In the past year, several papers reporting "human knock-outs" for key genes and loci as detected by NGS have been reported. Often the effect on phenotype is minimal to non-existant. Can the authors interpret such findings in the context of their approach and observations?
As the reviewer has pointed out correctly, studies focused on identifying and understanding human knockouts have been published recently. A study on British Pakistanis with related parents, identified 781 genes containing rare LoF homozygous variants (PMID: <u>26940866</u>). They found homozygous LoF variants in recessive Mendelian disease genes in 42 people, however 33 of them did not have the disease phenotype. <u>-ALoFT</u> <u>indeed predicts that 19 variants should lead to disease with a recessive</u> <u>mode of inheritance. However, lack of a discernible phenotype could be</u> <u>due to incomplete penetrance, presence of modifiers or environmental</u> <u>influences.</u>
A study on British Pakistanis with related parents identified 781 genes containing rare LoF homozygous variants (PMID: 26940866). They found homozygous LoF variants in recessive Mendelian disease genes in 42 people, however 33 of them did not have the disease phenotype. We applied ALoFT to classify these homozygous LoF variants and ALoFT indeed predicts that 19 of them would cause disease- (Supplementary table xx). However, the lack of a discernible phenotype could be due to incomplete penetrance of the mutations or due to modifier effects. The penetrance of some disease mutations are known to be age and sex- dependent (PMID: 19785764). It is well established that there is widespread occurrence of disease variants with reduced penetrance in the general population (PMID: 23820649). While studies in consanguineous populations have been used to identify recessive disease genes (PMID: 25558065, 27435318), absence of disease provides an opportunity to look

Reviewer 4 comment 2	The authors do corroborate some results from the literature in their case studies, but these seem more suggestive of ALoFT's performance rather than conclusive. One concern is that a significant fraction of HGMD variants still receive high benign scores. Some additional analyses would be helpful.
Authors' response	It is known that HGMD includes erroneous disease annotations and it has been estimated that about 25% of all HGMD annotations (which includes missense and pLoF variants) are erroneous. We have already included this discussion in the manuscript as can be seen on Page 6 paragraph 1. Here is the statement pertaining to this point.

	based on diverse methods of identifying variants ranging from targeted panel-based candidate gene studies to whole genome sequencing and disease databases include incorrect disease annotations and common variants -and about 27% of variants were excluded by Bell et al. in their estimate of carrier burden for severe recessive diseases ⁴⁷ .
	As requested by the referee we have also done -further analysis on
	<u>HGMD variants predicted to be benign.</u>
Changes in	Only 3.7% of HGMD mutations are predicted to be tolerant. Some notable
text	examples of HGMD LoF variants predicted to be tolerant occur in genes
	such as FLG, C4orf26 and APOA2. Filaggrin LoF mutations are linked to
	susceptibility to atopic dermatitis, a skin condition leading to eczema
	(PMID: 27659773). Mutations in C4orf26 lead to Amelogenesis Imperfecta,
	a disorder of tooth development. While these mutations are pathogenic,
	they are not lethal and also known to be genetically heterogeneous (PMID:
	20878018).

Reviewer 4 comment 3	Also, the authors only briefly comment on confounders like how variations in sequence coverage, variations in variant calling, variations in penetrance, etc. would affect the results. Those seem like important factors to characterize for broad use of this tool by the community.
Authors' response	All prediction tools work on the assumption that the underlying variant is a true variant. Ascertainment and quality issues of variants are confounders that the user must pay attention in assessing if a variant is real or not. Therefore, estimating the number of deleterious alleles in a healthy individual is a complex problem as has been pointed by the referee. We have described this in detail in the Supplementary Methods in Page 20 (Section 2.3.5) in our previous submission.
Changes in text	

Reviewer 5	Since the method takes into account the zygosity of the variant is
a a mmont 1	there are not not taken into account the zygosity of the variant, is
comment I	there any measure to deal with samples that might be low purity.
	Unlike looking at the germline, in cancer, samples often have a range
	of tumor cellularity that affects the somatic changes and the purity
	might affect the ALoFT scores. I also noticed at the very end in the
	concluding paragraph that it mentions this works in the context of a
	diploid model, but that was the only mention of it required to be
	diploid I could find. I think that would need to be more clear up front
	as it might limit the usage in tissues that are aneuploid.
Authors'	Please note that the method does not take require a diploid model. The
response	zygosity of the variant is not a prediction feature. The point about the
	diploid model is that most prediction tools describe mutations as
	pathogenic without telling us if it is likely to be pathogenic in the

	heterozygous or homozygous state. However, the explosion in human
	sequencing has shown that there are millions of rare variants that have
	arisen due to rapid population growth. Some of these are deleterious and
	some are neutral waiting to be fixed by evolution over time. Thus, there is
	a need to differentiate between pathogenic heterozygous mutations from
	those that are deleterious only as homozygotes. This issue has been
	eloquently expounded by Nathan Pearson under the section "What the
	Kearney scheme gets wrong" where he writes "This problem reflects how
	such schemes simplistically focus on variants, instead of genotypes."
	http://genomena.com/2013/05/22/harmful-by-any-other-name-on-clinical-
	variant-classification/.
	Our prediction algorithm distinguishes pathogenic heterozygous variants
	from pathogenic homozygous variants. The prediction is derived from
	features based on variants in recessive genes and dominant genes.
	However, we realize what the reviewer is getting at. In the case of somatic
	mutations, zygosity is not a relevant term. This is the reason we chose to
	plot overall deleteriousness in Fig 2c where the X-axis is (1-benign score)
	and is a measure of pathogenicity of the somatic mutation.
	We have explicitly made this clarification in the revised text as
	tollows.
Changes in	Due to aneuploidy and clonal heterogeneity of cancer cells, we define an overall
text	measure of deleteriousness as (1-Benign ALOF I score) in the X-axis of Figure

Reviewer 5 comment 2	In samples with a high mutational burden, did you see if the majority of the mutations were pLOF were predicted in one class type or another? Would it be a way to distinguish between drivers and passengers as well particularly in tumors with large mutational burden?
Authors' response	We first note that the distinction between dominant and recessive pLoF events, is most appropriate in the context of germline variants. A 'recessive' somatic pLoF mutation, may have as harmful a consequence as 'dominant' somatic pLOF. For example a somatic pLoF may act as the second 'hit' of the 'two-hit' hypothesis.
	In order to distinguish between pLoF events and predicted benign LoF events, we examined the ratio of pLoF mutations to total LoF mutations among our patient samples. We identified a linear relationship between pLoF events and total LoF burden. There is

	no identifiable inflection point between higher mutational burden
	samples and lower mutational burden samples. This suggests
	that in general, pLOF events accumulate as a relatively fixed
	proportion of the total mutational burden.
	Patrick/Mark, please take a stab at this
Changes in	
text	

Reviewer 5 comment 3	In Case Study 3, based on the 20/20 rule, how many of the somatic pLoFs did you identify that would be considered a LOF mutation in the cancer exome set you analyzed?
Authors' response	We examined genes with associated somatic pLoFs mutations for adherence to the 20/20 rule of Vogelstein et al. 2013. Of the 505 genes with pLoF mutations, 317 meet the 20/20 rule (62.7%),
	while 188 genes do not. This degree of observed congruency, adds to our confidence in ALoFT's ability to identify meaningful events in carcinogenesis. Patrick/Yao, please take a stab at this. I
	remember from our last phone call that Yao had specific thoughts on this.
Changes in text	

| -