numerous false positives and negatives if uncorrected. In addition, traditional burden 
tests ignore the linkage among different noncoding annotations and simply apply burden 
test on individual annotation categories. Hence it is sometimes difficult to interpret the 
function of the burdened regions.  

As a contrast, here we integrated the ENODE resources at two levels for better 
recurrence analysis. We first normalized and summarized data from XXX experiments in 
XX cell lines in ENCODE into a covariate matrix to precisely predict the local BMR 
through regression in a cancer specific way. Different from other methods that use the 
same data for all cancer types, our result indicates that matched data usually provides 
better BMR prediction. For example, in CLL, using Repli-seq signals from K562 
increases the correlation of predicted vs observed mutation counts over 1mb bins from 
XX to XXX relative to using data from HeLa-S3 cell lines (XX to XXX in HeLa). In 
addition, despite the possibility of high inter-correlation, various functional 
characterization assays usually represent different biological mechanisms of mutation 
genesis progress, so it is important to integrate these features to collaboratively predict 
BMR. For example, the correlation among expected and observed mutation counts per 
1mb bins is only from xxx to xxx using one replication timing, but increased to 0.88 to 
0.95 by adding other feature in various types of cancers, which will significantly benefit 
the following burdening analysis.  

Second, instead of testing noncoding annotation categories separately, we proposed 
an epiGene concept. We deeply integrated the ENCODE noncoding annotations and 
provided their high confidence gene linkage by integrating evidence for various 
experiment assay, such as ChIP-seq, Hi-C, and ChIA-PET. It incorporates both protein-
coding exons and noncoding CREs for a gene as the burden test unit. Recurrence analysis 
performed on these novel epigene regions can reveal biological relevance when 
discovered to be heavily burdened. Another benefit of this is to amplify mutation signals 
that may potentially be lost in individual regulatory elements. Because the epigene can 
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consist of multiple discrete regions, a joint burden test is employed, allowing for better 
signal detection. Notably, in CLL the recurrence analysis performed using the epigene 
annotations allows for detection of novel gene candidates that are not found in recurrence 
analysis performed only on TSS or CDS regions. Among these candidates, BCL6 is 
identified using the epigene annotation analysis, but not with methods just using TSS or 
CDS annotations. In addition, BCL6 demonstrates strong prognostic value (patient 
survival), indicating that the epigene should be used as an annotation set for recurrence 
analysis when biological relevance is desired.  

 

Step-‐wise	  prioritization	  schemes	  pinpoint	  deleterious	  SNVs	  in	  cancer	  

Here we proposed a multi-resolution prioritization scheme to pinpoint from the key 
CREs to SNVs that are important for tumor genesis (flowchart shown in Fig.5 A). We 
first search at a larger scale for key CREs, such as TF or RBP that are massively rewired 
or drives tumor/normal differential expression. Then we investigate functional elements 
across the genome regulated by the prioritized CREs through burden analysis. At last, we 
zoomed into sequences of the prioritized functional elements by utilizing comparative 
genomic features like conservation scores and motif gain/loss events to pinpoint the 
impactful SNVs for functional characterization of cancer.  

Under this framework, we identified several enhancers in the noncoding regions and 
validated their potential to initiate the transcription process using luciferase assay.  In 
addition, we further selected key SNVs within the functional cis-regulatory elements that 
are key for gene expression control. Of 8 motif-disrupting SNVs we tested, we observed 
6 variants that were consistently up or down-regulated activity relative to the wildtype. 
One particularly interesting region is chromosome 6, 13.5xxx. The enhancer region 
nearby is in the intergenic region and has been predicted as strong enhancers both in 
normal (HMEC) and tumor cells (MCF-7) in breast. It has been shown to be regulating an 
upstream oncogene SGK1, which is key to the tumor genesis in breast cancer. The SNV 
we selected in this region has strong motif breaking effect for a series of TFs such as xxx, 
and we observed various TF binding sites overlapping it.  

Conclusion	  

In this paper, we demonstrated the effectiveness of using ENCODE data to prioritize 
key regulatory elements/SNVs at different scales that are important for oncogenesis. Our 
scheme can be immediately applied to interpret the noncoding variants from large cohorts 
to pinpoint key elements for detailed functional characterization.  
 
 
 
 


