exRNA

• Biogenesis, Cargo and Uptake of Extracellular Vesicles

- Protein content
- RNA Content
- Lipid Content
- Collection and Processing of Cell Culture Media and Body Fluids Prior to Isolation of Extracellular Vesicles
 - Cell Culture Media
 - Blood Plasma and Serum
 - Breast Milk
 - Urine
 - CSF

Intro

- Techniques for Characterization and Quantification of Extracellular Vesicles
 - EM
 - Flow Cytometry
 - Nanoparticle Tracking Analysis
 - Sequencing

exRNA Atlas

• 1,369 exRNA profiles

Bringing exRNA Data and Analysis Tools Together

The exRNA Atlas is the data repository of the Extracellular RNA Communication Consortium (ERCC), which includes small RNA sequencing and RT-qPCR-derived exRNA profiles from human and mouse biofluids. All RNA-seq datasets are processed using version 4 of the exceRpt small RNA-seq pipeline and ERCC-developed quality metrics are uniformly applied to these datasets.

Getting Started

Select exRNA Profiles: (0 selected)

Select, view and download Atlas data by clicking one or more slices from one or more charts. Then, click the 🔍 icon in the floating menubar to apply filters and view the results (grid opens in a new tab). Click the 🕘 icon to select all slices from all charts (i.e. all exRNA profiles in the Atlas) or click the 🕘 icon to clear selections. Please note that the size of each slice (representing a profile count) has been **log-transformed**.

Transcriptome Mapped Reads / Biofluid

Read Mappings / RNA Type

How many small RNA are expressed in different biofluids

No. of expressed miRNA split by biofluid and threshold

No. of expressed small tRNA split by biofluid and threshold

No. of expressed small piRNA split by biofluid and threshold

What are those MIRs? Are they shared between biofluids?

Threshold 25

Threshold 100

Visualization - Dimensionality reduction

PCA - % Variace Explained

- Search for low dimensional subspace that minimize a squared error between distances in the original data and distances in the map
- Maximize the variance of the data
- Linear projection

PCA

PC2 vs. PC1

PC2 vs. PC1

Can we do better?

Is PCA minimizing the right objective function?

- Linear projection
- Trying to minimize a squared error between distances in the original data and distances in the map -> Trying to maximize variance
- PCA is mainly concerned in preserving large pairwise distances in the map

TSNE output

With biofluids labels

T-SNE

T-distributed Stochastic Neighbor Embedding

- Developed by Geoffrey Hinton & Laurens van der Maaten
- Nonlinear dimensionality reduction technique
- 2 Stages:
 - Constructs a probability distribution over pairs of high-dimensional objects
 - Defines a similar probability distribution over the points in the lowdimensional map

t-SNE – step 1

- What is reliable? Very small Euclidean distances (point & nn)
- Measure similarities between points that looks only on local similarities (to nearby points)

$$p_{j|i} = rac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2/2\sigma_i^2)}{\sum_{k
eq i}\exp(-\|\mathbf{x}_i - \mathbf{x}_k\|^2/2\sigma_i^2)},$$

t-SNE – step 2

- Look at the low dimensional space
- Lay points in that map
- Represent each high dimensional object by a point on the map
- A probability that measures similarity of 2 points in the low dimensional map
- We want Qij to reflect the similarities in Pij as well as possible

$$q_{ij} = rac{(1+\|\mathbf{y}_i-\mathbf{y}_j\|^2)^{-1}}{\sum_{k
eq i} (1+\|\mathbf{y}_k-\mathbf{y}_i\|^2)^{-1}}$$

$$KL(P||Q) = \sum_{i
eq j} p_{ij} \log rac{p_{ij}}{q_{ij}}$$

TSNE

Conclusion & Potential directions

- Difference between cell content & EV cargo comparison between profile of EV and originating Cell
- Dimensionality reduction for other small RNA
- Prediction use to classify new samples

Thank you

- Joel Rozowsky
- Mark Gerstein

PC3 Vs. PC2

PCA – Center = True; Scale = False

PC3 Vs. PC1

PC4 Vs. PC1

PC3 Vs. PC4

