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Figure 1: 
 
A. Structure of upstream open reading frames. The stop codon of an uORF may be located 
before the CDS start codon [top], or downstream of the CDS start codon, if the uORF is frame-
shifted relative to the CDS [middle]. If uORF and CDS share the same stop codon, the uORF acts 
as a 5’ extension of the CDS [bottom]. B. Effect of mutation or variation on upstream open 
reading frames. Creation or destruction of an upstream open reading may have downstream 
effect on translation of the coding sequence. Change in translation of the coding sequence, may 
result in change in phenotype and disease risk. C. Sensitivity and specificity of ribosome 
profiling for identifying upstream open reading frames. It is possible that ribosome profiling 
studies have a high false positive rate (top), or a high false negative rate (bottom). We make the 
assumption that ribosome profiling studies have a high false negative rate for identifying 
translated upstream open reading frames (bottom). D. Activity of uORFs varies according to 
cell type and environmental stimuli. uORFs may not be detected in a ribosome profiling experiment, 
due to variation in uORF activity with cell type and cell environment. 
 
 
 



 

 



 

 

Figure 2: 
 

A. Methodology for distinguishing positive from unlabeled uORFs. uORFs identified through 
genome-wide scan, and uORFs labeled in ribosome profiling experiments, were used to train a 
machine learning algorithm to identify uORFs that are likely active (positive predictions). B. 
Distributions of attributes for positive and unlabeled uORFs. uORF attributes are used to 
distinguish positive from unlabeled uORFs. Continuous distributions were discretized and 
optimized for machine learning using the minimum description length principle (MDLP) binning 
algorithm. Horizontal lines on the plot correspond to these binning intervals. The 10 attributes 
with the greatest difference in distribution (largest Kolmogorov Smirnov (KS) statistic) between 
positive and unlabeled uORFs are shown. C. Upstream open reading frame attributes as 
classifiers. Attributes are ranked, according to the difference in distribution between positive 
and unlabeled uORFs, using the KS statistic. 
 
 
 
 

 



 

 



 

 
 

Figure 3: 
 
A. Frequency of translated uORF ATG start codons, and near-cognate start codons, from 
ribosome profiling experiments. Frequency for uORFs translated in any experiment (union), or 
in more than one experiment (intersection). B. Ribosome profiling identified uORFs as a subset 
of all uORFs. The universe of all uORFs is identified through comprehensive search of the 
GENCODE human genome annotation [outer border]. Ribosome profiling studies of Fritsch et 
al., Lee et al., and Gao et al. are shown as overlapping subsets of this universe. Pair-wise and 
three-way intersections between these experiments are highlighted. C. Score distributions for 
upstream open reading frames. Score distributions for positive 2-voted positive uORFs that are 
translated in two or more ribosome profiling experiments (top), neutral 1-voted positive uORFs 
that are translated in one ribosome profiling experiment (middle), and unlabeled uORFs 
uncovered through genome-wide search (bottom). D. The frequency of uORF ATG start codons, 
and near-cognate start codons, for predicted positive upstream open reading frames. 
Frequency is given for all uORFs genome-wide, and for the subset of uORFs that are predicted 
to be active (predicted positive). E. uORFs predicted as positive from genome-wide scan and 
ribosome profiling experiments. Approximately 180 000 uORFs in the genome are predicted as 
active upstream open reading frames. This large set includes substantial proportions uORFs 
identified in the ribosome profiling experiments (~70% each). F. Performance of the machine 
learning algorithm. The machine learning algorithm was trained on two of three ribosome 
profiling data sets, and used to extract the third data set from among unlabeled examples. The 
ROC curve is shown for each of the three combinations: 1) Train Lee et al. and Fritsch et al. – 
extract Gao et al. (AUC = 0.79), 2) Train Lee et al. and Gao et al. – extract Fritsch et al. (AUC = 
0.77). 3) Train Fristch et al. and Gao et al. - extract Lee et al. (AUC = 0.82). 
 
 
 
 

 
 
 



 

 
 
Figure 4: 
 
[[PDM to MG: Emphasis in figure 4.D. on uORF creation (ATG formation), Figure 4.A now 
compares gain of uORF vs. loss of uORF (more appropriate comparison)]] 
A: Gene level protein expression change between individuals with variants interrupting 
predicted positive uORFs and wild type individuals. uORF gain is associated with increased 
protein expression, while uORF loss is associated with decreased protein expression.  This 
difference in protein level is shown for different ratios of variant possessing individuals (+/-, -/-) 
to wild-type individuals (+/+). Larger numbers of individuals with the variant allele allow for 
larger statistical power in calculating the effect of the variant on protein level.B: rQTLs 
interrupting uORFs, according to score of the corresponding uORF. rQTLs show bias towards 
interrupting positively predicted uORFs. C: Density matrix showing the distribution of 1000 
Genomes variants that interrupt predicted positive uORF start codons. The vertical axis 
displays the reference start codon, the horizontal axis shows the interrupting variant (position – 
1,2,3 – and codon – A,T,G,C). D: Density matrix showing the distribution of somatic mutations 
found in exomic tumor samples that interrupt predicted positive uORF start codons. The 
vertical axis displays the reference start codon, the horizontal axis shows the interrupting 
variant (position – 1,2,3 – and codon – A,T,G,C). ATG forming mutations are highlighted. 
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Abstract 

The activity of an upstream open reading frame (uORF) latent in an mRNA transcript is thought 

to modify translation of coding sequences in that same transcript by modifying local ribosome 
activity. Not all uORFs are thought to be active in such a process. It represents a challenge to 

estimate the impact and scope of the role uORFs play in regulation of translation. 

[[PDM to MG and SB: More explicit language concerning procedure followed, and content of 

paper]] We first circumscribed the universe of all uORFs based on coding gene sequence. This 

universe includes over one million unique uORFs. In order to determine which of these uORFs 
are likely to be biologically relevant, we built a classifier using 89 attributes of uORFs labeled as 

active in experiment. Many of these attributes contribute toward accurate identification of 
active uORFs. This classifier allowed us to extrapolate to a catalog of uORFs that are likely active 

from the universe of all uORFs. 

We first circumscribed the universe of all uORFs. This universe includes over one million unique 

uORFs. We compared patterns of structure in this complete set of uORFs, to the attributes of uORFs 

labeled as active in experiment. A classifier built using these attributes, was used to extrapolate a 

catalog of uORFs that are likely active. This is a substantially larger catalog of uORFs than has 

previously been associated with active function.  Our ranked list of likely active uORFs, allows 

researchers to test their hypotheses regarding the role of upstream open reading frames in 
health and disease. We demonstrate several interesting examples of biological relevance 

through application of our catalog. 

 

Intro 

Upstream open reading frames (uORFs) consist of a start codon in the 5' untranslated region of 
a gene (UTR) and an associated stop codon appearing before the stop codon of the main coding 

sequence (CDS). An uORF may begin and end before the main gene coding sequence. 

Alternatively, if the upstream reading frame is out of frame with the CDS, it may overlap with 

the CDS [Figure 1.A]. uORFs are latent in mRNA transcripts and may undergo partial or 

complete translation. 

An initial survey of the human genome identified uORFs contained in approximately 10% of 

mRNA transcripts (1). More recent analyses identify uORFs in association with nearly half of all 
mRNA transcripts (2). The discovery that many translated uORFs utilize near-cognate start 

codons to the canonical ATG start codon, has broadened estimates of uORF prevalence further 

(3–6). 

Presence of functional uORFs is generally thought to suppress translation of downstream genes 

(7–12). Proposed molecular mechanisms for modification of CDS translation by uORFs are 



 

numerous. These include translation reinitiation -- the uORF and CDS are translated by the 
same ribosome in series -- leaky-scanning -- ribosome recognition of an uORF and subsequent 

CDS translation, without uORF translation -- and ribosome-stalling -- decreased translation of 
the CDS, due to ribosome retention at the upstream uORF (3,13,14). Differential translation of 

multiple protein products may occur in consequence to an uORF (15). It is also possible for an 

uORF to function as short open reading frame, encoding a short functional peptide (16–19). 
uORF function is not necessarily constant -- uORFs may display differential function in stressed 

cells, compared with non-stressed controls (20–25). 

Study of uORF translation and function, was historically limited to the experimental evaluation 

of individual uORFs (7,26). Genome-scale ribosome profiling studies have allowed for the 

identification of large populations of uORFs known to undergo translation (4,27,28). This 
mapping of translation initiation is sufficient for association between ribosomes and particular 

start codons and reading frames (29–31). 

We proceed on the assumption that the total universe of active uORFs is much larger than that 

identified through ribosome profiling experiments. In other words, we assume that ribosome 
profiling experiments have high specificity in identifying functional uORFs with a high false-

negative rate [Figure 1.C.]. [[PDM to MG: attempting more direct/clear language]] Ribosome 

profiling experiments follow a challenging technical procedure, and it is uncertain that all 
potentially active uORFs are measurable in a given sample Consistent with this perspective, is 

the hypothesis that uORFs display differential activity according to environmental condition or 

organ tissue. Ribosome profiling experiments may suffer from a form of sampling bias, 
incapable of detecting functional uORFs of transiently or locally decreased activity [Figure 1.D.]. 

This is consistent with a high false-negative rate. Other researchers have implicitly endorsed 
this hidden assumption, when predicting translated uORFs in Saccharomyces cervisiae and 

Arabidopsis thaliana, on the basis of DNA sequence and ribosome profiling data (32,33). A 

similar assumption is the basis for using patterns of ribosome profiling occupancy to maximize 
the number of inferred translation products in humans (34,35). 

For our investigation of the prevalence of active uORFs in humans, we began with a genome 
wide scan, searching for uORFs associated with protein coding genes listed in the GENCODE 

genome annotation (36). All possible uORFs beginning with ATG, or a single nucleotide variant 

of ATG, were identified. This scan yields a universe of all possible uORFs, numbering nearly 1.3 

million. 

uORFs in this large set were classified as active according to similarity to uORFs occupied in 

ribosome profiling experiments. This classification was accomplished using a Naïve-Bayes 

classifier, trained on 89 uORF attributes. We validated our predicted uORFs using a cross-
validation method where two ribosome profiling experiments are used to predict the uORFs 

translated in a third experiment. We also validated our predictions by examining how [[PDM to 

MG: simplifying + clarifying language]] gene expression and ribosome activity varies in response 
to genetic variants that alter uORFs. individual genotype altering uORF sequence affects 

parameters related to gene level control of translation by uORFs: protein level from the 
downstream gene, and ribosome occupancy. 



 

The 1000 Genomes Project's database of human variation (37) and the NHGRI-EBI GWAS 
catalog (38) were used to provide a baseline for the functional consequence of our predicted 

active uORFs. The predictions we generated were also used to measure the functional impact of 
somatic mutations affecting uORFs, in tissue-matched tumor samples (39). 

We provide a resource of predicted active uORFs for other scientists to use in their effort to 
understand uORF function in health and disease. 

Methods: 

Extracting uORFs from GENCODE: 

uORFs were identified through genome-wide search, performed on v19 of GENCODE’s human 

genome annotation (36). uORFs were defined as a start codon within the 5’UTR and a 

downstream stop codon before the end of the CDS. All three possible reading frames were 
examined. ATG and near cognate start codons were included in this search [ATG, TTG, GTG, 

CTG, AAG, AGG, ACG, ATA, ATT, ATC]. 

Ribosome profiling experiments as a reference set: 

The ribosome profiling experiments of Lee et al. (2012), Fritsch et al. (2012) and Gao et al. 

(2014), were used to obtain an experimentally validated set of translated upstream open 

reading frames. These studies identify translation initiation sites (TIS) through treatment of 
human cell lines with antibiotic translation inhibitors. These treatments reliably halt ribosomes 

in predictable proximity to the start codon (12-13 nucleotides downstream). As such, these 

experiments provide high resolution information about translation initiation sites in the human 
genome. 

We employed the read alignments and identification of the translation initiation sites as 

provided by these three groups of researchers. The cell lines, treatment protocols, and TIS 

identification mechanism employed by each of these three research groups is summarized in 
Supplement - Methods. 

Literature review of translated human uORFs: 

In addition to ribosome profiling studies, confirmed translated uORFs were obtained from the 
biomedical literature (7,40,41). uORFs studied in humans that displayed functionality -- 
demonstrated regulation of the CDS product -- were added to the set of positive uORFs. In 
total, 33 uORFs, associated with 33 separate genes, were included from this literature review. 
 
Cleansing the data set, by removal of N-terminal extensions and aTISs, and isolation of unique 
transcript IDs: 
 
N-terminal extensions of the CDS sequence, may retain some functional activity of the primary 
gene protein product, and were removed from the data set. Any uORF start codon annotated as 
an alternative translation initiation site (aTIS) for the CDS, was also removed from the data set. 
 



 

Multiple transcripts may share the same uORF. In order to avoid over-counting, only one 
transcript ID is attributed to a given uORF. This selection was made randomly, from among 
transcripts with identical chromosomal coordinates. 
 
Positive1-voted, neutral2-voted, and unlabeled data sets: 
 
uORFs were divided into three separate sets, according to their experimental translation status: 
 
[[PDM to MG: change in terminology, to decrease ambiguity]]Positive2-voted: uORFs identified 
as translated in two or more ribosome profiling experiments, or through literature review. 
Neutral1-voted: uORFs identified as translated in not more than one ribosome profiling 
experiment. 
Unlabeled: uORFs that were not identified as translated in any ribosome profiling experiment, 
or through literature review. 
 
Estimating the total population of active uORFs: 
 
Based on observed overlap among ribosome profiling experiments, an estimate for the total 
number of active uORFs was made using methods borrowed from population biology. 
Ribosome profiling experiments are treated as independent population samplings, and the 
Schnabel equation (Eq. 1) or Schumacher and Eschmeyer equation (Eq. 2) provide a population 
size estimate: 

(1) 
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∑ (𝑪𝒕
𝑺
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𝑺
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Where 𝑁̂ is an estimate of the number of individuals in a population, given a series of S 
samplings taken at times t ∈ {1…S}, with 𝐶𝑡 the number of individuals ‘captured’ in a sample, 𝑀𝑡 
the total number of marked individuals prior to sampling at time t, and 𝑅𝑡 the number of 
marked individuals ‘recaptured’ at sampling t. 
 
Extraction of attributes associated with uORFs: 

Feature data was extracted for each uORF. Features were chosen to cover a broad range of 
categories of data, including features associated with uORF structure, uORF evolutionary 
conservation, and genomic context. 89 features were used. A complete listing of these features, 
including details relating to the extraction and calculation of each feature, is included in 
Methods Supplement. 
 
Feature discretization: 
 



 

The minimum description length principle (MDLP) algorithm was used to discretize each of our 
chosen attributes (42). The MDLP algorithm minimizes information lost through discretization. 
MDLP discretization was implemented using the ‘discretization’ package available for R 
(http://cran.r-project.org/web/packages/discretization/index.html). 
 
Prioritization of feature data: 
 
The distribution for each feature was compared between positive and unlabeled uORFs using 
the Kolmogorov-Smirnov (KS) statistic. A greater KS statistic, suggests greater ability of that 
attribute, to distinguish between positive and unlabeled features. 
 
Classifying uORFs, according to attributes: 
 
We determined thatattributes of an uORF were consistent with an active uORF, according to a 
Naive-Bayes machine learning algorithm applied to positive and unlabeled examples (43): 

(3) 

𝑷𝒑𝒐𝒔∑𝒑(𝑨𝒊|𝒑𝒐𝒔) = 𝒑𝒑𝒐𝒔

𝑵

𝒊=𝟏

 

(4) 

𝑃𝑛𝑒𝑔∑𝑝(𝐴𝑖|𝑢𝑛𝑙) = 𝑝𝑛𝑒𝑔

𝑁
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Where: 

(5) 

𝑃𝑛𝑒𝑔 + 𝑃𝑝𝑜𝑠 = 1 
 

 
 𝑃𝑝𝑜𝑠 is the prior probability associated with positive uORFs. 𝑃𝑝𝑜𝑠 was chosen as the F1 score 

maximizing value (0.61). 𝑝(𝐴𝑖|𝑝𝑜𝑠), and 𝑝(𝐴𝑖|𝑢𝑛𝑙) represent the frequency of that attribute 
value among the positive and unlabeled sets respectively. 𝑝𝑝𝑜𝑠  represents the probability the 

uORF is positive. 𝑝𝑛𝑒𝑔 represents the probability the uORF is negative. We label an uORF as 
positive or negative according to the greater value between 𝑝𝑝𝑜𝑠 and 𝑝𝑛𝑒𝑔. We note likely 

violation of the feature independence requirement of Naive-Bayes. However, empirical and 
theoretical study has demonstrated optimal classification performance, even where feature 
independence does not hold (44,45). 
 
Model validation: 
 
Our model was serially trained on two of three ribosome profiling data sets, using the trained 
model to extract a third withheld ribosome profiling data set from among the unlabeled 

http://cran.r-project.org/web/packages/discretization/index.html


 

examples. The success of differentially trained models in this cross-validation, was evaluated 
using ROC curves, with area under the curve (AUC) calculated for each curve. 
 

As biologic validation of our predicted uORFs we examined the effect of alteration of a 
predicted active uORF start codon on gene protein levels and local ribosome occupancy. Protein 
levels and local ribosome quantitative trait loci (cis-rQTL) for 47 individuals were obtained from 
the ribosome profiling and proteomic experiments of Battle et al. 2015 (46). Individual 
genotype information for 47 individuals in the Battle et al. study, is provided by the 1000 
Genomes Project. Gene expression change was evalutated in association with both gain of 
predicted positive uORFs (ATG and CTG), and loss of predicted positive uORFs. 
 
Natural variation affecting predicted positive uORFs: 
 
Natural variant SNPs affecting the start codons of predicted positive uORFs, were obtained 
from the 1000 Genomes project. The subset of these SNPs that are associated with differential 
disease susceptibility was identified through search of the NHGRI-EBI GWAS database. 
Measurement of comparative frequency of mutation among uORF start codons, was taken as a 
measure of evolutionary conservation and functional significance of predicted positive uORFs. 
 
Cancer mutation affecting predicted positive uORFs: 
 
The study of Alexandrov et al. 2012 (39) provides a set of exomic somatic mutations according 
to patient sample, and cancer type. We used these mutations, as a comparison standard for the 
healthy 1000 Genomes Project population. We identified start codons of our predicted positive 
uORFs altered by somatic mutation in cancer. 
 
Results: 
 
Genome-wide search yielded 1 270 265 unique uORFs. Within this large set, we isolated the 
subset of uORFs identified as translated in the studies of Lee et al. 2012, Fritsch et al. 2012, and 
Gao et al. 2014. We further stratified this set of translated uORFs according to shared 
representation of uORFs among the three studies. uORFs identified in the intersection between 
two or more of these studies were used as the reference standard for functional uORFs. 
Literature review yielded 33 additional examples of active uORFs that were also included in the 
set of positive, functional uORFs. 
 
We followed the procedure outlined in Figure 2.A to isolate uORFs that are likely to be active. 
Distributions of attributes for positive, translated uORFs were compared with distributions of 
those same attributes observed in the set of unlabeled uORFs [Figure 2.B]. The KS statistic and 
corresponding p-value for each of the 89 attributes assessed in this study are provided in 
Supplement Table 2. The top 10 attributes listed according to magnitude of KS statistic are given 
in Figure 2.C. From this prioritization of attributes, we can draw insights into the relationship 
between uORF structure and function. The presence of large numbers of start codons within a 
singlen uORF is a high priority attribute for positive classification, as is a shorter distance 



 

between the uORF and the CDS. ATG is the start codon associated with greatest functional 
significance. Start and stop codons of functional uORFs are generally located in evolutionarily 
conserved sites suggesting a meaningful physiologic role. 
 
Overlap between the three ribosome profiling experiments was found to be low, with pairwise 
intersections of 12.2% (Gao ∩ Fritsch), 9.2% (Gao ∩ Lee), and 9.8% (Lee ∩ Fritsch). The number 
of uORFs shared between all three sets represents only 3.3% of uORFs identified in these 
studies [Figure 3.A]. If independent ribosome profiling experiments represent resampling of the 
same population, repeat identification of uORFs among experiments yields an estimate of the 
total number of functional uORFs. 10 000 functional uORFs are estimated in this way to be 
present in the human genome using the Schnabel equation (Eq. 1) or Schumacher and 
Eschmeyer equation (Eq. 2) (47,48). 
  
CTG (28.2%) and ATG (46.1%) are the most prevalent start codons identified in ribosome 
profiling experiments. CTG (30.5%) and ATG (34.6%) continue to represent the majority of start 
codons in intersection between ribosome profiling experiments [Figure 3.B.]. Representation of 
every near-cognate start codon was found in intersections between studies, with the exception 
of AAG and AGG. This indicates that uORFs do not generally employ AAG and AGG as start 
codons. Identification of uORFs beginning with AAG or AGG in ribosome profiling experiments, 
may represent false-positives. 
 
Discretized attributes of positive and unlabeled sets of uORFs were used to build a statistical 
classifier within a Naive-Bayes framework. The result of application of the classifier is shown in 
figure 3.C. 76.8% of positive 2-voted positive uORFs [590/768], 67.1% of neutral 1-voted 
positive uORFs [2379/3543], and 14.7% of unlabeled uORFs [185833/1265954] are ultimately 
classified as likely active. A total of 14.9% of all uORFs are identified as likely active 
[188802/1270265]. A complete list of upstream open reading frames predicted to be active, is 
provided in Supplement -- Results. The 10% highest probability examples are also specified.  
 
A large proportion of uORFs in the human genome begin with CTG start codons (19.3%). The 
greatest number of predicted positive uORFs are also initiated with a CTG start codon (11.8%). 
ATG has a lower comparative prevalence in the human genome and in the predicted positive 
set (6.7% and 8.2% respectively) [Figure 3.D]. 8 genes are associated with greater than 200 
positively scored uORFs (FAM156B, FAM156A, EEF1D, UBA1, C6orf62, HMGB1, HP1BP3, 
TBC1D5), suggesting that these genes are under strong and redundant translational regulation 
mediated by uORFs. The proportion of uORFs ultimately identified as positive from each 
ribosome profiling study, is shown in Figure 3.E. The results were similar for each of the 
ribosome profiling experiments, approximately 70% in each case (72% of Gao, 71% of Lee, 70% 
of Fritsch). 
 
[[PDM to MG: next 3 paragraphs transition to validation info.]] 
 
As a validation of our technique, we serially excluded one of three ribosome profiling 
experiments from the positive training set, instead including the excluded set among unlabeled 



 

examples for subsequent retrieval [Figure 3.F]. The AUC for each of the ROC curves 
corresponding to these trials is similar: 0.82, 0.79, and 0.77. This suggests a high false-negative 
rate for ribosome profiling studies; predicted active uORFs, reflect those uORFs that additional 
experiments would discover are translated. 
 
As experimental validation of our technique, we examined how natural variation affecting our 
predicted active uORFs, alters protein level and ribosome localization in humans. We 
hypothesized that an active uORF altered by naturally occurring variants, should create 
observable effect on ribosome occupancy and protein levels from that gene. The results of 
Battle et al. 2015, supplemented by genotype information from the 1000 Genomes Project, 
provide the basis for validation of our predictions in 47 human subjects. In this natural study, 
variants causing gain of predicted positive ATG or CTG uORFs are associated with increase in 
downstream gene expression. Variants that cause loss of predicted positive uORFs, are 
associated with decrease in downstream gene expressionIn this natural study, alteration of a 
predicted active uORF start codon results in a decrease in protein levels from downstream 
genes [Figure 4.A]. There is statistically significant difference in gene expression between 
variants causing uORF gain compared with uORF loss, among variants with approximate balance 
between individuals with and without the variant (increased power).  
 
For these same 47 human subjects, cis-rQTLs provide an inventory of variants with statistically 
significant effect on local ribosome occupancy. There is significant enrichment for rQTLs 
interrupting positively scored start codons [Figure 4.B]. [[PDM to MG: clarifying meaning of the 
14.9% expectation]] If mutations hit uORFs randomly, 14.9% of the time they would hit a 
positively scored uORF. While the effect we would expect due to random mutation is 14.9%,  
However, we observe that 48% of these rQTLs (21/44) interrupt positively scored start codons -
- a 3x higher rate. This indicates that many rQTLs may measure the direct effect of disruption of 
functional uORFs. 
 
The ATG start codon is relatively conserved among predicted positive start codons -- it is rarely 
interrupted by 1000 Genomes Project variants (relative rate (RR) 0.03), suggesting its functional 
importance. The CTG start codon, although more prevalent among predicted positive uORFs, is 
altered relatively frequently by natural human variants (RR 0.52) [Figure 4.C]. In exomic tumor 
samples from cancer patients, CTG is the most commonly modified predicted positive uORF 
start codon. ATG is interrupted at a RR of 0.25 in comparison to CTG [Figure 4.D]. The higher RR 
of interruption of both ATG and CTG in cancer as compared to germline variants – 8 fold higher, 
and 2 fold higher respectively – further suggests functional consequences attributable to these 
uORFs. 
 
Exomic cancer mutations breaking the highest scored uORFs, are listed in Supplemental Table 3. 
These mutations interrupt uORFs associated with well-studied oncogenes and tumor 
suppressors. MYC and BCL2 are the two genes associated with the greatest recurrence of uORF 
interruptions, and we identify recurrent mutation of positively scored uORFs associated 
with PTEN, TP53, ERCC1, and MSH5. GWAS SNPs listed in the NHGRI-EBI GWAS database that 
impact our predicted uORFs are listed in Supplemental Table 4. GWAS diseases associated with 



 

SNVs interrupting positively scored uORFs include prevalent chronic conditions like 
obesity (rs11603334), osteoporosis (rs3755955), asthma (rs3771180), and type 2 
diabetes (rs1552224). Additional variants associated with susceptibility and prognosis in cancer 
are found to interrupt positively scored uORFs, like rs779805 upstream of the VHL gene, 
and rs34330 upstream of CDKN1B. [[PDM to SB: added text to convey uncertainty about GWAS 
results]]Although linkage disequilibrium and overlap among regulatory elements complicates 
interpretation of these GWAS studies, these disease associated SNVs, may owe their functional 
consequence to alteration of a translated uORF. 
 
Discussion: 
 
In this study, we identify 188 802 likely active upstream open reading frames, from a genome-
wide set of 1 270 265 unique uORFs. We further highlight the 10% of our predictions that are 
most likely to be functional, as a high reliability subset. 
 
We began by assuming that ribosome profiling experiments have a high false negative rate for 
identification of functional uORFs. Our method applied the intersection of three ribosome 

profiling studies, to form a reference set of known active uORFs. The low overlap between 

ribosome profiling experiments suggests a high false-negative rate in individual experiments. 
The finding that pairs of ribosome profiling experiments may be used to correctly identify the 

uORFs translated in a third experiment also suggests a high false negative rate. The large 
number of uORFs we identified as likely functional is consistent with this premise, but 

remarkablesignficant in comparison to other studies on the topic. 

There is precedent for our findings, in comparisons of large-scale parallel experiments of 

interaction between biomolecules. The protein-protein interaction experiments of Uetz et al. 

employed a comprehensive, genome-wide scope (49). Subsequent experiments by Ito et al., 
with similar technique and scope, showed low overlap with results of the prior project (50). 

[[PDM to MG: simplify, and cite Current Opinion in Microbiology paper]] It became clear that 

both experiments had relatively high false-negative rates. Thethe universe of possible protein-
protein interactions, is much larger than identified in either experiment individually. Benefit in 

identifying these interactions, is achieved by combining datasets (51). 

Our use of an intersection between ribosome profiling experiments, provides some control 
against differences experimental conditions and tissue specific results (both HEK293 and THP-1 
cells were examined). However, just as protein levels vary widely across cell-types (52) it may 
prove that the activity of uORFs varies considerably across cell types and cellular conditions. 
Analysis of cell-type specific and condition specific activity of uORFs may further expand 
estimates of the population of uORFs. 
 
Our study helps clarify how attributes of structure and context of a given uORF -- including start 
codon, base composition, and relative position to the CDS – likely contribute to varying 
functionality among uORFs. Although ATG is the most common uORF start codon identified in 
ribosome profiling experiments, lower affinity near cognate-start codons may have great 
functional impact on the landscape of translation, due to their overall abundance. 



 

 
An important validation of our predictions, is the finding that alteration of predicted functional 
uORFs as a consequence of germline genetic variation, impacts ribosome binding and protein 
level in humans. This is contrary to common view that uORFs act as translational repressors. It 
is of interest, that Generally we assume that uORFs act as translational repressors. However, 
the overall effect of uORF loss, appears to be a decrease in downstream protein level. This is 
contrary to common view that uORFs act as translational repressors. Mechanisms have been 
studied, where uORFs act to up-regulate expression of a downstream coding sequence (e.g. 
leaky-scanning, and translation reinitiation). Our analysis suggests that this effect is a more 
common consequence for upstream open reading frames than is previously credited. 
 
Applications of our results, suggest avenues for future research. Identification of human 
germline variants altering predicted positive uORFs, reveals locations where the creation or 
destruction of an uORF, is likely to alter protein levels. Employing this method, we identified 
disease associated SNVs -- including a number of GWAS SNVs -- that likely owe their significance 
to alteration of a functional uORF. Among diseases, our work could be used to help broaden 
knowledge of the role of uORFs in cancer beyond recently identified individual examples (53). 
 
We provide a catalog that can serve as a point of reference for other researchers engaged in 
the investigation of uORF function. 
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