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Using the ENCODE regulatory data to 
interpret non-coding somatic variants in 

cancer 
 

Abstract 
Although we understand the impact that somatic mutations have on a very limited number of 
cancer genes; an overwhelming number of mutations in cancer genomes occur in non-coding 
regions. The new release of the ENCODE data allows us to bridge these two facts. First, the new 
ENCODE data allows for precise tissue-matched genome-wide background mutation rate 
calibration in a variety of tumors by separating the effect of well-known confounders, such as 
replication timing and chromatin status. Furthermore, by integrating large scale ChIP-seq, 
DNase-seq, Enhancer-seq, Hi-C, and ChIA-PET data from ENCODE, we are able to define with 
high confidence distal and proximal regulatory elements and their linkages to annotated genes. 
This enables us to create extended gene definitions, and to show that these are more sensitive 
than coding regions in terms of burdening analysis. For example in leukemia, in addition to well-
known drivers such as TP53 and ATM, the extended gene definitions allow us to pick up other 
key genes such as BCL6, which can then be associated with patient prognosis. Second, we 
integrated the ENCODE data to build up a high confidence TF-gene regulatory network. This 
enabled us to identify highly rewired (i.e. target changing) TFs, such as NRF1 and MYC by 
comparing tumor and normal samples. By integrating large-scale chromatin features, we 
demonstrated that such massive rewiring events between tumor and normal cell lines are mainly 
attributable to the chromatin structure changes instead of direct mutational effect. Furthermore, 
we also found that TFs with more mutationally burdened binding sites (e.g., EZH2 and NR2C2) 
tend to be located at the bottom hierarchy of the TF regulation network. Third, using the 
ENCODE regulatory network, we developed an integrative scoring workflow to prioritize key 
elements (and mutations in them) according to their role in cancer and then validated these in 
small-scale studies. In particular, we prioritized ZNF687 as a key TF for breast cancer and SUB1 
as a key RNA binding protein for liver and lung cancer. Validation was conducted using siRNA 
knockdown experiments. Finally, we identified key enhancers and mutations in them in breast 
cancer and then validated their functional effect through luciferase assays.  
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Introduction  
Recent developments of whole genome sequencing (WGS) and personal genomics have 
provided unprecedented opportunities to identify deleterious mutations that are important for 
tumorigenesis, which in turn enable development of targeted therapies in clinical studies. 
However, although thousands of genomes’ WGS data were provided through the collaborative 
effort of many consortia, the overwhelming number of mutations occur in noncoding regions, 
where functional impact remains difficult to characterize. Deciphering the interactions in 
noncoding regions and understanding how they are perturbed in cancerous cells are keys to 
understanding cancer. 

Since the inception of the ENCODE project, deep sequencing of the entire human genome has 
allowed us to identify many noncoding regulatory regions and link these regions to the better 
understood coding regions to uncover the underlying biological mechanisms. The ENCODE 
resources may potentially bridge the gap in understanding between the fast growing set of 
discovered noncoding variants with unknown roles and the limited number of cancer genes in 
order to provide better interpretation to the cancer community. However, it is still challenging to 
directly incorporate the ENCODE data in an effective way for several reasons. First, while 
ENCODE provides comprehensive experiments focusing on various regulatory processes of the 
whole genome, the corresponding data sets are usually heterogeneous and require different levels 
of integration to better serve the cancer community. Second, due to the heterogeneous nature of 
various cancer types, it is important to harvest data from the most relevant cell line when 
evaluating the variant effect in different cancer types. However, tissue matching is still a 
challenging problem. Lastly, none of the available cancer genomics data is complete in any 
cancer cell line, but there are still decent amounts of data from non cancer tissues and cell lines 
that need to be integrated appropriately. Hence, maximizing the utility of ENCODE data, and 
learning from other noncancerous tissue types, is an important topic.  

We present an integrative framework to specifically tailor all ENCODE resources for cancer 
analysis. First, we integrated the comprehensive set of ENCODE data to better analyze 
recurrence events for cancer genomes. We consolidated highly heterogeneous genomic features 
that confound the mutation process in cancer genomes to dissect the somatic mutational 
landscape and predict the true background mutation rate (BMR) at a local context. We also 
integrated the most comprehensive noncoding annotations and precisely linked them to well-
known coding genes to better quantify the recurrence level for each protein-coding gene. Second, 
we set up a loosely matched tumor and normal cell line gene regulation network for key 
regulatory elements that undergo dramatic changes during the transition from normal to tumor 
cells. Additionally, we aggregated numerous sources of expression data to further prioritize the 
key elements that drive tumor and normal differential expression. Lastly, we scrutinized the 
single nucleotide variation (SNV) effect and prioritized those that potentially affect regulatory 
events the most. Finally, experimental validation at different scales demonstrated the 
effectiveness of our scheme to pinpoint the key elements and variants in various cancer types. 
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Data summary 
ENCODE includes extensive functional genomics data for cancer cell lines XXXXX. They 
include the most comprehensive sets of functional annotations of the human genome to date, 
ranging from transcription level to chromatin and nuclear organization level. Despite this 
impressive coverage, the ENCODE resources are still incomplete. To map out interplay of these 
functional elements in tumorigenesis, we compared loosely connected tumor-normal pairs of 
ENCODE key cell lines. K562 was paired with GM12878, and similarly, HepG2 to liver, A549 
to IMR-90, and MCF-7 to MCF-10A. 

Recurrence analysis 
 
Recurrence analysis, which properly looks for regions mutated more frequently than expected, is 
one of the most powerful ways to identify key elements and deleterious mutations for cancer. 
One of the tricky parts of such analysis is that the mutation process is severely confounded by 
both external genomic factors and local context effects. As a result, the underlying background 
mutation rate across different regions over the genome could change up to several orders of 
magnitude even within one sample. Hence it is necessary to carefully calibrate such background 
mutation rate (BMR) to rigorously control the false positive and negative rate during recurrence 
analysis. 
 
Numerous references mention the importance of using matched tissue information to predict 
BMR. But state-of-the-art burdening analysis tools usually adopt a very limited number of 
features from seemingly distant cell lines, which largely limits the BMR estimation precision. 
The large cohort of functional genomics data in more than XXX tissue/cell lines in ENCODE 
provides us with a chance to build up an integrative model to better dissect the somatic 
mutational landscape. Specifically, we collected the most comprehensive features from 
ENCODE and processed these heterogeneous data into a covariate matrix to predict the local 
mutation rate with high precision through regression. We first demonstrated the advantages using 
matched data from ENCODE as compared with non-matched data. For example, in CLL, using 
Repli-seq signals from K562 increases the correlation of predicted vs observed mutation counts 
over 1Mbp bins from XX to XXX relative to using data from Hela cell lines. In addition, despite 
the possibility of high inter-correlation, various functional characterization assays usually 
uncover different biological mechanisms of mutation genesis progress, so it is important to 
integrate these features to collaboratively predict BMR for better precision. Specifically, the 
correlation among expected and observed mutation counts per 1Mbp bins ranges from 0.88 to 
0.95 in various types of cancers. It is noticeably higher than those modeled from a single feature 
such as replication timing therefore providing significant improvement to the following 
burdening analysis. In addition, the mutational frequency varies substantially due to the 
confounding effects of the local genome context. The BMR could range from xxx to xxx across 
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different categories of local effect, which further complicates the mutation burdening analysis. 
Our model takes these local context effects into consideration to better decompose the mutational 
signature effect. It allows the contribution of different genomic features to vary across different 
mutational categories, and provides a context-specific mutation rate, including regions with 
similar genomic features, to allow for more accurate burden analysis.   
 
In addition, we also customize the most comprehensive noncoding annotations from ENCODE 
and link them to the well characterized protein coding genes to define an extended gene region 
with high confidence. Our model enables detection of weak mutation burdens from various 
coding and noncoding regions for an extended gene in a collaborative way to better define 
mutation burden. Burdening analysis on the extended gene regions demonstrates that our model 
is more sensitive to mutation signals and can detect reasonable burdened genes. For example, in 
CLL the extended gene analysis not only detects almost all genes burdened by either CDS or 
TSS regions, but also pinpoints other gene candidates with burdening on key regulatory regions. 
Among them, BCL6, which is missed using either TSS and CDS analysis, is identified as 
burdened in our method and its expression in CLL has been demonstrated to be significantly 
associated with patient survival. We also performed burdening analysis in breast and liver 
cancers and the resulting burdened regions are given in Fig 2.  
 

Network analysis 
The human regulatory network specifies the combinatorial control of gene expression states [DL: 
i.e. switch] from various regulatory elements, and constitute the wiring diagram for a cell. To 
examine the principles of the tumor transcriptional regulatory network, and decipher the 
consequences of rewiring events during the transition from normal to tumor cells, we integrated 
xxx transcription-related factors in over xxx distinct experiments and xxx cell lines for different 
cancer types to set up regulatory network to study the combinatorial and co-association 
relationships of transcription factors. Our regulatory network incorporates both distal and 
proximal interactions among TFs and genes.  
 
To investigate the network topology of TF regulation, we first clustered the TF-TF regulatory 
network into different layers based on their regulatory hierarchy. We found unique properties of 
the TFs in each layer. For example, we found the general trend is that the top-level regulator TFs 
more strongly influence the tumor/normal differential expression than other TFs. The average 
Pearson correlation of the binding events of TFs and gene expression changes was as high as 
0.270 in the top layer, but it drops to 0.125 in the bottom layer.  In contrast, the TFs at the bottom 
layer of the hierarchy were more frequently associated with burdened binding sites in general.  
 
[JZ2Peng: please temporaly add your section here and we will harmonize it] 
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Regulatory network rewiring among tumor and normal cells suggest changes in control of gene 
expression status, which could result in massive gain or loss functions during the cell cycle. 
Here, we carefully defined edge loss and gain events by comparing the regulatory network in 
loosely matched tumor and normal cell lines for different cancers. Across all tumor types, we 
observed frequent rewiring events relative to each reference (normal) state. To assess the 
regulation potential of different TFs, we quantified their differential binding events in the 
network as a regulatory score and classified the TFs into three major groups: the gain, loss, and 
common group. For example, several oncogenes, such as RCOR1, REST, and ZBTB33, were 
among the top TFs that gained massive binding events in promoter and enhancer regions. Some 
other TFs, such as the tumor suppressor HDGF, lost up to xxx percent of edges during the 
transition from tumor to normal cells. On the contrary, some non-specific cell type TFs such as 
CTCF and MAZ [DL: this MYC associated gene, RAD21 or YY1 are good alternatives] 
maintained most common edges in the network of K562 and GM12878, showing less differential 
regulation changes in these two cell lines. We propose to prioritize the TFs that showed huge 
rewiring events in the regulatory network.  
 
Upon further investigation, we found that the majority of rewiring events were due to chromatin 
status change rather than direct mutational effect from motif loss or gain events. For example, 
JUND is a top rewiring TF that gained a large number of targets in K562. We found that up to 
30.5 and 58.1 percent of the gain/loss events are associated with at least 2-fold expression 
change, and xxx percent is due to large changes in chromatin status. Among those edges, only 
xxx variants were found in 100 CLL sample and among these, up to xxx motif gain/loss variants 
could potentially affect rewiring events. All these analyses indicate the inderect role of 
mutational effect during the transition from normal to cancer cells. 
 
While it may be rare to have mutations that directly affect TF binding sites, we hypothesized that 
mutations could have an indirect effect on key regulators of cancer. To further assess the 
mutational effects on regulatory element rewiring and selection bias, we focused on K562 and 
GM12878 pair and compared the pool of real CLL mutations to simulated sets of randomized 
mutations of the same size. Relative to random mutations, CLL mutations were more likely to 
cause motif loss in CEBPG, IRF1, MAX, and NR2F1. In contrast, the real mutations were found 
to increase the likelihood of TF binding in JUND, MAFF, MAFG, and NRF1. 
 
The combinatorial regulation of many TFs jointly determines the ON and OFF states of all genes 
to maintain the correct biological processes of normal cells. The disruption of co-regulatory 
relationships of key elements in cancer cell lines will result in erroneous gene expression pattern.    
We quantified the co-association status of each TF and observed huge co-association changes in 
some of the key TFs when comparing the regulatory network of K562 and GM12878. For 
example, ZNFXXX is a suppressor TF that shows only marginal co-binding events in GM12878. 
However, it not only increases its binding sites from xxx to xxx in K562, but also up to xxx 
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percent of its binding sites co-bind with other TFs. Such unique patterns of co-association in 
cancer cell lines indicates differential combinatorial code.  

Validation results  
 
We have so far integrated extensive ENCODE annotations to define key regulatory elements and 
find impactful noncoding SNVs in these regions based on our multi-level prioritization scheme. 
To assess the performance, we selected several examples at different scales and used various 
experimental assays to validate our predictions. At the macro-level, we identified key 
transcriptional regulators (TFs) that drive tumor-normal differential expression. Specifically, we 
predicted ZNF687 and SUB1 as the most impactful regulators in MCF-7 and both HepG2 and 
A549, respectively, and we validated their significance using RNAi-based knockdown 
experiments. At the micro-level, we validated 10 motif-breaking noncoding SNVs in key 
regulatory regions of MCF-7 using luciferase assay. 
 
[JZ2Peng: please add some biological about ZNF678 and SUB1 here] 
First, shRNA RNA-seq experiments were used to evaluate the gene expression level change 
before and after knocking down key transcriptional or RNA-level regulators. Specifically, the TF 
ZNF678 was discovered to significantly drive the tumor and cancer differential expression in the 
majority of breast cancer samples (figure xxx). After its knockdown, we discovered that its target 
genes were remarkably down-expressed compared to the non-target genes (p=xxxx for two sided 
t-test). Similarly, we found the RNA-binding protein SUB1 to significantly upregulate various 
target genes’ expression in both lung and liver cancers. siRNA knockdown RNA-seq 
experiments also validated its regulatory role [DL: we need more details] (Figure 5 A). In 
addition, we found that the activity level of SUB1 is closely associated with patient survival data, 
further indicating its prognostic role in liver and lung cancers. 
 
Second, we also used middle-scale assays to validate the functionality of regulatory elements. 
For example, after combining various chromatin status data, we used a match-filter based cis-
regulatory element prediction method to find the key noncoding regions, and used a luciferase 
assay to validate their potential to initiate the transcription process. Out of the nine predictions, a 
decent amount of expression has been observed, demonstrating the effectiveness of our method. 
 
[JZ2Vineet and Michael: please add some description of the method here. May change some 
detail into the supplementary but do that part later with next version] 
In addition, we further selected key SNVs within the functional cis-regulatory elements that are 
key for gene expression control. In order to evaluate the effect of mutation on regulatory region, 
we used luciferase reporter assay to quantify the activity of cis-RE containing motif-breaking 
mutation relative to wildtype in MCF-7. Of eight motif-disrupting SNVs we tested, six variants 
were observed to be consistently up or down-regulated activity relative to the wild type. This 
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result proves two points: the cis-regulatory regions we tested are highly functional and the 
single-base nucleotide change that we selected can completely alter the effect of the regulatory 
region. We further characterized the validated regulatory regions by predicting target genes using 
both computational methods (ref. Kevin’s Yip’s enhancer target prediction) and incorporating 
nuclear organization and 3D chromatin architecture using Hi-C and ChIA-PET (ref. needed). We 
investigated each of the selected variants in detail (supplementary figure xxx - xxx). One 
particularly interesting region is chromosome 6, 13.5xxx. The enhancer region nearby is in the 
intergenic region and has been predicted to be strong enhancers both in normal (HMEC) and 
tumor cells (MCF-7) in breast tissue. It has been shown to regulate an upstream oncogene, 
SGK1, which is key to tumorigenesis in breast cancer. The SNV we selected in this region has 
strong motif breaking effect for a series of TFs such as xxx, and we observed various TF binding 
sites overlapping it.  
 

Conclusion 
In this paper, we demonstrated the effectiveness of using ENCODE data to prioritize key 
regulatory elements/SNVs at different scales that are important for cancer progression. Our 
scheme can be immediately applied to interpret the noncoding variants from large cohorts, and 
pinpoint key elements for detailed functional characterization.  
 
 
 


