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Variants predicted to result in the loss of function (LoF) of human genes 
have recently attracted considerable interest both because of their clinical impact 
as well as their surprising prevalence in seemingly healthy humans. To better 
understand the impact of putative LoF variants (pLoF), we developed ALoFT 
(Annotation of Loss-of-Function Transcripts), to annotate and predict the disease-
causing potential of LoF variants. Using data from Mendelian disease gene 
discovery projects, we show that ALoFT is able to distinguish between pLoF 
variants that are deleterious as heterozygotes and variants that cause disease 
only when they are homozygous. Investigation of variants discovered in healthy 
human populations suggests that each individual carries at least two 
heterozygous premature stop alleles that could potentially lead to disease if 
present as homozygotes. When applied to de novo pLoF variants in autism-
affected families, ALoFT predicts that the variants are more deleterious in patients
than in unaffected siblings. Finally, analysis of somatic variants in > 6,500 cancer 
exomes shows that pLoF variants predicted to be deleterious by ALoFT are 
enriched in known cancer driver genes.
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One of the most notable findings from personal genomics studies is that all 
individuals harbor loss-of-function variants in some of their genes1. A systematic study of
LoF variants from the 1000 Genomes revealed that there are over 100 putative LoF 
(pLoF) variants  in each individual2-4. Recently, a larger study aimed at elucidating rare 
LoF events in 2,636 Icelanders generated a catalog of 1,171 genes that contain either 
homozygous or compound heterozygous LoF variants with a minor allele frequency less 
than 2%5. Thus, several genes are knocked out either completely or in an isoform-
specific manner in apparently healthy individuals. Remarkably, recent studies have led to
the discovery of protective LoF variants associated with beneficial traits. The potential of 
pLoF variants to identify valuable drug targets has fueled an increased interest in a more
thorough understanding of putative LoF variants. For example, nonsense variants in 
PCSK9 are associated with low LDL levels6,7 which prompted the active pursuit of the 
inhibition of PCSK9 as a potential therapeutic for hypercholesterolemia8 and led to the 
development of two drugs which have been recently approved by the FDA. Other 
examples include nonsense and splice mutations in APOC3 associated with low levels 
of circulating triglycerides, a nonsense mutation in SLC30A8 resulting in about 65% 
reduction in risk for Type II diabetes, two splice variants in the Finnish population in LPA 
that protect against  coronary heart disease, and two LoF-producing splice variants and 
a nonsense mutation in HAL associated with increased blood histidine levels and 
reduced risk of coronary heart disease9-13.  

About 12% of known disease-causing mutations in the Human Gene Mutation 
Database (HGMD) are due to nonsense mutations14. pLoF variants are also prioritized in
cancer studies where various filtration schemes are used to narrow down causal 
mutations 15,16. Even though premature stop variants often lead to loss of function and 
are thus deleterious, predicting the functional impact of premature stop codons is not 
straightforward. Aberrant transcripts containing premature stop codons are typically 
removed by nonsense-mediated decay (NMD), an mRNA surveillance mechanism17. 
However, a recent large-scale expression analysis demonstrated that 68% of predicted 
NMD events due to premature stop variants are unsupported by RNA-Seq analyses18. A 
study aimed at understanding disease mutations using a 3D structure-based interaction 
network suggests that truncating mutations can give rise to functional protein products19. 
Moreover, premature stop codons in the last exon are generally not subject to NMD. 
Further, when a variant affects only some isoforms of a gene, it is difficult to infer its 
impact on gene function without the knowledge of the isoforms that are expressed in the 
tissue of interest and how their levels of expression affect gene function. Finally, loss-of-
function of a gene might not have any impact on the fitness of the organism.

We have developed a pipeline called ALoFT (Annotation of Loss-of-Function 
Transcripts), to provide extensive annotation of putative LoF variants. In this study, we 
include premature stop-causing (nonsense) SNPs, frameshift-causing indels and 
variants affecting canonical splice sites as putative LoF variants, also referred to as 
premature truncating variants. An overview of the pipeline is shown in Supplementary 
Figure 1. The main features of ALoFT include (1) functional domain annotations; (2) 
evolutionary conservation; and (3) biological networks. For comprehensive functional 
annotation, we integrated several annotation resources such as PFAM and SMART 
functional domains20,21, signal peptide and transmembrane annotations, post-
translational modification sites, NMD prediction22,23, and structure-based features such 
as SCOP domains and disordered residues. For evolutionary conservation, ALoFT 
outputs variant position-specific GERP scores, which is a measure of evolutionary 
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conservation24 and dN/dS values (ratio of missense to synonymous substitution rates) for
macaque and mouse that are computed from human-macaque and human-mouse 
orthologous alignments, respectively. In addition, we evaluate if the region removed due 
to the truncation of the coding sequence is evolutionarily conserved based on 
constrained elements25. ALoFT includes network features shown to be important in 
disease prediction algorithms: a proximity parameter that gives the number of disease 
genes connected to a gene in a protein-protein interaction network and the shortest path
to the nearest disease gene2,26. The pipeline also includes features to help identify 
erroneous LoF calls, potential mismapping, and annotation errors, because LoF variant 
calls have been shown to be enriched for annotation and sequencing artifacts2. A 
detailed description of all the annotations provided by ALoFT is included in 
Supplementary Table 1. Documentation and github link to source code can be found at 
aloft.gersteinlab.org.

To understand the impact of pLoF variants on gene function we developed a 
prediction method to differentiate between disease-causing and benign variants. While 
there are several algorithms to predict the effect of missense coding variants on protein 
function, there is a paucity of methods that are applicable to nonsense variants27-30. 
Additionally, current prediction methods that infer the pathogenicity of variants do not 
take into account the zygosity of the variant31,32. The majority of pLoF variants in healthy 
population cohorts are heterozygous. It is likely that a subset of these variants will cause
disease as homozygotes. Therefore, we developed a prediction model to classify 
premature stop causing variants into three classes: those that are benign, that lead to 
recessive disease (disease-causing only when homozygous)  and that lead to dominant 
disease (disease-causing as heterozygotes) using the annotations output by ALoFT as 
predictive features (Fig. 1, Supplementary Information). 

To build the ALoFT classifier, we used three classes of premature stop variants 
as training data: benign variants, dominant disease-causing and recessive disease-
causing variants. The benign set includes homozygous premature stop variants 
discovered in a cohort of 1,092 healthy people, Phase1 1000 Genomes data (1KG). 
Homozygous premature stop mutations from HGMD that lead to recessive disease and 
heterozygous premature stop variants in haplo-insufficient genes that lead to dominant 
disease represent the two disease classes3,26. In addition to loss-of-function effects, 
truncating mutations can also lead to gain of function. However, gain of function 
mutations are difficult to model systematically as the effect of variant can only be 
understood in the context of the biology of the gene and can vary widely for different 
genes and gene classes. In order to minimize errors that might arise due to inadequate 
modeling of gain-of-function effects and focus only on LoF, we only use predicted 
haploinsufficient genes as the training data for dominant model. We built the ALoFT 
classifier to distinguish among the three classes using a random forest algorithm33. For 
each mutation, ALoFT provides three class probability estimates, and we obtain good 
discrimination between each class. The average multiclass test AUC (area under the 
curve) with 10-fold cross-validation is 0.97. The precision for the three classes are as 
follows:  Dominant=0.86, Recessive=0.86, Benign=0.96. The classifier is robust to the 
choice of training data sets and performs well with different training data sets 
(Supplementary Table 4, Supplementary Fig. 2). The prediction output provides three 
scores for each pLoF variant that correspond to the probability of the pLoF being benign,
dominant or recessive disease-causing allele. In addition, ALoFT also provides the 
predicted pathogenicity. The pathogenic effect of pLoF variant is assigned to the class 
that corresponds to the maximum score. Though trained with premature stop SNVs, our 
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method is also applicable to frameshift indels.  99.4% of HGMD disease-causing (‘DM’) 
frameshift indels are predicted as pathogenic based on the maximum ALoFT score. 

We analyzed the importance of the various features to the classification 
(Supplementary Fig. 3). The global allele frequency of variants in the Exome 
Aggregation Consortium, a dataset comprised of sequence variations obtained from an 
analysis of 60,706 unrelated individuals of diverse ethnicities (ExAC34, 
http://exac.broadinstitute.org), appears to be the most important feature for the 
classification. When we removed this feature and other features related to allele 
frequency (i.e. both ExAC and ESP) and retrained the random forest model, the 
classifier still performs well with an average multiclass test AUC of 0.93. (The precision 
for the three classes are as follows: Dominant=0.84, Recessive=0.80, and Benign=0.75).
We also systematically evaluated the classifier using models trained on various specific 
sets of features (Supplementary Table 5). Overall, we find that classifier is not driven by 
any single feature and integrating many features improves prediction accuracy.

Validation of classifier

We applied ALoFT to elucidate the  pathogenicity of pLoF variants in various 
disease scenarios.  Using case studies, we show that ALoFT provides robust predictions
for the effect of pLoFs.

Case study 1: Application of ALoFT to understand pLOFs in Mendelian disease

We evaluated ALoFT by predicting the effect of known disease-causing 
premature stop mutations from ClinVar35 (details in Supplementary Information) and 
predicted the mode of inheritance and pathogenicity of all of the truncating variants (Fig. 
2a). ALoFT is clearly able to distinguish between pLoFs that possibly lead to disease in a
heterozygous state versus those that do so only in a homozygous state. Our method 
shows that heterozygous disease-causing variants have significantly higher dominant 
disease-causing scores than the homozygous disease-causing variants (p-value: 1.3e-
13;  Wilcoxon rank-sum test). We used two other measures, GERP score, which is a 
measure of evolutionary conservation, and CADD score, which gives a measure of 
pathogenicity, to classify recessive versus dominant pLoF variants36. Both CADD (p-
value: 0.13) and GERP (p-value: 0.49) scores are not able to discriminate between 
recessive and dominant disease-causing mutations (Fig. 2a). We also tested our method
on a smaller dataset from the Center For Mendelian Genomics studies37 and was able to
correctly recapitulate the pathogenic effect of pLoF variants and their inheritance pattern 
(Supplementary Fig. 4). 

Case study 2: Application of ALoFT to understand de novo pLoFs implicated in 
autism

De novo pLoF SNPs have been implicated in autism based on analysis of 
sporadic or simplex families (families with no prior history of autism)38-41. We applied our 
method to de novo pLoF mutations discovered in these studies. Our method shows that 
the proportion of dominant disease-causing de novo LoF events is significantly higher in 
autism patients versus siblings (Fig. 2b; p-value: 8.4e-4; Wilcoxon rank-sum test). 
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Autism spectrum disorder is known to be four times more prevalent in males than
females suggesting a protective effect in females. Previous studies show that there is a 
higher mutational burden for non-synonymous mutations in females ascertained for 
autism spectrum disorder42. Therefore, we investigated the differences in the impact of 
de novo pLoF variants in male versus female autism patients. We also observe a similar 
pattern for pLoF mutations as has been found for missense variants – female probands 
have a higher proportion of predicted deleterious de novo pLoF variants than male 
probands (Fig. 2b; p-value: 0.03). A recent study based on exome sequencing of 3,871 
autism cases delineated 33 risk genes at FDR < 0.143. We observe that the de novo 
pLoF mutations in the autism patients in the 33 risk genes have higher dominant disease
causing score than the de novo pLoF variants in other genes (Supplementary Fig. 5; p-
value: 5e-3). Supplementary Table 6 includes the ALoFT predictions for de novo pLoF 
variants. Thus, ALoFT predictions corroborate the role of de novo pLoF variants in 
autism as shown by others using entirely different approaches.

Case Study 3: Identification of pathogenic somatic pLoF variants in cancer

We applied our prediction method to infer the effect of somatic premature stop 
variants (somatic pLoFs) from a compilation of 6,535 cancer exomes44. As shown in 
Figure 2c, somatic pLoFs are enriched in known cancer driver genes compared to 
randomly sampled genes of matched lengths. Moreover, deleterious somatic LoFs are 
strongly enriched in driver genes and depleted in LoF-tolerant genes (genes that contain
at least one homozygous LoF variant in the 1KG population). Due to aneuploidy and 
clonal heterogeneity of cancer cells, we define an overall measure of deleteriousness as 
(1-Benign ALoFT acore) as shown in the X-axis of Figure 2c.  To classify driver genes as
tumor suppressors, Vogelstein proposed a “20/20” rule where a gene is classified as a 
tumor suppressor if > 20% of the observed mutations in that gene are LoF mutations45.  
From 505 genes with pLOF mutations identified by ALoFT, 317 met the 20/20 rule 
(62.7%), while 188 genes do not. Considering the fact that loss-of-function of tumor 
suppressor genes can lead to oncogenesis, ALoFT can be used to identify cancer-
related pLoFs, especially those in tumor suppressors. 

Case study 4:  Distingusishing  between benign and pathogenic pLoFs

Finally, we applied ALoFT to predict the effect of premature stop variants in the 
final exons of protein-coding genes. It is often assumed that premature stop variants in 
the last coding exon are likely to be benign because they could escape NMD; as a 
result, in many cases the effect will be the expression of a truncated protein rather than 
a complete loss of function. However, examples of disease-causing mutations in the last 
exon are also known46. Therefore, we applied ALoFT to see if we could distinguish 
between benign and disease-causing LoF variants in the last coding exon. To this end, 
we applied ALoFT to understand the effect of  pLoF variants in ESP6500, ExAC and 
HGMD datasets. A higher proportion of rare variants are observed in ESP6500 and 
ExAC cohort due to its larger sample size and higher sequencing depth (Fig. 3a). A large
number of both common and rare premature stop variants are seen at the end of the 
coding genes in the 1KG, ESP6500 and ExAC datasets. In contrast, fewer disease-
causing HGMD variants are seen at the ends of coding genes (Fig. 3a). ALoFT predicts 
that both common and rare premature stop variants in the last coding exon in the 1KG, 
ESP6500 and ExAC cohort are likely to be benign, whereas HGMD mutations in the last 
coding exon tend to be disease-causing (Fig. 3b). Thus, ALoFT is able to differentiate 
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between rare but benign premature stop variants seen in healthy individuals and the rare
disease-causing HGMD alleles. 

Application to personal genomes: Estimating the number of pathogenic pLoFs in 
a healthy genome or understanding pLoFs in an individual genome

The above case studies clearly illustrate the validity of the ALoFT score in 
elucidating the effect of pLoF variants. In order to estimate the number of pLoF disease 
alleles in a healthy individual, we applied ALoFT to premature stop variants from the 
1KG and ExAC datasets (Supplementary Information). The predicted benign score for 
pLoFs in these cohorts has a wide range of values (Fig. 4, Supplementary Tables 8,9). 
Furthermore, due to differences in sequencing coverage and variant calling approaches, 
the number of potential disease pLoFs per individual varies among datasets. In general, 
the number increases with higher coverage and larger cohorts where joint variant calling 
methods result in improved sensitivity in the identification of rare variants. To 
conservatively estimate a lower bound for per individual statistics (Supplementary 
Information), we applied a stringent filtering strategy to restrict to high confidence pLoFs.
On average, each individual is a carrier of at least two rare heterozygous premature stop
alleles that are predicted to be disease-causing in the homozygous state 
(Supplementary Table 9). Current estimates of the genetic burden of disease alleles (all 
types of variations, including LoFs) in an individual vary widely, ranging from 1.1 
recessive alleles per individual to 31 deleterious alleles47-51. In connection with this, it 
should be noted that the referenced studies are based on diverse methods of identifying 
variants ranging from targeted panel-based candidate gene studies to whole genome 
sequencing and disease databases include incorrect disease annotations and common 
variants  and about 27% of variants were excluded by Bell et al. in their estimate of 
carrier burden for severe recessive diseases47. ALoFT classifies 3.7%  of HGMD 
mutations as tolerant mutations. Some notable examples of HGMD LoF variants 
predicted to be tolerant occur in genes such as FLG, C4orf26 and APOA2. 
Filaggrin LoF mutations are linked to susceptibility to atopic dermatitis, a skin 
condition leading to eczema (PMID: 27659773). Mutations in C4orf26 lead to 
Amelogenesis Imperfecta, a disorder of tooth development. While these 
mutations are pathogenic, they are not lethal and are also known to be 
genetically heterogeneous (PMID: 20878018).The estimation of the number of 
deleterious pLoF alleles can be affected by a number of confounding factors that include
incomplete penetrance of disease alleles, variable expressivity, compensatory 
mutations, marginal variant calls and imperfect training datasets (Supplementary 
methods).  

 Next, we looked at premature stop variants in the 1KG cohort in known disease-
causing genes. We find that variants in 1KG are more likely to be benign compared to 
known disease-causing mutations in the same genes (Fig. 4; green vs. blue boxes, p-
value: 6.9e-9). Our results provide a possible rationale for this observation.  Firstly, 
variants predicted to be benign in 1KG often affect isoforms that are different from the 
isoforms containing the disease-causing HGMD variant. This suggests that LoFs in 
healthy individuals may affect minor isoforms (Supplementary Fig. 7). About 12.4% of 
premature stop variants in the presumed healthy 1KG individuals in known disease 
genes and the disease-causing variants in the same genes are on different isoforms. 
Secondly, some variants predicted to be benign in 1KG occur in the last exon or later in 
the protein-coding transcript relative to the disease-causing variant in the same 
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transcript. The effect of such variants is possibly the production of truncated proteins that
are sufficiently functional. Lastly, a majority of 1KG variants seen in the disease genes 
are predicted to be disease-causing only if they are homozygous. However, they occur 
as rare heterozygous variants in the 1KG cohort.

A study on British Pakistanis with related parents identified 781 genes containing 
rare LoF homozygous variants (PMID: 26940866). They found homozygous LoF variants
in recessive Mendelian disease genes in 42 people, however 33 of them did not have 
the disease phenotype. We applied ALoFT to classify these homozygous LoF variants 
and ALoFT indeed predicts that 19 of them would cause disease (Supplementary table 
xx). However, the lack of a discernible phenotype could be due to incomplete penetrance
of the mutations or due to modifier effects. The penetrance of some disease mutations 
are known to be age and sex-dependent (PMID: 19785764). It is well established that 
there is widespread occurrence of disease variants with reduced penetrance in the 
general population (PMID: 23820649). While studies in consanguineous populations 
have been used to identify recessive disease genes (PMID: 25558065, 27435318), 
absence of disease provides an opportunity to look for modifiers in their genetic 
background.

In summary, we describe a tool for predicting the impact of pLoF variants in the 
context of a diploid model, i.e. discriminating whether pLoF variants are likely to lead to 
recessive or dominant disease. Better identification and characterization of pLoF 
variants has both diagnostic and therapeutic implications. ALoFT allows for the 
identification and prioritization of high impact putative disease-causing pLoF variants in 
individual genomes. Integrating benign LoF variants with phenotypic information will help
us to identify protective variants which are valuable drug targets52,53. Gene functions 
important for species propagation might actually be deleterious as one ages; thus, LoF 
variants in such genes provide an intriguing avenue to discover targets for aging-related 
diseases54. Lastly, diseases caused by LoF variants provide opportunities for targeted 
therapy using drugs that either enable read-through of the premature stop, thus restoring
the function of the mutant protein, or NMD inhibitors that prevents degradation of the 
LoF-containing transcript by NMD55-61. This is especially useful in the context of rare 
diseases where targeting the same molecular phenotype leading to different diseases 
alleviates the need to design a new drug for each individual disease. Further work will be
needed both to correlate the predictions of ALoFT with experimental assays of protein 
loss of function, and to study the phenotypic impact of heterozygous and homozygous 
LoF variants in large clinical cohorts.
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Figures

Figure 1 - Schematic workflow.
ALoFT uses a VCF file as input and annotates premature stop, frameshift-causing indel and 
canonical splice-site mutations with functional, conservation, network features. ALoFT also flags 
potential mismapping and annotation errors. Using the annotation features, ALoFT predicts the 
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pathogenicity (as either benign, recessive or dominant disease-causing) of premature stop and 
frameshift mutations based on a model trained on known data. ALoFT can also take as input a 5-
column tab-delimited file containing chromosome, position, variant ID, reference allele and 
alternate allele as its columns.

Figure 2 – ALoFT classification of premature stop variants from Mendelian disease, autism
and cancer studies

a) ALoFT dominant disease-causing score, GERP and CADD score for ClinVar and 1KG common
(AF>=1%) variants. All training variants are excluded. Average tolerance scores are 0.097 and 
0.115 respectively for ClinVar dominant and recessive datasets. 
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b) The top two panels show the dominant disease-causing scores of de novo premature stop 
mutations in autism patients and siblings; mutations in patients are further separated by gender, 
as shown in the bottom two panels.
c) The fraction of mutations occurring in various gene categories (Y-axis) as a function of 
predicted diseasing-causing score for cancer somatic premature stop variants (X-axis).  Disease-
causing score is calculated as (1- predicted benign score).
We calculated the fraction of somatic premature stop mutations in 504 known cancer driver genes
and 504 randomly selected genes. To ensure that the cancer driver genes and the selected 
random genes have similar length distributions, the 504 random genes were selected from genes 
with matched length. Similarly, we compared the fraction of somatic premature stop mutations in 
397 LoF-tolerant genes and 397 randomly selected genes with similar length distribution. LoF-
tolerant genes are genes that have at least one homozygous LoF variant in at least one individual
in the 1KG cohort.

Figure 3 – pLoFs in last exons

a)  Position of premature stop variants in coding transcripts. Compared to HGMD variants, both 
common and rare 1KG, ESP6500 and ExAC variants are enriched in the last 5% of the coding 
sequence. “AF” stands for allele frequency. Variants at allele frequency less than 1% are 
considered to be rare variants. Variants with at least 1% allele frequency are considered as 
common.
b) Predicted benign scores for premature stop variants in the last coding exons.
Training variants are excluded in this plot.
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Figure 4 - ALoFT classification of 1000 Genomes and HGMD variants

Benign score for premature stop variants in 1KG and HGMD. For this plot, we randomly selected 
one variant per gene. “Benign pLoFs” set includes homozygous premature stop variants 
discovered in 1KG. The third (dark green) box plot pertains to premature stop variants in healthy 
1KG individuals occuring in disease-causing genes obtained from HGMD. The fourth (blue) box 
plot pertains to pLoF variants in the subset of HGMD genes where 1KG pLoFs are also seen. 
“1KG pLoFs in non-HGMD genes” include 1KG variants not in HGMD genes, i.e. non-disease 
genes. “In genes only with HGMD pLoFs” include HGMD variants in only those disease genes 
where 1KG pLoFs are not seen. 
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