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between the spins. The simplest energy describing the interactions between two spins, one on
the ith atom, Si, and on another, usually neighboring atom jth, Sj, has the form Eij=−JijSiSj
where the two choices for Si and Sj are ±1, i.e. up or down. If Jij is positive, the low-energy
state aligns the two spins in the same direction; if Jij is negative the spins prefer to point in op-
posite directions.
If we have a large magnet the energy can be taken as the sum of the individual (pair) interactions

E=−∑i≠j JijSiSj. The potentially frustrating problem to solve then is, at low temperature, what is
the lowest energy arrangement of the up and down spins that can be reached dynamically? (See
Fig. 2). This problem is ‘solved’ by the system when it is cooled and random thermal motions
allow it to try out various configurations or arrangements of the spins, according to their energy.
If all the Jij are positive, it is easy even for people to see the answer: the lowest energy state has

all the spins pointing in the same direction – they are either all up or all down. What if all (or even
some) of the Jij’s are negative? Now things seem to be tricky, but sometimes people can figure out
the answer pretty quickly for certain situations. Consider first what turns out to be an easy prob-
lem: suppose the atoms bearing the spins are situated on a simple square lattice and all the Jij are
negative. In this case, an interlaced checkerboard of up and down spins has the lowest energy and
minimizes simultaneously every local interaction Eij. The possible conflict between different local
interactions can be resolved (see Fig. 2). The resulting pattern is called an anti-ferromagnet. This
solution, while it can be quickly checked by anyone, was not really that easy to see a priori, and
indeed (along with other insights) figuring out this pattern netted its discoverer, Louis Neel, a
Nobel laureate in Physics (Néel, 1970). Although it takes at least a few moments for humans
to see the answer for the square lattice antiferromagnet, the system itself has a much easier
time figuring out what to do. When an antiferromagnet is cooled below a certain temperature
it orders spontaneously and fairly quickly.
But antiferromagnets on other lattices can be more complex than the uniform square lattice

antiferromagnet case. Imagine the spins reside on atoms situated on a triangular lattice with all
antiferromagnetic interactions (Fig. 2). Already a single triangle of the lattice shows the problem.
There is no way to arrange the spins, so that every component interaction can simultaneously be
minimized; always at least one interaction must be still in a high-energy state. We would say the
individual triangle is ‘frustrated’.
What happens for a big lattice of frustrated triangles? In the strictly two-dimensional system,

one finds a huge degeneracy of possibilities. There is no unique ground state. This would lead to

Fig. 2. Frustration entered the physics lexicon in the study of magnets. The arrows represent spins that can
be in any two states: up or down. Favorable antiferromagnetic interactions between spins are represented by
squiggly lines. The potentially frustrating problem is: what is the lowest energy arrangement of the up and
down spins that can be reached dynamically? On the left, the particles are arranged on a rectangular lattice.
How would you set the spins such that all local interactions are satisfied? What happens if the particles are
arranged on a triangular lattice, as shown on the right? There is no way to arrange the spins so that every
component interaction can be minimized. The triangle is ‘frustrated’.
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an apparent contradiction to the Third Law of Thermodynamics, which requires entropy to
vanish at absolute zero, implying a unique ground state. Wannier showed that T=0 was a critical
point for the triangular antiferromagnet and thus there would be large length scale fluctuations
even at low temperature (Wannier, 1950a). In real three-dimensional systems, weaker interactions
between planes of spins restore the Third Law and lead to ordering to a unique lowest energy
state, but the energies required to excite the system from the ground state now depend only
on the weak interactions and so are much smaller than you would otherwise expect. The kind
of ordering found in such three-dimensional systems is also very complex and generally hard
to predict with precision (Collins & Petrenko, 1997).
You might think the triangular antiferromagnet case is special because of the exact symmetry

of the frustration and indeed it is. Without symmetry, frustration and degeneracy still go together
but manifest themselves in a very different way: very slow dynamics emerges that gives the system
difficulty reaching equilibrium at low temperatures. Although there is a ground state it can be
hard to find. Such a system is called a ‘spin glass’. The models that are simplest to describe
place spins on a simple lattice and at random assign some bonds to be ferromagnetic and others
to be antiferromagnetic (Fig. 3). A particular assignment of bonds is analogous to a sophism
having a particular combination of logical connectors (AND, NOT, OR. . .). Although there
are numerous approaches for finding the low-energy states of such a magnet, in the general
case all known algorithms take a very long time. This time scales up exponentially with the
size of the magnet. The reason for this slowness is there are many choices of spin assignments
that have similar energies that are relatively stable but that are globally quite dissimilar. It is
difficult for the system to carry out such rearrangements between degenerate states. How does
frustration lead to barriers? In fact, the locality of moves makes this hard to understand but
you can get some intuition from a weakly frustrated spin system with only a few frustrated inter-
actions like the example shown in Fig. 3. Since most of the bonds in Fig. 3a are ferromagnetic, at
low temperature most of the spins will be parallel, let us say oriented up. However, some

Fig. 3. Frustration leads to barriers in the energy landscape. The arrows represent spins that can be in any
two states on a rectangular lattice. Favorable ferromagnetic interactions are represented by straight lines
antiferromagnetic interactions by squiggly lines. In this case most of the bonds are ferromagnetic so at
low temperature most of the spins will be parallel. Two choices of spin assignments are shown. These
have similar energies, are relatively stable, but they are globally dissimilar. At left most spins are down, at
right most spins are up. In both cases, the same number of interactions remains locally unsatisfied (red
dots). There are two ways of arranging the ‘misaligned’ spins. To rearrange from one to the other a very
complicated set of spin changes must be made. This rearrangement is entropically disfavored at high
temperature and energetically disfavored at low temperature. Many large-scale moves must be made for
the system to find out which arrangement or set of arrangements are most stable. Although there is a
ground state it can be hard to find because of the very slow dynamics that emerges.
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•  Cataly1c	  centers	  
•  Allosteric	  contexts	  &	  local	  conforma1onal	  switches	  
•  Binding	  sites	  are	  o?en	  frustrated	  
•  Metastable	  and	  mul1-‐stable	  proteins	  
•  Protein	  aggrega1on	  
•  Nucleic	  acids	  &	  protein	  complexes	  

Changes	  in	  localized	  frustra4on	  may	  disrupt	  essen4al	  
func4onality	  without	  introducing	  global	  destabiliza4on	  

	  

Note	  that	  frustra4on	  is	  intrinsic	  to	  many	  biological	  processes!	  

© 1997 Nature Publishing Group  http://www.nature.com/nsmb
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Results

Creation of DynaSIN v1.0
As part of our study here, we expanded SIN v1.0,
created earlier by Kim et al.,3 to not only include
more mappings for yeast but also include human
and E. coli in the analysis, thus creating a high-con-
fidence SIN v2.0 (Table I). To do so, we first filtered
a high-confidence interaction set for human from
BioGrid (2.0.44) by including only those interactions
that were at least reported in vivo and then removed
the redundant ones. For consistency, we then used

Figure 1. Flowchart for generating DynaSIN. We start with the interaction network. The information about the interfaces from

the PDB is then mapped onto the network. This enables classification of edges as permanent (those associated with a unique

interface, dark blue solid edges) and transient interactions (those which share an interface, light blue dotted edges). Nodes

are also classified into singlish-interface (those with one or two interfaces, light blue circles) and multi-interface (those with

more than two interfaces, dark blue squares) proteins. This structural annotation of nodes and edges gives us the structural

interaction network. Next, all the alternate conformations of the proteins, whenever available, are aligned with the structure in

the complex. The nodes that adopt alternate conformations are shown in yellow. Because of these alternate conformations,

some interactions are likely to be affected by the conflicting motions (shown by solid red edges), whereas compatible motions

do not affect the associated interactions (shown by dotted green edges).

Table I. Size of the Dataset Used in This Study

Human Yeast

# of edges in SIN 2.0 Transient 6728 1,172
Permanent 1780 356

# of nodes in SIN 2.0 Non-hub 1348 297
Singlish-interface 597 142
Multi-interface 316 40

# of proteins with
alternate
conformations

Non-hub 66 32
Singlish-interface 88 34
Multi-interface 60 24

# of edges with
motions

Conflicting 228 30
Compatible 354 48

Bhardwaj et al. PROTEIN SCIENCE VOL 20:1745—1754 1747
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with hinges. Alternatively, the local frustration may destabilize a part of the protein in favor of
an ensemble of rather high entropy. In other words, a local region can locally unfold or
‘crack’. This possibility has been entertained previously (Miyashita et al. 2003) and elegantly
explains the observations of the way denaturants can catalyze conformational changes (Zhang
et al. 1997). Resolving experimentally the issue of hinges versus cracks requires an analysis of
the effect that local mutations exert on the conformational kinetics (Whitford et al. 2008).
Adenylate kinase is celebrated example of large-scale conformational change related to a func-

tional transition. The gross opening and closing of this protein requires at least two reaction co-
ordinates to be taken into account. Steered molecular dynamics calculations have identified

Fig. 24. Frustration in prototypic allosteric proteins. Hemoglobin is a tetrameric protein in which near
rigid-body rotation allows symmetrical packing of subunits to occur. In this multimeric protein, the
interface between the subunits is not frustrated in either form. Highly frustrated interactions do occur
internally in each subunit near the heme-binding site. This is a classical example of a Wyman–Monod
view of symmetry leading to near degeneracy, for which allostery does not depend on frustration. Below,
the case of adenylate kinase, a protein that undergoes a large-scale conformational transition upon
binding substrates. Steered molecular dynamics identified locations where ‘hinge’ motions are believed to
occur, shown here with blue arrows (Henzler-Wildman et al. 2007). An extensive minimally frustrated
network of contacts rigidifies the molecule in the closed form, and highly frustrated regions co-locate
with the hinges. Motion of adenylate kinase along the low-frequency normal modes contributing to the
closure accumulates stress in some regions (Miyashita et al. 2003). A high-stress region can ‘crack’ or
locally unfold releasing the strain and catalyzing the motion. This region is highly frustrated in both
forms. The presence of interactions that conflict with folding an enzyme is a general theme in the
realization of effective catalysts. Redrawn with the permission from Ferreiro et al. (2011).
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At the level of a single residue, a frustration index can be assigned to each residue via such a set
of mutations as

Fi =
ET ,N
i − kET ,U

i ′
l

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1/N

∑n
k=1(E

T,U
i ′ − kET ,U

i ′ l)2
√ . (6)

Here ET,N is the total energy of the protein in the native configuration, taken as
ET ,N =

∑N
k=i (Ei;k

contact + Ei;k
water) + Ei

burial, according to the tertiary interaction terms of the
associative memory Hamiltonean with water mediated interactions (AMW) energy function
(Papoian et al. 2003a). This energy considers all the interactions that residue i makes with residues
k, either in a direct contact, Ei;k

contact or in a water-mediated interaction, Ei;k
water and via a single-

body burial energy term, Ei
burial. The average energy of the decoys kET,U

i ′ l is computed by
mutating residue i to every other possible residue. As the 20 genetically coded amino acids are
not all equally probable, the decoy energy is calculated with weights according to the amino
acid composition of the chain. These mutations are evaluated from the sequence-specific contact
and burial terms from the AMW force field with parameters λi , ri,k ,ρi that correspond to the
amino acid identity, interaction distance, and density, respectively (Papoian et al. 2003a).
Similar recipes could be used for other coarse-grained energy functions.
In the case of pairs of residues, we ask: how favorable is the actual native pair relative to other

possible interactions? To compute the frustration index for interacting pairs of amino acids i,j
simultaneous mutations on residues i and j are made. We have proposed two related but comp-
lementary ways for localizing frustration at the pairwise contact level. These ways differ in how
the set of decoys is constructed. In one choice, the decoy set is made by randomizing only the
identities of the interacting amino acids i,j, keeping all other interaction parameters at their native
value. This scheme effectively evaluates every possible mutation of the amino acid pair that forms
a particular contact in a robustly fixed structure. We call the resulting index the ‘mutational frus-
tration’:

Fm
ij =

ET ,N
i,j − kET,U

i ′,j ′ l!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1/N

∑n
k=1(E

T ,U
i ′,j ′ − kET,U

i ′,j ′ l)2
√ . (7)

The decoy energy distribution is calculated by randomly selecting amino acid identities from
the protein composition and fixing the density ρi and the pairwise distances ri , j to the native
conformation. It is worth noting that the energy change upon pair mutation not only comes
directly from the particular contact probed but also changes through interactions of each resi-
due with other residues not in the pair, as those contributions may also vary upon mutation.
One advantage of the mutational frustration index is that, in principle, this local measure of frus-
tration also could be experimentally determined in the laboratory by combinatorial protein
engineering.
A second way of quantifying pairwise local frustration imagines that the residues are not only

changed in identity, but also can be displaced in location: how favorable is the native interaction
between two residues in the native structure relative to other interactions these residues could
form in globally different distinct compact structures? The energy variance thus reflects contribu-
tions from the energies of molten globule conformations of the same polypeptide chain. For
this index, specially suitable for examining alternative tertiary structures, the decoy set involves
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Abstract. Biomolecules are the prime information processing elements of living matter.
Most of these inanimate systems are polymers that compute their own structures and dynamics
using as input seemingly random character strings of their sequence, following which they
coalesce and perform integrated cellular functions. In large computational systems with finite
interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can
lead to quite complex structures and behaviors, leading to the concept of frustration in condensed
matter. We present here some basic ideas about frustration in biomolecules and how the
frustration concept leads to a better appreciation of many aspects of the architecture of
biomolecules, and especially how biomolecular structure connects to function by means of
localized frustration. These ideas are simultaneously both seductively simple and perilously subtle
to grasp completely. The energy landscape theory of protein folding provides a framework for
quantifying frustration in large systems and has been implemented at many levels of description.
We first review the notion of frustration from the areas of abstract logic and its uses in simple
condensed matter systems. We discuss then how the frustration concept applies specifically to
heteropolymers, testing folding landscape theory in computer simulations of protein models and
in experimentally accessible systems. Studying the aspects of frustration averaged over many
proteins provides ways to infer energy functions useful for reliable structure prediction.
We discuss how frustration affects folding mechanisms. We review here how the biological
functions of proteins are related to subtle local physical frustration effects and how frustration
influences the appearance of metastable states, the nature of binding processes, catalysis and
allosteric transitions. In this review, we also emphasize that frustration, far from being always a
bad thing, is an essential feature of biomolecules that allows dynamics to be harnessed for
function. In this way, we hope to illustrate how Frustration is a fundamental concept in
molecular biology.
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Natural protein domains must be sufficiently stable to fold but
often need to be locally unstable to function. Overall, strong ener-
getic conflicts areminimized in native states satisfying the principle
of minimal frustration. Local violations of this principle open up
possibilities to form the complex multifunnel energy landscapes
needed for large-scale conformational changes. We survey the
local frustration patterns of allosteric domains and show that
the regions that reconfigure are often enriched in patches of highly
frustrated interactions, consistent both with the idea that these
locally frustrated regions may act as specific hinges or that proteins
may “crack” in these locations. On the other hand, the symmetry
of multimeric protein assemblies allows near degeneracy by recon-
figuring while maintaining minimally frustrated interactions.
We also anecdotally examine some specific examples of complex
conformational changes and speculate on the role of frustration
in the kinetics of allosteric change.

minimal frustration principle ∣ protein folding ∣ protein function

Allostery and large-scale conformational changes are wide-
spread in molecular biology but historically have been

considered to be exceptional and somewhat mysterious. In fact,
cryobiochemical (1) and single molecule (2) experiments show
that the underlying energy landscapes of all biomolecules are gen-
erally quite complex (3). These findings surprised many because
there has been so much success in modeling even large pieces of
biological machinery as simple chemical entities obeying elemen-
tary laws of equilibrium and kinetics (4). The mystery of allostery
was thus a first hint of landscape complexity (5). In contrast to
experimentalists, who were surprised by emergent complexity,
theorists are more surprised by the seeming simplicity of the
free energy landscape of proteins at physiological temperatures.
Theorists expect that the apparent randomness of a protein se-
quence will result in many competing forces between residues,
and thus structurally disparate states should be at least transiently
populated (6). Indeed statistical mechanical theory suggests
completely random heteropolymers have rugged landscapes, like
glasses, which provide paradigms of complex kinetics (7–9). The
resolution of this dialectic lies in evolution: Proteins emerge from
selected sequences that give rise to organized energy landscapes.
Most of this organization encodes the ability of the molecule
to spontaneously find a fairly specific (although decidedly not
unique) configuration, the so-called folded or average native
structure. By having specific structures, proteins become limited
in their range of interaction partners thus allowing complex net-
works of biological interactions to be built up. Overall, the energy
landscapes of proteins resemble a rough funnel leading toward
the native state (10, 11). This funnel structure is only possible
for those selected sequences that are chosen so that energetic
conflicts are for the most part avoided and the native structure
is more stable than expected for random associating residues.
This thesis is known as the “principle of minimal frustration”
(6). If the minimal frustration principle is satisfied everywhere,
the protein molecule becomes a beautiful sculpture with a ten-
dency to remain intact and move as a rigid body. We will explore

here how local violations of the minimal frustration principle
open up possibilities for more complex energy landscapes needed
for allostery and large-scale conformational changes (12, 13).

Multiple funnels to structurally distinct low-free-energy states
can also be achieved by other mechanisms (14), symmetry being
the main route to such degeneracy (15). Nearly rigid macromo-
lecular subunits can pack in a number of symmetry equivalent
ways with similar free energies. This mathematical phenomenon
is the core of the brilliant insight of Monod et al. (16) which
spotlighted symmetric multimeric proteins as prime candidates
for allostery.

To investigate the role of frustration in large-scale conforma-
tional changes, we need to locate sites both where the minimal
frustration principle is strongly violated as well as the web of mini-
mally frustrated interactions that impart rigidity to much of the
protein structure. A simple heuristic based on energy landscape
theory proposed by us earlier is able to do this localization. We
previously showed that some clusters of highly frustrated interac-
tions signal binding sites for protein–protein assembly and recog-
nition (17). Using the same algorithm, we now survey in this
paper a large number of proteins that undergo large-scale con-
figurational motions, generally as monomers. Our survey sample
consists of proteins crystallized in pairs of alternative forms (18).
Usually the alternate structures are stabilized by adding appro-
priate ligands, although in some cases, modest sequences changes
have allowed the capture in the crystal of the alternate configura-
tions. We show that the more rigid parts of the proteins, which
are locally structurally superimposable, are connected by a dense
web of largely minimally frustrated interactions. On the other
hand, regions that are highly frustrated often reconfigure locally
between the two forms. In some cases, frustrated regions display
rather extensive reconfigurations of compact regions. In other
cases, the frustrated clusters localize around apparent pivot
points between the more rigid elements. The accompanying
structural change is then a combination of local rearrangements
in the vicinity of these pivots and large-amplitude rigid-body
motions through space of the minimally frustrated elements
neighboring them. The motion thus superficially resembles a
macroscopic hinge. The frustration analysis is consistent both
with the idea that these locally frustrated regions may be specific
hinges or that the proteins crack in these locations (12). Cracking
is encouraged by the low local stability that accompanies high
local frustration (17, 19).

We first briefly review the algorithm for localizing frustration
and the criteria we use for locating residues locally displaced
between the pairs of proteins. We then show that frustrated
clusters are indeed colocated with those residues whose local
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Frustration in biomolecules
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Abstract. Biomolecules are the prime information processing elements of living matter.
Most of these inanimate systems are polymers that compute their own structures and dynamics
using as input seemingly random character strings of their sequence, following which they
coalesce and perform integrated cellular functions. In large computational systems with finite
interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can
lead to quite complex structures and behaviors, leading to the concept of frustration in condensed
matter. We present here some basic ideas about frustration in biomolecules and how the
frustration concept leads to a better appreciation of many aspects of the architecture of
biomolecules, and especially how biomolecular structure connects to function by means of
localized frustration. These ideas are simultaneously both seductively simple and perilously subtle
to grasp completely. The energy landscape theory of protein folding provides a framework for
quantifying frustration in large systems and has been implemented at many levels of description.
We first review the notion of frustration from the areas of abstract logic and its uses in simple
condensed matter systems. We discuss then how the frustration concept applies specifically to
heteropolymers, testing folding landscape theory in computer simulations of protein models and
in experimentally accessible systems. Studying the aspects of frustration averaged over many
proteins provides ways to infer energy functions useful for reliable structure prediction.
We discuss how frustration affects folding mechanisms. We review here how the biological
functions of proteins are related to subtle local physical frustration effects and how frustration
influences the appearance of metastable states, the nature of binding processes, catalysis and
allosteric transitions. In this review, we also emphasize that frustration, far from being always a
bad thing, is an essential feature of biomolecules that allows dynamics to be harnessed for
function. In this way, we hope to illustrate how Frustration is a fundamental concept in
molecular biology.
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On the role of frustration in the energy
landscapes of allosteric proteins
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Natural protein domains must be sufficiently stable to fold but
often need to be locally unstable to function. Overall, strong ener-
getic conflicts areminimized in native states satisfying the principle
of minimal frustration. Local violations of this principle open up
possibilities to form the complex multifunnel energy landscapes
needed for large-scale conformational changes. We survey the
local frustration patterns of allosteric domains and show that
the regions that reconfigure are often enriched in patches of highly
frustrated interactions, consistent both with the idea that these
locally frustrated regions may act as specific hinges or that proteins
may “crack” in these locations. On the other hand, the symmetry
of multimeric protein assemblies allows near degeneracy by recon-
figuring while maintaining minimally frustrated interactions.
We also anecdotally examine some specific examples of complex
conformational changes and speculate on the role of frustration
in the kinetics of allosteric change.

minimal frustration principle ∣ protein folding ∣ protein function

Allostery and large-scale conformational changes are wide-
spread in molecular biology but historically have been

considered to be exceptional and somewhat mysterious. In fact,
cryobiochemical (1) and single molecule (2) experiments show
that the underlying energy landscapes of all biomolecules are gen-
erally quite complex (3). These findings surprised many because
there has been so much success in modeling even large pieces of
biological machinery as simple chemical entities obeying elemen-
tary laws of equilibrium and kinetics (4). The mystery of allostery
was thus a first hint of landscape complexity (5). In contrast to
experimentalists, who were surprised by emergent complexity,
theorists are more surprised by the seeming simplicity of the
free energy landscape of proteins at physiological temperatures.
Theorists expect that the apparent randomness of a protein se-
quence will result in many competing forces between residues,
and thus structurally disparate states should be at least transiently
populated (6). Indeed statistical mechanical theory suggests
completely random heteropolymers have rugged landscapes, like
glasses, which provide paradigms of complex kinetics (7–9). The
resolution of this dialectic lies in evolution: Proteins emerge from
selected sequences that give rise to organized energy landscapes.
Most of this organization encodes the ability of the molecule
to spontaneously find a fairly specific (although decidedly not
unique) configuration, the so-called folded or average native
structure. By having specific structures, proteins become limited
in their range of interaction partners thus allowing complex net-
works of biological interactions to be built up. Overall, the energy
landscapes of proteins resemble a rough funnel leading toward
the native state (10, 11). This funnel structure is only possible
for those selected sequences that are chosen so that energetic
conflicts are for the most part avoided and the native structure
is more stable than expected for random associating residues.
This thesis is known as the “principle of minimal frustration”
(6). If the minimal frustration principle is satisfied everywhere,
the protein molecule becomes a beautiful sculpture with a ten-
dency to remain intact and move as a rigid body. We will explore

here how local violations of the minimal frustration principle
open up possibilities for more complex energy landscapes needed
for allostery and large-scale conformational changes (12, 13).

Multiple funnels to structurally distinct low-free-energy states
can also be achieved by other mechanisms (14), symmetry being
the main route to such degeneracy (15). Nearly rigid macromo-
lecular subunits can pack in a number of symmetry equivalent
ways with similar free energies. This mathematical phenomenon
is the core of the brilliant insight of Monod et al. (16) which
spotlighted symmetric multimeric proteins as prime candidates
for allostery.

To investigate the role of frustration in large-scale conforma-
tional changes, we need to locate sites both where the minimal
frustration principle is strongly violated as well as the web of mini-
mally frustrated interactions that impart rigidity to much of the
protein structure. A simple heuristic based on energy landscape
theory proposed by us earlier is able to do this localization. We
previously showed that some clusters of highly frustrated interac-
tions signal binding sites for protein–protein assembly and recog-
nition (17). Using the same algorithm, we now survey in this
paper a large number of proteins that undergo large-scale con-
figurational motions, generally as monomers. Our survey sample
consists of proteins crystallized in pairs of alternative forms (18).
Usually the alternate structures are stabilized by adding appro-
priate ligands, although in some cases, modest sequences changes
have allowed the capture in the crystal of the alternate configura-
tions. We show that the more rigid parts of the proteins, which
are locally structurally superimposable, are connected by a dense
web of largely minimally frustrated interactions. On the other
hand, regions that are highly frustrated often reconfigure locally
between the two forms. In some cases, frustrated regions display
rather extensive reconfigurations of compact regions. In other
cases, the frustrated clusters localize around apparent pivot
points between the more rigid elements. The accompanying
structural change is then a combination of local rearrangements
in the vicinity of these pivots and large-amplitude rigid-body
motions through space of the minimally frustrated elements
neighboring them. The motion thus superficially resembles a
macroscopic hinge. The frustration analysis is consistent both
with the idea that these locally frustrated regions may be specific
hinges or that the proteins crack in these locations (12). Cracking
is encouraged by the low local stability that accompanies high
local frustration (17, 19).

We first briefly review the algorithm for localizing frustration
and the criteria we use for locating residues locally displaced
between the pairs of proteins. We then show that frustrated
clusters are indeed colocated with those residues whose local
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Localizing frustration in native proteins
and protein assemblies
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We propose a method of quantifying the degree of frustration
manifested by spatially local interactions in protein biomolecules.
This method of localization smoothly generalizes the global crite-
rion for an energy landscape to be funneled to the native state,
which is in keeping with the principle of minimal frustration. A
survey of the structural database shows that natural proteins are
multiply connected by a web of local interactions that are individ-
ually minimally frustrated. In contrast, highly frustrated interac-
tions are found clustered on the surface, often near binding
sites. These binding sites become less frustrated upon complex
formation.

protein folding ! protein function ! energy landscape

The complexity of protein sequences suggests they may con-
tain conflicting signals encoding separately folding and

function. Yet searching the immense energy landscape of a
protein for the native structure would be slow if the landscape
were very rugged due to many conflicting local interactions (1,
2). Experimental folding kinetics suggests that proteins indeed
do not possess the many traps that such conflicts would cause but
instead are ‘‘minimally frustrated’’ (1). The notion of minimal
frustration has been made quantitatively precise by using the
statistical mechanics of spin glasses (3). A global criterion for the
landscape to be funneled to the native state emerges from this
theory, which hinges on a ratio of the energy difference between
the native structure from alternatives to the magnitude of the
fluctuations of the decoy energies (3). This global Z-score
criterion provides a practical, quantitative route to decoding
effective energy functions for predicting protein structure from
sequence (3, 4), predicting folding intermediates (5, 6), and
designing de novo foldable proteins (7, 8).

Minimal frustration implies protein structure also is robust to
mutation. However, neither the proteins’ kinetic foldability nor
their mutational robustness deny the possibility that some frus-
tration from conflicting signals may be present locally in some
proteins. Such local frustration, being tolerable, might naturally
arise from random neutral evolution. Local frustration also
could be a functionally useful adaptation. The possible adaptive
value for a molecule to have spatially localized frustration arises
from the way such frustration may sculpt protein dynamics for
specific functions. In a monomeric protein the alternate config-
urations caused by locally frustrating an otherwise largely un-
frustrated structure could provide specific control of the thermal
motions, so the protein can function much like a macroscopic
machine having only a few moving parts. Alternatively, a site
frustrated in a monomeric protein may become less frustrated in
the final larger assembly containing that protein, thus guiding
specific association (9, 10). Thermodynamic folding studies of
enzymes also show that catalytic sites exhibit signs of frustration
(31, 32). These arguments suggest that quantitative methods for
localizing frustration in proteins can give insights into the
functional constraints on the evolution of protein energy land-
scapes. Protein engineering studies of folding kinetics provide
such a way of localizing where frustration occurs through ! value
analysis (11, 12). Negative ! values or ! values exceeding 1

identify frustrated sites. It appears that frustrated sites identified
by anomalous kinetics are indeed often implicated in function
(11, 33). In the absence of such experiments, finding sites of
frustration requires the availability of a sufficiently reliable
energy function, because significant error in the energy function
could lead to the appearance of spurious frustration even where
true frustration is absent. Beyond requiring an accurate energy
function, spatially localizing frustration also requires a mathe-
matical scheme to generalize the global aspects of energy
landscape theory so as to apply to only local parts of the protein.
Because folding is a collective process, ultimately locking most
of the molecule together, the manner we choose of breaking the
energy into parts may not be operationally unique. Nevertheless,
in this paper we will provide a heuristic but quantitative ap-
proach to localizing frustration in folded protein structures that
seems both to be reasonable and to provide useful structural
insights.

We develop a spatially local version of the global gap criterion
formulation of the minimal frustration principle. To be precise,
we compare the contribution to the extra stabilization energy
ascribed to a given pair of amino acids in the native protein to
the statistics of the energies that would be found by placing
different residues in the same native location or by creating a
different environment for the pair. If there is a sufficient
additional stabilization for an individual native pair as normal-
ized by the typical energy fluctuation (in accord with the global
Z-score criterion for minimal frustration) the local interaction
can be called minimally frustrated. The precise magnitude of the
threshold to be designated minimally frustrated depends on the
configurational entropy that must be overcome when the protein
folds. If the stabilization of the native pair lies in the middle of
the distribution of alternatives, the interaction can be considered
‘‘neutral.’’ On the other hand, if the native pair is sufficiently
destabilizing compared with the other possibilities we will call
the pair interaction ‘‘frustrated.’’ Such a high level of local
frustration may be the result of an evolutionary constraint that
conflicts with robust folding. Because of the nonlinearity of
entropy loss on assembly, not all of the individual pair interac-
tions in a protein need to be minimally frustrated for the
landscape as a whole to be funneled. Indeed, we find that this
localized version of the landscape folding criterion, when com-
bined with a reasonably accurate water-mediated potential
inferred for structure prediction by a energy landscape optimi-
zation strategy (10), suggests that 40% of interactions individ-
ually can be considered minimally frustrated, 45% are neutral,
and only a small fraction can be called highly frustrated.
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Figure 1. Overview of SNV categories and their relative proportions within the analyzed data pool. (A) Flowchart representing the different categories and
origins of the variants analyzed in this study. A given non-synonymous SNV can be classi!ed as benign or disease-related on the basis of its provenance
(i.e. whether it is taken from 1000 Genomes, ExAC, HGMD or Pan-cancer variant data sets). Relative proportions of SNVs from various data sets (B)
prior to and (C) after mapping SNVs to high-resolution protein databank (PDB) structures.

acid favorably contributes to the energy of the system rela-
tive to all 20 possible amino acids at that position:

Fi = 〈ET, U
i 〉 − ET, N

i√
1/N

∑n
k = 1(ET, U

i − 〈ET, U
i 〉)

, where ET, N
i is the total

energy of the wild-type protein. This energy is calculated
using a function that includes an explicit water interaction

term, ET, N
i =

n∑
k%=i

(Ei ;k
contact + Ei ;k

water) + Ei
burial. This water-

mediated potential (44), describes the energies associated
with direct interactions between residues i and k (Ei ;k

contact),
as well as those with water-mediated interactions between
residues i and k (Ei ;k

water) and an energy term associated with
the burial of the residue (Ei

burial). The average energy of
the decoy conformations (〈ET, U

i 〉) is generated by mutating
the original residue i to each of the alternative possible 19
residues. The AMW potential includes different parameter
values for different residues, so the decoy energies calculated
vary based on the identity of the mutated residue.

This work"ow is computationally tractable when evalu-
ating !F values for large numbers of variants. Our bench-
mark calculations on 10,000 non-synonymous SNVs indi-
cate that we can map, build mutated models and calculate
!F values in ∼29 h on a single-core processor; speci!cally,
we used an E5-2660 v3 (2.60GHz) processor. This approach
is substantially more computationally tractable relative to
traditional molecular dynamics simulations. Thus, it can
readily be used to evaluate the effects of large numbers of
SNVs. We also provide source code for the work"ow on our
GitHub page (https://github.com/gersteinlab/frustration).

In Figure 2, we demonstrate an example case in which a
tryptophan residue at locus 31 within plastocyanin (PDB
ID 3CVD) is mutated to tyrosine. For the wild-type struc-
ture of this protein, 19 decoy energies are calculated by

changing the parameter values that are speci!c to each
amino acid within the potential function (note that, at
this stage, the structure is not altered or minimized in any
way). In this case, the energy computed using the wild-type
residue (ETRP) is substantially lower than the mean value
〈E〉 (rendering a positive value for !ETRP). Because !ETRP
is greater than 0, the wild-type residue is said to be ‘mini-
mally frustrated’.

This same protein is known to contain a disease-related
SNV at locus 31 (W31Y). To quantify the associated change
in frustration, we !rst introduce tyrosine at locus 31 in sil-
ico, and then use Modeler to generate a model of the mu-
tated structure. Thus, we now not only change the residue
at locus 31, but also the con!guration of the entire protein;
the new structure is the model of the mutated protein. In
this new energy landscape, the energy associated with the
residue at the mutated locus 31 is higher than the mean en-
ergy among all 20 amino acids within the modeled structure
(!E′

TYR < 0), suggesting that the mutated residue is ‘max-
imally frustrated’. We are primarily interested in the differ-
ence between these two states (!F). !F is proportional to
the difference between !E′

TYR and !ETRP. !!E is de!ned
to be the difference between the two energetic disparity mea-
sures (!!E = !E′

TYR − !ETRP). Here, !!E is less than 0,
suggesting that the frustration value is higher in the mutated
structure than that of the wild type.

Downstream analyses

In order to investigate the differential effects of SNVs in
various data sets, we ‘bin’ each SNV into distinct categories
based on their frustration indices and relative accessible sur-
face areas (RSASA) in the wild-type structure. SNVs are
classi!ed into three groups (all in wild-type structures): (i)
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1000 Genomes
core                         surface

ExAC
core                         surface

Conservation
measure

DAF
rare (common)

GERP
conserved (variable)

2267 (85)                 1570 (106)                              17972 (102)               11550 (83)     

1552 (287)              1132 (212)                              12165 (2174)             7637 (1406)

HGMD
core                       surface

Conservation
measure

   5158 (961)          1113 (221)GERP
conserved (variable)

PANCAN
core                       surface

SNV 
type

non-CAG

CAG

driver

2153

4140

877

1848

2767

486

Table 1. Summary statistics on the number of SNVs used in comparative analyses. Shown are variant 

counts for non-disease (top), HGMD (bottom-left), and pan-cancer SNVs (bottom-right).

Kumar	  et	  al,	  NAR	  2016	  

14	  

Data	  survey	  and	  processing	  



15	  

	  "Another	  known	  issue	  is	  strong	  annota4on	  disparity	  between	  known	  Mendelian	  
disease	  muta4ons	  (e.g.	  HGMD	  disease	  variants)	  and	  other	  variants:	  most	  of	  HGMD	  
muta4ons	  are	  reported	  in	  a	  small	  subset	  of	  proteins,	  while	  majority	  of	  the	  proteins	  only	  
have	  fewer	  and	  mostly	  benign	  or	  unknown	  significance	  variants	  reported	  for	  them.	  This	  
creates	  bias	  when	  performing	  comparisons	  between	  the	  two	  func4onal	  classes	  of	  
variants.	  In	  case	  of	  PDB-‐mapped	  variants,	  such	  annota4on	  bias	  might	  have	  been	  
alleviated	  to	  some	  extent	  by	  the	  PDB	  intrinsic	  bias	  (men4oned	  above,	  skews	  PDB	  &	  
HGMD	  data	  towards	  the	  same	  proteins)	  but	  it	  requires	  further	  inves4ga4on.	  Authors	  
should	  present	  sta*s*cs	  for	  the	  number	  of	  unique	  proteins	  and	  the	  distribu*on	  
of	  variants	  in	  the	  unique	  proteins	  for	  each	  of	  their	  datasets.	  They	  should	  also	  
aVempt	  to	  perform	  their	  analysis	  on	  a	  (semi-‐)balanced	  set(s)	  of	  variants,	  using	  
sets	  of	  proteins	  where	  both	  disease	  and	  neutral	  muta*ons	  are	  present.	  See	  
Grimm	  et	  al.	  (2015)	  Human	  Mut.	  36:513-‐523	  for	  an	  example	  of	  such	  balanced	  sets	  and	  
trends	  analysis."	  

Data	  survey	  and	  processing	  



1kg ExAC HGMD
all_structures 2675 3327 1728

unique_proteins* 618 907 303

*+Defined+to+be+unique+if+no+2+proteins+within+the+set+
have+chains+sharing+more+than+90%+sequence+similarity
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1)	  Determine	  the	  #	  of	  unique	  proteins	  in	  each	  dataset	  



Figure S2: Histogram of the number of 1000 Genomes SNVs against the number of 
unique proteins. The histogram depicts the distribution of the number of distinct 
proteins in which non-synonymous 1000 Genomes SNVs may be mapped to high-quality 
crystal structures within the PDB. A total of 618 distinct proteins are available. 
Redundancy was removed by ensuring that no pair of proteins within this dataset shares 
more than 90% sequence identity. 

 

 

 

 

 

 
 
 
 
 
 
 

 
 
 
Figure S3: Histogram of the number of ExAC SNVs against the number of unique 
proteins. The histogram depicts the distribution of the number of distinct proteins in 
which non-synonymous ExAC SNVs may be mapped to high-quality crystal structures 
within the PDB. A total of 907 distinct proteins are available. Redundancy was removed 
by ensuring that no pair of proteins within this dataset shares more than 90% sequence 
identity. 
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Figure S3: Histogram of the number of ExAC SNVs against the number of unique 
proteins. The histogram depicts the distribution of the number of distinct proteins in 
which non-synonymous ExAC SNVs may be mapped to high-quality crystal structures 
within the PDB. A total of 907 distinct proteins are available. Redundancy was removed 
by ensuring that no pair of proteins within this dataset shares more than 90% sequence 
identity. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S4: Histogram of the number of HGMD SNVs against the number of unique 
proteins. The histogram depicts the distribution of the number of distinct proteins in 
which non-synonymous HGMD SNVs may be mapped to high-quality crystal structures 
within the PDB. A total of 293 distinct proteins are shown for clarity (there are a total of 
303 distinct proteins such that HGMD SNVs affect structures in the semi-balanced set, 
but displaying the remaining 10 proteins in the histogram below would make visual 
interpretation difficult, as they have extremely high SNV counts). Redundancy was 
removed by ensuring that no pair of proteins within this dataset shares more than 90% 
sequence identity. 

 

 

 
 
 
 
 
 
 
 
 

 
 
 
Figure S5: Comparisons between the ∆F distributions within the semi-balanced set 
of structures. Violin plots showing ∆F distributions associated with SNVs affecting core 
or surface residues of structures for which at least one SNV is taken from A) 1000 
Genomes & HGMD, B) ExAC & HGMD and C) HGMD & ExAC. These trends on the 
semi-balanced SNV dataset are consistent with observations reported in the main text. 
However, the smaller sample sizes within the semi-balanced set may result in poorer 
statistical significance. The white dots, black boxes and vertical lines represent the 
medians, interquartile ranges, and 95% confidence intervals of the ∆F distributions, 
respectively. 

 

 

2)	  Within	  the	  set	  of	  non-‐redundant	  (i.e.,	  unique)	  set	  of	  proteins:	  “present	  sta*s*cs	  for	  the	  
number	  of	  unique	  proteins	  and	  the	  distribu*on	  of	  variants	  in	  the	  unique	  proteins”	  

Kumar	  et	  al,	  NAR	  2016	  

17	  



2)	  Within	  the	  set	  of	  non-‐redundant	  (i.e.,	  unique)	  set	  of	  proteins:	  “present	  sta*s*cs	  for	  the	  
number	  of	  unique	  proteins	  and	  the	  distribu*on	  of	  variants	  in	  the	  unique	  proteins”	  

HGMD	  (303	  PDBs)	   1KG	  (618	  PDBs)	  

99	  204	   519	  

HGMD	  (303	  PDBs)	   ExAC	  (907	  PDBs)	  

115	  188	   792	  
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To evaluate the extent to which such effects manifest in
our set of TSGs and oncogenes, we applied frustration to

evaluate changes in local perturbation when SNVs impact
these distinct categories of driver genes (Figure 7A and B).
We observed that SNVs in TSGs induce stronger perturba-
tions in minimally frustrated core residues relative to sur-
face residues (Figure 7A; P-value = 4.765e-03 from two-
sample KS test). In contrast, SNVs in oncogenes induce
greater !F values within minimally frustrated residues in
the surface relative to core residues (Figure 7B; P-value =
1.91e-13 from two-sample KS test). Moreover, SNVs im-
pacting oncogenes lead to larger disruptions in favorable lo-
cal interactions compared to TSGs for minimally frustrated
surface residues (P-value = 2.3e-3 from two-sample KS
test). However, SNVs impacting TSGs lead to greater dis-
ruptions in favorable local interactions compared to onco-
genes affecting driver SNVs in core residues (P-value =
6.753e-13 from two-sample KS test).

Localized frustration as a means of complementing global
metrics

As discussed, existing structure-based methods for predict-
ing SNV deleteriousness rely on global metrics of protein
stability. These approaches may incorrectly predict known
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Expected:	  E[X]	  =	  [#	  frustrated	  residues	  /	  total	  #	  residues	  in	  protein]	  	  *	  [	  total	  #	  of	  cancer-‐associated	  SNVs]	  

Cancer-‐associated	  SNV	  

NON-‐frustrated	  region	  

Frustrated	  region	  

Cancer	  SNVs	  &	  genes	  (ra*onalize	  in	  TSGs	  +	  Oncogenes)	  
Are	  Cancer-‐Associated	  SNVs	  enriched	  in	  frustrated	  regions?	  

Observed:	  	  X	  	  =	  	  #	  of	  cancer-‐associated	  SNVs	  that	  intersect	  frustrated	  regions	  (5	  in	  this	  case)	  
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Oncogenes	  TSGs	  

p-‐value	  =	  2.834e-‐07	  
N	  =	  80	  

p-‐value	  =	  0.005519	  
N	  =	  28	  

Cancer	  SNVs	  &	  genes	  (ra*onalize	  in	  TSGs	  +	  Oncogenes)	  
Are	  Cancer-‐Associated	  SNVs	  enriched	  in	  maximally	  frustrated	  regions?	  	  

-‐-‐	  YES	  	  -‐-‐	  
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Cancer	  SNVs	  &	  genes	  (ra*onalize	  in	  TSGs	  +	  Oncogenes)	  
Drilling	  into	  poten?al	  mechanisms	  



regions of the genome in an apparently random
fashion (28). Thus, at best, methods based on mu-
tation frequency can only prioritize genes for fur-
ther analysis but cannot unambiguously identify
driver genes that are mutated at relatively low
frequencies.

Further complicating matters, there are two
distinct meanings of the term “driver gene”
that are used in the cancer literature. The driver-
versus-passenger concept was originally used to
distinguish mutations that caused a selective
growth advantage from those that did not (29).
According to this definition, a gene that does not
harbor driver gene mutations cannot be a driver
gene. But many genes that contain few or no
driver gene mutations have been labeled driver
genes in the literature. These include genes that
are overexpressed, underexpressed, or epigenet-
ically altered in tumors, or those that enhance
or inhibit some aspect of tumorigenicity when
their expression is experimentally manipulated.
Though a subset of these genes may indeed
play an important role in the neoplastic pro-
cess, it is confusing to lump them all together
as driver genes.

To reconcile the two connotations of driver
genes, we suggest that genes suspected of increas-
ing the selective growth advantage of tumor cells
be categorized as either “Mut-driver genes” or
“Epi-driver genes.” Mut-driver genes contain a
sufficient number or type of driver gene muta-
tions to unambiguously distinguish them from
other genes. Epi-driver genes are expressed aber-

rantly in tumors but not frequently mutated; they
are altered through changes in DNA methyla-
tion or chromatin modification that persist as the
tumor cell divides.

A Ratiometric Method to Identify and
Classify Mut-Driver Genes
If mutation frequency, corrected for mutation
context, gene length, and other parameters, can-
not reliably identify modestly mutated driver
genes, what can? In our experience, the best
way to identify Mut-driver genes is through
their pattern of mutation rather than through
their mutation frequency. The patterns of mu-
tations in well-studied oncogenes and tumor
suppressor genes are highly characteristic and
nonrandom. Oncogenes are recurrently mu-
tated at the same amino acid positions, where-
as tumor suppressor genes are mutated through
protein-truncating alterations throughout their
length (Fig. 4 and table S2A).

On the basis of these mutation patterns rather
than frequencies, we can determine which of the
18,306 mutated genes containing a total of
404,863 subtle mutations that have been recorded
in the Catalogue of Somatic Mutations in Cancer
(COSMIC) database (30) are Mut-driver genes
and whether they are likely to function as onco-
genes or tumor suppressor genes. To be classified
as an oncogene, we simply require that >20% of
the recorded mutations in the gene are at re-
current positions and are missense (see legend to
table S2A). To be classified as a tumor suppres-

sor gene, we analogously require that >20% of
the recorded mutations in the gene are inac-
tivating. This “20/20 rule” is lenient in that all
well-documented cancer genes far surpass these
criteria (table S2A).

The following examples illustrate the value
of the 20/20 rule. When IDH1 mutations were
first identified in brain tumors, their role in tu-
morigenesis was unknown (2, 31). Initial func-
tional studies suggested that IDH1 was a tumor
suppressor gene and that mutations inactivated
this gene (32). However, nearly all of the muta-
tions in IDH1 were at the identical amino acid,
codon 132 (Fig. 4). As assessed by the 20/20
rule, this distribution unambiguously indicated
that IDH1 was an oncogene rather than a tumor
suppressor gene, and this conclusion was even-
tually supported by biochemical experiments
(33, 34). Another example is provided by muta-
tions in NOTCH1. In this case, some functional
studies suggested that NOTCH1 was an onco-
gene, whereas others suggested it was a tumor
suppressor gene (35, 36). The situation could be
clarified through the application of the 20/20
rule to NOTCH1 mutations in cancers. In “liq-
uid tumors” such as lymphomas and leuke-
mias, the mutations were often recurrent and did
not truncate the predicted protein (37). In squa-
mous cell carcinomas, the mutations were not
recurrent and were usually inactivating (38–40).
Thus, the genetic data clearly indicated that
NOTCH1 functions differently in different tumor
types. The idea that the same gene can function

ABD RBD C2 Helical Kinase

CCT BCT-Ag and E1A-binding E4F1 binding 5 aa repeats 

N C

PIK3CA

RB1

N C

1068 aa

928 aa

C
414 aa 

C
213 aa 

IDH1
N

Substrate binding sites 

VHL

N

=  Missense mutation
=  Truncating mutation

Fig. 4. Distribution of mutations in two oncogenes (PIK3CA and IDH1)
and two tumor suppressor genes (RB1 andVHL). The distribution of missense
mutations (red arrowheads) and truncating mutations (blue arrowheads) in rep-
resentative oncogenes and tumor suppressor genes are shown. The data were

collected from genome-wide studies annotated in the COSMIC database (release
version 61). For PIK3CA and IDH1, mutations obtained from the COSMIC database
were randomized by the Excel RAND function, and the first 50 are shown. For RB1
and VHL, all mutations recorded in COSMIC are plotted. aa, amino acids.
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Oncogenes	  

TSGs	  

Vogelstein,	  Bert,	  et	  al.	  "Cancer	  genome	  landscapes."	  Science	  (2013)	  
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Cancer	  SNVs	  &	  genes	  (ra*onalize	  in	  TSGs	  +	  Oncogenes)	  



Oncogenes	  TSGs	  

“Redundant”	  model:	  Coun*ng	  	  
the	  #	  of	  SNVs	  that	  intersect	  buried	  regions	  
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“Non-‐Redundant”	  model:	  Coun*ng	  	  
the	  #	  of	  buried	  residues	  that	  intersect	  cancer-‐associated	  SNVs	  

Oncogenes	  TSGs	  
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Asymmetric	  Unit	  vs.	  Biological	  Assembly	  
Ex	  PDB:	  3GFT	  
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Bio	  Assembly	  Asymetric	  



Oncogenes	  TSGs	  

“Redundant”	  model:	  Coun*ng	  (using	  Bio	  Assembly	  Files)	  	  	  
the	  #	  of	  SNVs	  that	  intersect	  buried	  regions	  
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“Non-‐Redundant”	  model:	  Coun*ng	  (using	  Bio	  Assembly	  Files)	  	  
the	  #	  of	  buried	  residues	  that	  intersect	  cancer-‐associated	  SNVs	  

Oncogenes	  TSGs	  
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Drilling	  into	  poten?al	  mechanisms	  
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“…	  how	  the	  workflow	  was	  applied	  to	  variants	  
of	  unknown	  significance	  to	  help	  classify/
predict	  their	  impact,	  e.g.,	  using	  a	  certain	  
value	  of	  ΔF	  as	  a	  threshold.	  This	  would	  be	  
extremely	  valuable	  and	  useful	  for	  other	  

inves4gators.”	  

Thresholding	  to	  classify	  SNVs	  



Given	  an	  SNV,	  is	  there	  a	  specific	  ΔF	  threshold	  that	  may	  op1mally	  be	  used	  to	  
classify	  SNVs	  as	  benign	  or	  deleterious?	  

	  
HGMD	  SNVs	  generally	  induce	  more	  nega4ve	  ΔF	  values	  rela4ve	  to	  benign	  SNVs	  	  

HGMD	  
ExAC	  

Adapted	  from	  Kumar	  et	  al,	  NAR	  2016	  
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The	  objec*ve	  is	  to	  maximize	  	  f(x) 

(15,044; Figure1C). In contrast, 4,041 SNVs in driver genes may be mapped to protein 

structures; these constitute 2% of the total structurally mapped SNVs (Figure1C). 
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Given	  an	  SNV,	  is	  there	  a	  specific	  ΔF	  threshold	  that	  may	  op1mally	  be	  used	  to	  
classify	  SNVs	  as	  benign	  or	  deleterious?	  

HGMD	  
ExAC	  
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Given	  an	  SNV,	  is	  there	  a	  specific	  ΔF	  threshold	  that	  may	  op1mally	  be	  used	  to	  
classify	  SNVs	  as	  benign	  or	  deleterious?	  

Sanity	  checks	  on	  simulated	  data	  

ΔF	   ΔF	  

ΔF	   ΔF	  
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Given	  an	  SNV,	  is	  there	  a	  specific	  ΔF	  threshold	  that	  may	  op1mally	  be	  used	  to	  
classify	  SNVs	  as	  benign	  or	  deleterious?	  

Sanity	  checks	  on	  simulated	  data	  
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Figure S6: Empirical distribution to predict deleterious SNVs. In order to determine 
an optimal threshold for discriminating between benign and deleterious SNVs using ΔF, 
we use a simple function to be optimized with respect to ΔF. Details of the simple 
formalism used are provided in SI section “S3: Threshold to identify potentially 
deleterious SNVs”. The optimum ΔF value obtained (ΔF = -1.221) is marked with a 
vertical dotted line. The blue density plot designates the ΔF values associated with benign 
SNVs from ExAC, and the red density plot designates the ΔF values associated with 
deleterious SNVs from HGMD. Both plots are normalized to have an integral of unity. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(15,044; Figure1C). In contrast, 4,041 SNVs in driver genes may be mapped to protein 

structures; these constitute 2% of the total structurally mapped SNVs (Figure1C). 

 

Supplementary Note S2:  ΔF distributions within the semi-balanced 
SNV dataset 
We also performed comparisons between 1000 Genomes, ExAC and HGMD variants 

using the semi-balanced dataset (details are provided in Materials & Methods). We find 

that, overall, the results obtained using this semi-balanced dataset are consistent with the 

∆F distributions obtained above (Fig S5). However, they lack statistical significance, 

potentially due to the smaller sample size of SNVs included in the semi-balanced set. 

 

Supplementary Note S3:  Threshold to identify potentially deleterious 
SNVs 
As discussed in the Results section of the main text, disease-related SNVs from HGMD 

generally induce more negative ΔF values relative to benign SNVs. Given a newly 

discovered SNV, is there a specific ΔF threshold that may optimally be used to classify 

SNVs as benign or deleterious? We address this question empirically by optimizing a 

simple function f(x) defined by two distributions (1): 

f(x) =  h(x) + e(x) 

Let ΔFHGMD denote the distribution of ΔF scores induced by HGMD SNVs. h(x) is 

defined to be the difference between the fraction of ΔFHGMD scores less than x 

(fract[ΔFHGMD < x]) and the fraction of ΔFHGMD scores greater than x (fract[ΔFHGMD > x]): 

h(x)  =  fract[ΔFHGMD < x])  -  fract[ΔFHGMD > x]) 

ΔFExAC is defined for the distribution of ΔF values associated with ExAC SNVs (note the 

reversed directions relative to the equation above): 

e(x)  =  fract[ΔFExAC > x])  -  fract[ΔFExAC < x]) 

In building the distribution of ΔFHGMD values, a random sample of HGMD SNVs was 

chosen in order to match the number of SNVs in the ΔFExAC distribution. The x that 

maximizes the function f(x) is taken as the ΔF threshold for predicting whether a newly 

discovered SNV is deleterious or benign. Using this approach, we find that this ideal 

threshold takes a value of ΔF = -1.2 

Given	  an	  SNV,	  is	  there	  a	  specific	  ΔF	  threshold	  that	  may	  op1mally	  be	  used	  to	  
classify	  SNVs	  as	  benign	  or	  deleterious?	  

Kumar	  et	  al,	  NAR	  2016	  

ΔF	  

HGMD	  
ExAC	  
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single	  chain	  PDBs	   Mul*-‐	  chain	  PDBs	  
PDB	   #	  HGMD	  SNVs	   PDB	   #	  HGMD	  SNVs	  
1T45	   2	   2VGB	   2	  
1V4S	   15	   3GXP	   7	  
1KQ6	   1	   1A4I	   1	  
3PXA	   1	   1IIL	   1	  
1AD6	   1	   2O4H	   1	  
2AMY	   1	   3HN3	   1	  
1OG5	   1	  
2X6U	   1	  

“There	  are	  methods	  exis1ng	  in	  order	  to	  evaluate	  poten1al	  effects	  of	  low-‐allele-‐frequency	  
variants	  in	  unbiased	  ways	  (SIFT,	  PolyPhen2,	  Muta1onTaster,	  and	  many	  others).	  I	  would	  like	  

to	  see	  how	  exactly	  your	  method	  adds	  up	  to	  this	  ...	  One	  could	  [use]	  tools	  to	  predict	  the	  
deleteriousness	  of	  SNVs	  (e.g.	  PolyPhen2	  and	  Muta1onTaster2)	  and	  then	  check	  if	  there	  are	  
disease	  variants	  predicted	  as	  "harmless"	  by	  these	  tools	  (i.e.	  false	  nega?ve)	  which	  are	  then	  

correctly	  seen	  as	  locally	  maximal	  frustrated	  by	  your	  method...”	  

à Find	  HGMD	  SNVs	  not	  captured	  by	  PolyPhen	  	  
(yet	  are	  captured	  through	  frustra*on)	  
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Figure S7: Linearized depiction of HGMD SNVs that constitute ΔF-rescued false 
negatives. Shown is a linear depiction of the distribution of HGMD SNVs (orange) 
predicted to be deleterious using a ΔF cutoff of -1.221, along with predictions from 
PolyPhen and SIFT. Heavy dotted lines demarcate loci in which both PolyPhen and SIFT 
provide false negatives (i.e., fail to predict deleteriousness), whereas light dotted lines 
designate SNVs for which either PolyPhen-2 or SIFT provide false negatives. The 
particular structure shown corresponds to human glucokinase (PDB ID: 1V4S).  
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Background	  



Protein QTLs
(pQTLs). Genomic regions  
that carry one or more DNA 
sequence variants that 
influence the protein 
abundance of a given gene.

eQTL hot spots
Regions of the genome that 
contain more expression 
quantitative trait loci (eQTLs) 
than expected by chance.

Previous reviews have covered the various types of 
eQTLs and the ways in which they can be identified and 
fine-mapped13,35–37, the rich variety of molecular traits 
that can be assayed along the cascade of gene expression 
regulation38,39 and the ways to integrate these molecu-
lar traits in a systems genetics perspective40. Here, we 
review new insights into the molecular basis of eQTLs 
and the genetics of mRNA versus protein levels. We then 
present recent discoveries into the causal links between 
eQTLs and higher-order organismal phenotypes, such as 
physiology and disease. We describe recent experimen-
tal insights into eQTL causality (many of which were 

derived from model organisms) and close by presenting 
an overview of the emerging evidence for eQTL causality 
in human disease.

What are eQTLs?
eQTLs contain sequence variants that affect the expres-
sion of a gene. They are similar to other QTLs that can 
influence any given trait of interest (for example, height, 
growth rate and disease risk) except that the trait under 
study is gene expression. eQTLs are identified by meas-
uring gene expression in panels of genetically different, 
genotyped individuals13,36 (BOXES 1,2). These panels can be 

Box 1 | A beginner’s guide to eQTL mapping

Expression quantitative trait loci (eQTLs) are regions of the genome 

containing DNA sequence variants that influence the expression level  

of one or more genes. They are identified by studying a population of 

genetically different individuals (FIG. 1). These individuals can be members 

of an outbred population (for example, human individuals) or can be bred 

using experimental crosses (for example, from a cross between two 

genetically different yeast strains or a panel of mouse strains). The 

individuals in the population differ from each other at many sequence 

variants, from tens of thousands in yeast crosses to millions in human 

populations. Most of these variants do not have any consequences on gene 

expression (or on any other trait).

To identify the comparatively few variants that influence gene expression, 

two types of data are collected from each individual. First, each individual 

needs to be genotyped. If the sequence variants in the population are known, 

genotyping can be done by targeted assays of each variant in each individual 

(for example, using single-nucleotide polymorphism (SNP) microarrays). 

Otherwise, current technologies now allow the genome of each individual to 

be fully sequenced so that all variants are discovered. Second, the expression 

of each gene in the genome is measured in each individual using either 

expression microarrays or RNA sequencing. eQTLs are then identified by 

comparing the genotypes with the expression levels using association (in 

outbred populations) or linkage analysis (in pedigrees or designed crosses).

To test whether a given sequence variant has an effect on the expression of 

a given gene, a statistical test is performed (see the figure, part a). Individuals 

are grouped according to the allele they carry. If the gene has a significantly 

higher expression level in one group than in the other group, we can 

conclude that the variant (or another variant in linkage disequilibrium) 

influences the expression of this gene. The test is repeated at every DNA 

variant in the genome, resulting in a genome scan for eQTLs for this gene 

(see the figure, part a).

The figure (part a) shows a genome scan for mRNA levels of the yeast TPO1 

gene in a cross between two yeast strains. The logarithm of the odds (LOD) 

score is a measure of the strength of the statistical association between 

mRNA level and genotype. Light blue shapes show the distribution of 

expression levels, and blue dots are expression levels for individual 

segregants. The thick black bars show the central 50% of the data, and the 

white dot indicates the median. When mRNA levels are significantly higher 

in individuals that have inherited one allele than those that have inherited 

the other allele, the LOD score is high and the region is called an eQTL. An 

example is shown on the left end of chromosome 15 where the LOD score 

exceeds the genome-wide threshold (indicated by the dashed red line). 

When there is no difference in mRNA levels between genotype groups, the 

LOD score is low (see the example region on chromosome 4). The genome 

scan is repeated for the expression of every gene in the genome (see the 

figure, part b). Shown here are the LOD profiles for 200 randomly selected 

genes. The genes are sorted according to their genomic position. Local 

eQTLs form a diagonal, and eQTL hot spots are visible as vertical (for 

example, on chromosomes 14 and 15).

The figure was generated using data from REF. 50.
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Iden*fying	  the	  causal	  variants	  in	  differen*al	  gene	  expression	  

Albert	  and	  Kruglyak.	  Nature	  Reviews	  Gene1cs	  (2015)	  



Gene-‐level	  normalized	  expression	  matrices	  (one	  per	  *ssue)	  
	  Reads	  must:	  
	   	  -‐	  fall	  exclusively	  within	  exons	  or	  span	  them	  (i.e.	  not	  align	  into	  introns)	  
	   	  -‐	  contain	  no	  more	  than	  six	  non	  reference	  bases	  
	   	  -‐	  not	  map	  equally	  well	  to	  another	  locus	  
	  Genes	  must:	  
	   	  -‐	  have	  at	  least	  10	  samples	  with	  	  
	   	  -‐	  RPKM	  >	  0.1	  and	  	  
	   	  -‐	  raw	  read	  counts	  greater	  than	  6	  

Covariate	  correc*on	  	  -‐-‐	  	  Includes:	  
	  known	  covariates	  (ex:	  gender,	  genotyping	  plaworm)	  
	  hidden	  covariates	  (PEER	  factors)	  

Selec*ng	  eQTL	  (Matri	  eQTL,	  FastQTL)	  
	  significant	  gene/snp	  pairs	  

41	  

Reproducibility	  in	  Covariates	  
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Fig. S8. Analysis of PEER factors. (A) An assessment of correlations between inferred PEER factors and 
known covariates in adipose tissue as a representative example. The color signifies significance of the 
association. For significant associations (q value � 0.05), the r2 value is reported in the cell. (B) The meaning of 
each covariate abbreviation is given in the table. 

A 

B Code             Meaning 
SMGEBTCH Expression batch ID 
SMCENTER Collection center 
DTHHRDY Hardy scale 
SMTSISCH Ischemic time for sample 
TRISCHD Ischemic time for individual 
AGE Age of individual 
RACE Self reported race 
SMTPAX Time spent in fixative 
SMTSTPTREF Procurement reference point 
SMNABTCH Nucleic acid isolation batch 
SMRIN RNA quality score (RIN) 
GENDER Gender of individual 

#
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#

Correla*ons	  btwn	  PEER	  factors	  &	  known	  covariates	  (adipose	  *ssue)	  

42	  
GTEx	  Consor4um.	  "The	  Genotype-‐Tissue	  Expression	  (GTEx)	  pilot	  
analysis:	  Mul44ssue	  gene	  regula4on	  in	  humans."	  Science.	  (2015)	  



0.019	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
0	  

Absolute	  devia*ons:	  	  |reported-‐computed|	  

43	  
96	  samples	  



29.4%	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

0.08%	  

Percentage	  devia*ons	  

44	  
96	  samples	  



PEER	  factors	  are	  generated	  using	  the	  top	  1000	  expressed	  genes	  per	  
4ssue	  
	  
PEER	  version	  differences	  (not	  specified	  in	  original	  paper)	  
	  
Known	  covariates	  somehow	  included?	  
	  
Parameters	  -‐-‐	  gamma	  distributed	  for	  noise	  &	  weight	  factors	  not	  
reported	  (a	  black-‐box!)	  
	  
Number	  of	  PEERs	  is	  determined	  by	  N	  (number	  of	  samples	  per	  4ssue)	  
	  

Poten*al	  Confounding	  Factors	  

45	  



4.4%	  of	  values	  <	  -‐0.05	   4.6%	  of	  values	  >	  0.05	  

Distribu*on	  of	  all	  frac*onal	  errors*	  

Frac4onal_error	  =	  [RPKMcalculated	  	  -‐	  	  RPKMtrue]	  /	  RPKMtrue	  

*for	  single-‐exon	  genes	   46	  

Reproducibility	  in	  RPKM	  



Frac4onal_error	  =	  [RPKMcalculated	  	  -‐	  	  RPKMtrue]	  /	  RPKMtrue	  

The	  substan*al	  errors	  in	  
calculated	  values	  are	  very	  

large	  over-‐es*mates	  

47	  

samples	  

ge
ne

s	  

Specific	  genes	  (not	  samples)	  
account	  for	  dispari*es	  

Reproducibility	  in	  RPKM	  
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Available	  aVributes	  for	  each	  miR-‐eQTL	  (SNV-‐miRNA	  pair)	  
(5,269	  cis-‐miR-‐eQTLs	  for	  76	  mature	  microRNAs)	  

•  snpID	  
•  miRNA_FHS	  
•  sample	  size	  
•  beta	  
•  MAF	  
•  Tvalue	  
•  Pval	  
•  h2q	  
•  BH_FDR	  
•  chr.SNP	  
•  SNP.pos	  
•  SNP.strand	  
•  SNP.func	  (ex:	  intron)	  

•  Chr.miR	  
•  miR.Start	  
•  miR.End	  
•  miR.strand	  
•  hsa_miR_name	  
•  CisMark	  (ie:	  cis	  or	  trans)	  
•  miRNA_alter_ID	  
•  miR_Type*	  (ex:	  "intron"	  or	  "Intergenic")	  
•  mutated	  base	  
•  wt	  base	  
•  abs_dist_btwn_SNP_and_miRNA(kb)	  

Huan,	  Tianxiao,	  et	  al.	  "Genome-‐wide	  iden1fica1on	  of	  microRNA	  
expression	  quan1ta1ve	  trait	  loci."	  Nature	  communica1ons	  6	  (2015).	  

Framingham	  data	  (miRNA-‐eQTLs)	  
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Protein QTLs
(pQTLs). Genomic regions  
that carry one or more DNA 
sequence variants that 
influence the protein 
abundance of a given gene.

eQTL hot spots
Regions of the genome that 
contain more expression 
quantitative trait loci (eQTLs) 
than expected by chance.

Previous reviews have covered the various types of 
eQTLs and the ways in which they can be identified and 
fine-mapped13,35–37, the rich variety of molecular traits 
that can be assayed along the cascade of gene expression 
regulation38,39 and the ways to integrate these molecu-
lar traits in a systems genetics perspective40. Here, we 
review new insights into the molecular basis of eQTLs 
and the genetics of mRNA versus protein levels. We then 
present recent discoveries into the causal links between 
eQTLs and higher-order organismal phenotypes, such as 
physiology and disease. We describe recent experimen-
tal insights into eQTL causality (many of which were 

derived from model organisms) and close by presenting 
an overview of the emerging evidence for eQTL causality 
in human disease.

What are eQTLs?
eQTLs contain sequence variants that affect the expres-
sion of a gene. They are similar to other QTLs that can 
influence any given trait of interest (for example, height, 
growth rate and disease risk) except that the trait under 
study is gene expression. eQTLs are identified by meas-
uring gene expression in panels of genetically different, 
genotyped individuals13,36 (BOXES 1,2). These panels can be 

Box 1 | A beginner’s guide to eQTL mapping

Expression quantitative trait loci (eQTLs) are regions of the genome 

containing DNA sequence variants that influence the expression level  

of one or more genes. They are identified by studying a population of 

genetically different individuals (FIG. 1). These individuals can be members 

of an outbred population (for example, human individuals) or can be bred 

using experimental crosses (for example, from a cross between two 

genetically different yeast strains or a panel of mouse strains). The 

individuals in the population differ from each other at many sequence 

variants, from tens of thousands in yeast crosses to millions in human 

populations. Most of these variants do not have any consequences on gene 

expression (or on any other trait).

To identify the comparatively few variants that influence gene expression, 

two types of data are collected from each individual. First, each individual 

needs to be genotyped. If the sequence variants in the population are known, 

genotyping can be done by targeted assays of each variant in each individual 

(for example, using single-nucleotide polymorphism (SNP) microarrays). 

Otherwise, current technologies now allow the genome of each individual to 

be fully sequenced so that all variants are discovered. Second, the expression 

of each gene in the genome is measured in each individual using either 

expression microarrays or RNA sequencing. eQTLs are then identified by 

comparing the genotypes with the expression levels using association (in 

outbred populations) or linkage analysis (in pedigrees or designed crosses).

To test whether a given sequence variant has an effect on the expression of 

a given gene, a statistical test is performed (see the figure, part a). Individuals 

are grouped according to the allele they carry. If the gene has a significantly 

higher expression level in one group than in the other group, we can 

conclude that the variant (or another variant in linkage disequilibrium) 

influences the expression of this gene. The test is repeated at every DNA 

variant in the genome, resulting in a genome scan for eQTLs for this gene 

(see the figure, part a).

The figure (part a) shows a genome scan for mRNA levels of the yeast TPO1 

gene in a cross between two yeast strains. The logarithm of the odds (LOD) 

score is a measure of the strength of the statistical association between 

mRNA level and genotype. Light blue shapes show the distribution of 

expression levels, and blue dots are expression levels for individual 

segregants. The thick black bars show the central 50% of the data, and the 

white dot indicates the median. When mRNA levels are significantly higher 

in individuals that have inherited one allele than those that have inherited 

the other allele, the LOD score is high and the region is called an eQTL. An 

example is shown on the left end of chromosome 15 where the LOD score 

exceeds the genome-wide threshold (indicated by the dashed red line). 

When there is no difference in mRNA levels between genotype groups, the 

LOD score is low (see the example region on chromosome 4). The genome 

scan is repeated for the expression of every gene in the genome (see the 

figure, part b). Shown here are the LOD profiles for 200 randomly selected 

genes. The genes are sorted according to their genomic position. Local 

eQTLs form a diagonal, and eQTL hot spots are visible as vertical (for 

example, on chromosomes 14 and 15).

The figure was generated using data from REF. 50.
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Protein QTLs
(pQTLs). Genomic regions  
that carry one or more DNA 
sequence variants that 
influence the protein 
abundance of a given gene.

eQTL hot spots
Regions of the genome that 
contain more expression 
quantitative trait loci (eQTLs) 
than expected by chance.

Previous reviews have covered the various types of 
eQTLs and the ways in which they can be identified and 
fine-mapped13,35–37, the rich variety of molecular traits 
that can be assayed along the cascade of gene expression 
regulation38,39 and the ways to integrate these molecu-
lar traits in a systems genetics perspective40. Here, we 
review new insights into the molecular basis of eQTLs 
and the genetics of mRNA versus protein levels. We then 
present recent discoveries into the causal links between 
eQTLs and higher-order organismal phenotypes, such as 
physiology and disease. We describe recent experimen-
tal insights into eQTL causality (many of which were 

derived from model organisms) and close by presenting 
an overview of the emerging evidence for eQTL causality 
in human disease.

What are eQTLs?
eQTLs contain sequence variants that affect the expres-
sion of a gene. They are similar to other QTLs that can 
influence any given trait of interest (for example, height, 
growth rate and disease risk) except that the trait under 
study is gene expression. eQTLs are identified by meas-
uring gene expression in panels of genetically different, 
genotyped individuals13,36 (BOXES 1,2). These panels can be 

Box 1 | A beginner’s guide to eQTL mapping

Expression quantitative trait loci (eQTLs) are regions of the genome 

containing DNA sequence variants that influence the expression level  

of one or more genes. They are identified by studying a population of 

genetically different individuals (FIG. 1). These individuals can be members 

of an outbred population (for example, human individuals) or can be bred 

using experimental crosses (for example, from a cross between two 

genetically different yeast strains or a panel of mouse strains). The 

individuals in the population differ from each other at many sequence 

variants, from tens of thousands in yeast crosses to millions in human 

populations. Most of these variants do not have any consequences on gene 

expression (or on any other trait).

To identify the comparatively few variants that influence gene expression, 

two types of data are collected from each individual. First, each individual 

needs to be genotyped. If the sequence variants in the population are known, 

genotyping can be done by targeted assays of each variant in each individual 

(for example, using single-nucleotide polymorphism (SNP) microarrays). 

Otherwise, current technologies now allow the genome of each individual to 

be fully sequenced so that all variants are discovered. Second, the expression 

of each gene in the genome is measured in each individual using either 

expression microarrays or RNA sequencing. eQTLs are then identified by 

comparing the genotypes with the expression levels using association (in 

outbred populations) or linkage analysis (in pedigrees or designed crosses).

To test whether a given sequence variant has an effect on the expression of 

a given gene, a statistical test is performed (see the figure, part a). Individuals 

are grouped according to the allele they carry. If the gene has a significantly 

higher expression level in one group than in the other group, we can 

conclude that the variant (or another variant in linkage disequilibrium) 

influences the expression of this gene. The test is repeated at every DNA 

variant in the genome, resulting in a genome scan for eQTLs for this gene 

(see the figure, part a).

The figure (part a) shows a genome scan for mRNA levels of the yeast TPO1 

gene in a cross between two yeast strains. The logarithm of the odds (LOD) 

score is a measure of the strength of the statistical association between 

mRNA level and genotype. Light blue shapes show the distribution of 

expression levels, and blue dots are expression levels for individual 

segregants. The thick black bars show the central 50% of the data, and the 

white dot indicates the median. When mRNA levels are significantly higher 

in individuals that have inherited one allele than those that have inherited 

the other allele, the LOD score is high and the region is called an eQTL. An 

example is shown on the left end of chromosome 15 where the LOD score 

exceeds the genome-wide threshold (indicated by the dashed red line). 

When there is no difference in mRNA levels between genotype groups, the 

LOD score is low (see the example region on chromosome 4). The genome 

scan is repeated for the expression of every gene in the genome (see the 

figure, part b). Shown here are the LOD profiles for 200 randomly selected 

genes. The genes are sorted according to their genomic position. Local 

eQTLs form a diagonal, and eQTL hot spots are visible as vertical (for 

example, on chromosomes 14 and 15).

The figure was generated using data from REF. 50.
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g:	  	  gene	  expression	  
s:	  	  genotype	  
ε:	  	  noise	  

Model	  w/Simple	  Linear	  regression	  
g	  =	  α	  +	  βs	  +	  ε	  	  	  
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Protein QTLs
(pQTLs). Genomic regions  
that carry one or more DNA 
sequence variants that 
influence the protein 
abundance of a given gene.

eQTL hot spots
Regions of the genome that 
contain more expression 
quantitative trait loci (eQTLs) 
than expected by chance.

Previous reviews have covered the various types of 
eQTLs and the ways in which they can be identified and 
fine-mapped13,35–37, the rich variety of molecular traits 
that can be assayed along the cascade of gene expression 
regulation38,39 and the ways to integrate these molecu-
lar traits in a systems genetics perspective40. Here, we 
review new insights into the molecular basis of eQTLs 
and the genetics of mRNA versus protein levels. We then 
present recent discoveries into the causal links between 
eQTLs and higher-order organismal phenotypes, such as 
physiology and disease. We describe recent experimen-
tal insights into eQTL causality (many of which were 

derived from model organisms) and close by presenting 
an overview of the emerging evidence for eQTL causality 
in human disease.

What are eQTLs?
eQTLs contain sequence variants that affect the expres-
sion of a gene. They are similar to other QTLs that can 
influence any given trait of interest (for example, height, 
growth rate and disease risk) except that the trait under 
study is gene expression. eQTLs are identified by meas-
uring gene expression in panels of genetically different, 
genotyped individuals13,36 (BOXES 1,2). These panels can be 

Box 1 | A beginner’s guide to eQTL mapping

Expression quantitative trait loci (eQTLs) are regions of the genome 

containing DNA sequence variants that influence the expression level  

of one or more genes. They are identified by studying a population of 

genetically different individuals (FIG. 1). These individuals can be members 

of an outbred population (for example, human individuals) or can be bred 

using experimental crosses (for example, from a cross between two 

genetically different yeast strains or a panel of mouse strains). The 

individuals in the population differ from each other at many sequence 

variants, from tens of thousands in yeast crosses to millions in human 

populations. Most of these variants do not have any consequences on gene 

expression (or on any other trait).

To identify the comparatively few variants that influence gene expression, 

two types of data are collected from each individual. First, each individual 

needs to be genotyped. If the sequence variants in the population are known, 

genotyping can be done by targeted assays of each variant in each individual 

(for example, using single-nucleotide polymorphism (SNP) microarrays). 

Otherwise, current technologies now allow the genome of each individual to 

be fully sequenced so that all variants are discovered. Second, the expression 

of each gene in the genome is measured in each individual using either 

expression microarrays or RNA sequencing. eQTLs are then identified by 

comparing the genotypes with the expression levels using association (in 

outbred populations) or linkage analysis (in pedigrees or designed crosses).

To test whether a given sequence variant has an effect on the expression of 

a given gene, a statistical test is performed (see the figure, part a). Individuals 

are grouped according to the allele they carry. If the gene has a significantly 

higher expression level in one group than in the other group, we can 

conclude that the variant (or another variant in linkage disequilibrium) 

influences the expression of this gene. The test is repeated at every DNA 

variant in the genome, resulting in a genome scan for eQTLs for this gene 

(see the figure, part a).

The figure (part a) shows a genome scan for mRNA levels of the yeast TPO1 

gene in a cross between two yeast strains. The logarithm of the odds (LOD) 

score is a measure of the strength of the statistical association between 

mRNA level and genotype. Light blue shapes show the distribution of 

expression levels, and blue dots are expression levels for individual 

segregants. The thick black bars show the central 50% of the data, and the 

white dot indicates the median. When mRNA levels are significantly higher 

in individuals that have inherited one allele than those that have inherited 

the other allele, the LOD score is high and the region is called an eQTL. An 

example is shown on the left end of chromosome 15 where the LOD score 

exceeds the genome-wide threshold (indicated by the dashed red line). 

When there is no difference in mRNA levels between genotype groups, the 

LOD score is low (see the example region on chromosome 4). The genome 

scan is repeated for the expression of every gene in the genome (see the 

figure, part b). Shown here are the LOD profiles for 200 randomly selected 

genes. The genes are sorted according to their genomic position. Local 

eQTLs form a diagonal, and eQTL hot spots are visible as vertical (for 

example, on chromosomes 14 and 15).

The figure was generated using data from REF. 50.
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Protein QTLs
(pQTLs). Genomic regions  
that carry one or more DNA 
sequence variants that 
influence the protein 
abundance of a given gene.

eQTL hot spots
Regions of the genome that 
contain more expression 
quantitative trait loci (eQTLs) 
than expected by chance.

Previous reviews have covered the various types of 
eQTLs and the ways in which they can be identified and 
fine-mapped13,35–37, the rich variety of molecular traits 
that can be assayed along the cascade of gene expression 
regulation38,39 and the ways to integrate these molecu-
lar traits in a systems genetics perspective40. Here, we 
review new insights into the molecular basis of eQTLs 
and the genetics of mRNA versus protein levels. We then 
present recent discoveries into the causal links between 
eQTLs and higher-order organismal phenotypes, such as 
physiology and disease. We describe recent experimen-
tal insights into eQTL causality (many of which were 

derived from model organisms) and close by presenting 
an overview of the emerging evidence for eQTL causality 
in human disease.

What are eQTLs?
eQTLs contain sequence variants that affect the expres-
sion of a gene. They are similar to other QTLs that can 
influence any given trait of interest (for example, height, 
growth rate and disease risk) except that the trait under 
study is gene expression. eQTLs are identified by meas-
uring gene expression in panels of genetically different, 
genotyped individuals13,36 (BOXES 1,2). These panels can be 

Box 1 | A beginner’s guide to eQTL mapping

Expression quantitative trait loci (eQTLs) are regions of the genome 

containing DNA sequence variants that influence the expression level  

of one or more genes. They are identified by studying a population of 

genetically different individuals (FIG. 1). These individuals can be members 

of an outbred population (for example, human individuals) or can be bred 

using experimental crosses (for example, from a cross between two 

genetically different yeast strains or a panel of mouse strains). The 

individuals in the population differ from each other at many sequence 

variants, from tens of thousands in yeast crosses to millions in human 

populations. Most of these variants do not have any consequences on gene 

expression (or on any other trait).

To identify the comparatively few variants that influence gene expression, 

two types of data are collected from each individual. First, each individual 

needs to be genotyped. If the sequence variants in the population are known, 

genotyping can be done by targeted assays of each variant in each individual 

(for example, using single-nucleotide polymorphism (SNP) microarrays). 

Otherwise, current technologies now allow the genome of each individual to 

be fully sequenced so that all variants are discovered. Second, the expression 

of each gene in the genome is measured in each individual using either 

expression microarrays or RNA sequencing. eQTLs are then identified by 

comparing the genotypes with the expression levels using association (in 

outbred populations) or linkage analysis (in pedigrees or designed crosses).

To test whether a given sequence variant has an effect on the expression of 

a given gene, a statistical test is performed (see the figure, part a). Individuals 

are grouped according to the allele they carry. If the gene has a significantly 

higher expression level in one group than in the other group, we can 

conclude that the variant (or another variant in linkage disequilibrium) 

influences the expression of this gene. The test is repeated at every DNA 

variant in the genome, resulting in a genome scan for eQTLs for this gene 

(see the figure, part a).

The figure (part a) shows a genome scan for mRNA levels of the yeast TPO1 

gene in a cross between two yeast strains. The logarithm of the odds (LOD) 

score is a measure of the strength of the statistical association between 

mRNA level and genotype. Light blue shapes show the distribution of 

expression levels, and blue dots are expression levels for individual 

segregants. The thick black bars show the central 50% of the data, and the 

white dot indicates the median. When mRNA levels are significantly higher 

in individuals that have inherited one allele than those that have inherited 

the other allele, the LOD score is high and the region is called an eQTL. An 

example is shown on the left end of chromosome 15 where the LOD score 

exceeds the genome-wide threshold (indicated by the dashed red line). 

When there is no difference in mRNA levels between genotype groups, the 

LOD score is low (see the example region on chromosome 4). The genome 

scan is repeated for the expression of every gene in the genome (see the 

figure, part b). Shown here are the LOD profiles for 200 randomly selected 

genes. The genes are sorted according to their genomic position. Local 

eQTLs form a diagonal, and eQTL hot spots are visible as vertical (for 

example, on chromosomes 14 and 15).

The figure was generated using data from REF. 50.
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Protein QTLs
(pQTLs). Genomic regions  
that carry one or more DNA 
sequence variants that 
influence the protein 
abundance of a given gene.

eQTL hot spots
Regions of the genome that 
contain more expression 
quantitative trait loci (eQTLs) 
than expected by chance.

Previous reviews have covered the various types of 
eQTLs and the ways in which they can be identified and 
fine-mapped13,35–37, the rich variety of molecular traits 
that can be assayed along the cascade of gene expression 
regulation38,39 and the ways to integrate these molecu-
lar traits in a systems genetics perspective40. Here, we 
review new insights into the molecular basis of eQTLs 
and the genetics of mRNA versus protein levels. We then 
present recent discoveries into the causal links between 
eQTLs and higher-order organismal phenotypes, such as 
physiology and disease. We describe recent experimen-
tal insights into eQTL causality (many of which were 

derived from model organisms) and close by presenting 
an overview of the emerging evidence for eQTL causality 
in human disease.

What are eQTLs?
eQTLs contain sequence variants that affect the expres-
sion of a gene. They are similar to other QTLs that can 
influence any given trait of interest (for example, height, 
growth rate and disease risk) except that the trait under 
study is gene expression. eQTLs are identified by meas-
uring gene expression in panels of genetically different, 
genotyped individuals13,36 (BOXES 1,2). These panels can be 

Box 1 | A beginner’s guide to eQTL mapping

Expression quantitative trait loci (eQTLs) are regions of the genome 

containing DNA sequence variants that influence the expression level  

of one or more genes. They are identified by studying a population of 

genetically different individuals (FIG. 1). These individuals can be members 

of an outbred population (for example, human individuals) or can be bred 

using experimental crosses (for example, from a cross between two 

genetically different yeast strains or a panel of mouse strains). The 

individuals in the population differ from each other at many sequence 

variants, from tens of thousands in yeast crosses to millions in human 

populations. Most of these variants do not have any consequences on gene 

expression (or on any other trait).

To identify the comparatively few variants that influence gene expression, 

two types of data are collected from each individual. First, each individual 

needs to be genotyped. If the sequence variants in the population are known, 

genotyping can be done by targeted assays of each variant in each individual 

(for example, using single-nucleotide polymorphism (SNP) microarrays). 

Otherwise, current technologies now allow the genome of each individual to 

be fully sequenced so that all variants are discovered. Second, the expression 

of each gene in the genome is measured in each individual using either 

expression microarrays or RNA sequencing. eQTLs are then identified by 

comparing the genotypes with the expression levels using association (in 

outbred populations) or linkage analysis (in pedigrees or designed crosses).

To test whether a given sequence variant has an effect on the expression of 

a given gene, a statistical test is performed (see the figure, part a). Individuals 

are grouped according to the allele they carry. If the gene has a significantly 

higher expression level in one group than in the other group, we can 

conclude that the variant (or another variant in linkage disequilibrium) 

influences the expression of this gene. The test is repeated at every DNA 

variant in the genome, resulting in a genome scan for eQTLs for this gene 

(see the figure, part a).

The figure (part a) shows a genome scan for mRNA levels of the yeast TPO1 

gene in a cross between two yeast strains. The logarithm of the odds (LOD) 

score is a measure of the strength of the statistical association between 

mRNA level and genotype. Light blue shapes show the distribution of 

expression levels, and blue dots are expression levels for individual 

segregants. The thick black bars show the central 50% of the data, and the 

white dot indicates the median. When mRNA levels are significantly higher 

in individuals that have inherited one allele than those that have inherited 

the other allele, the LOD score is high and the region is called an eQTL. An 

example is shown on the left end of chromosome 15 where the LOD score 

exceeds the genome-wide threshold (indicated by the dashed red line). 

When there is no difference in mRNA levels between genotype groups, the 

LOD score is low (see the example region on chromosome 4). The genome 

scan is repeated for the expression of every gene in the genome (see the 

figure, part b). Shown here are the LOD profiles for 200 randomly selected 

genes. The genes are sorted according to their genomic position. Local 

eQTLs form a diagonal, and eQTL hot spots are visible as vertical (for 

example, on chromosomes 14 and 15).

The figure was generated using data from REF. 50.
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Protein QTLs
(pQTLs). Genomic regions  
that carry one or more DNA 
sequence variants that 
influence the protein 
abundance of a given gene.

eQTL hot spots
Regions of the genome that 
contain more expression 
quantitative trait loci (eQTLs) 
than expected by chance.

Previous reviews have covered the various types of 
eQTLs and the ways in which they can be identified and 
fine-mapped13,35–37, the rich variety of molecular traits 
that can be assayed along the cascade of gene expression 
regulation38,39 and the ways to integrate these molecu-
lar traits in a systems genetics perspective40. Here, we 
review new insights into the molecular basis of eQTLs 
and the genetics of mRNA versus protein levels. We then 
present recent discoveries into the causal links between 
eQTLs and higher-order organismal phenotypes, such as 
physiology and disease. We describe recent experimen-
tal insights into eQTL causality (many of which were 

derived from model organisms) and close by presenting 
an overview of the emerging evidence for eQTL causality 
in human disease.

What are eQTLs?
eQTLs contain sequence variants that affect the expres-
sion of a gene. They are similar to other QTLs that can 
influence any given trait of interest (for example, height, 
growth rate and disease risk) except that the trait under 
study is gene expression. eQTLs are identified by meas-
uring gene expression in panels of genetically different, 
genotyped individuals13,36 (BOXES 1,2). These panels can be 

Box 1 | A beginner’s guide to eQTL mapping

Expression quantitative trait loci (eQTLs) are regions of the genome 

containing DNA sequence variants that influence the expression level  

of one or more genes. They are identified by studying a population of 

genetically different individuals (FIG. 1). These individuals can be members 

of an outbred population (for example, human individuals) or can be bred 

using experimental crosses (for example, from a cross between two 

genetically different yeast strains or a panel of mouse strains). The 

individuals in the population differ from each other at many sequence 

variants, from tens of thousands in yeast crosses to millions in human 

populations. Most of these variants do not have any consequences on gene 

expression (or on any other trait).

To identify the comparatively few variants that influence gene expression, 

two types of data are collected from each individual. First, each individual 

needs to be genotyped. If the sequence variants in the population are known, 

genotyping can be done by targeted assays of each variant in each individual 

(for example, using single-nucleotide polymorphism (SNP) microarrays). 

Otherwise, current technologies now allow the genome of each individual to 

be fully sequenced so that all variants are discovered. Second, the expression 

of each gene in the genome is measured in each individual using either 

expression microarrays or RNA sequencing. eQTLs are then identified by 

comparing the genotypes with the expression levels using association (in 

outbred populations) or linkage analysis (in pedigrees or designed crosses).

To test whether a given sequence variant has an effect on the expression of 

a given gene, a statistical test is performed (see the figure, part a). Individuals 

are grouped according to the allele they carry. If the gene has a significantly 

higher expression level in one group than in the other group, we can 

conclude that the variant (or another variant in linkage disequilibrium) 

influences the expression of this gene. The test is repeated at every DNA 

variant in the genome, resulting in a genome scan for eQTLs for this gene 

(see the figure, part a).

The figure (part a) shows a genome scan for mRNA levels of the yeast TPO1 

gene in a cross between two yeast strains. The logarithm of the odds (LOD) 

score is a measure of the strength of the statistical association between 

mRNA level and genotype. Light blue shapes show the distribution of 

expression levels, and blue dots are expression levels for individual 

segregants. The thick black bars show the central 50% of the data, and the 

white dot indicates the median. When mRNA levels are significantly higher 

in individuals that have inherited one allele than those that have inherited 

the other allele, the LOD score is high and the region is called an eQTL. An 

example is shown on the left end of chromosome 15 where the LOD score 

exceeds the genome-wide threshold (indicated by the dashed red line). 

When there is no difference in mRNA levels between genotype groups, the 

LOD score is low (see the example region on chromosome 4). The genome 

scan is repeated for the expression of every gene in the genome (see the 

figure, part b). Shown here are the LOD profiles for 200 randomly selected 

genes. The genes are sorted according to their genomic position. Local 

eQTLs form a diagonal, and eQTL hot spots are visible as vertical (for 

example, on chromosomes 14 and 15).

The figure was generated using data from REF. 50.
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Framingham	  data	  (miRNA-‐eQTLs)	  

miR_100_5p	  	  	  	  	  	  	  	  	  miR_1303	  	  	  	  	  	  	  	  	  miR_133a	  	  	  	  	  	  	  	  	  	  	  	  	  	  miR_30a_3p	  



Protein QTLs
(pQTLs). Genomic regions  
that carry one or more DNA 
sequence variants that 
influence the protein 
abundance of a given gene.

eQTL hot spots
Regions of the genome that 
contain more expression 
quantitative trait loci (eQTLs) 
than expected by chance.

Previous reviews have covered the various types of 
eQTLs and the ways in which they can be identified and 
fine-mapped13,35–37, the rich variety of molecular traits 
that can be assayed along the cascade of gene expression 
regulation38,39 and the ways to integrate these molecu-
lar traits in a systems genetics perspective40. Here, we 
review new insights into the molecular basis of eQTLs 
and the genetics of mRNA versus protein levels. We then 
present recent discoveries into the causal links between 
eQTLs and higher-order organismal phenotypes, such as 
physiology and disease. We describe recent experimen-
tal insights into eQTL causality (many of which were 

derived from model organisms) and close by presenting 
an overview of the emerging evidence for eQTL causality 
in human disease.

What are eQTLs?
eQTLs contain sequence variants that affect the expres-
sion of a gene. They are similar to other QTLs that can 
influence any given trait of interest (for example, height, 
growth rate and disease risk) except that the trait under 
study is gene expression. eQTLs are identified by meas-
uring gene expression in panels of genetically different, 
genotyped individuals13,36 (BOXES 1,2). These panels can be 

Box 1 | A beginner’s guide to eQTL mapping

Expression quantitative trait loci (eQTLs) are regions of the genome 

containing DNA sequence variants that influence the expression level  

of one or more genes. They are identified by studying a population of 

genetically different individuals (FIG. 1). These individuals can be members 

of an outbred population (for example, human individuals) or can be bred 

using experimental crosses (for example, from a cross between two 

genetically different yeast strains or a panel of mouse strains). The 

individuals in the population differ from each other at many sequence 

variants, from tens of thousands in yeast crosses to millions in human 

populations. Most of these variants do not have any consequences on gene 

expression (or on any other trait).

To identify the comparatively few variants that influence gene expression, 

two types of data are collected from each individual. First, each individual 

needs to be genotyped. If the sequence variants in the population are known, 

genotyping can be done by targeted assays of each variant in each individual 

(for example, using single-nucleotide polymorphism (SNP) microarrays). 

Otherwise, current technologies now allow the genome of each individual to 

be fully sequenced so that all variants are discovered. Second, the expression 

of each gene in the genome is measured in each individual using either 

expression microarrays or RNA sequencing. eQTLs are then identified by 

comparing the genotypes with the expression levels using association (in 

outbred populations) or linkage analysis (in pedigrees or designed crosses).

To test whether a given sequence variant has an effect on the expression of 

a given gene, a statistical test is performed (see the figure, part a). Individuals 

are grouped according to the allele they carry. If the gene has a significantly 

higher expression level in one group than in the other group, we can 

conclude that the variant (or another variant in linkage disequilibrium) 

influences the expression of this gene. The test is repeated at every DNA 

variant in the genome, resulting in a genome scan for eQTLs for this gene 

(see the figure, part a).

The figure (part a) shows a genome scan for mRNA levels of the yeast TPO1 

gene in a cross between two yeast strains. The logarithm of the odds (LOD) 

score is a measure of the strength of the statistical association between 

mRNA level and genotype. Light blue shapes show the distribution of 

expression levels, and blue dots are expression levels for individual 

segregants. The thick black bars show the central 50% of the data, and the 

white dot indicates the median. When mRNA levels are significantly higher 

in individuals that have inherited one allele than those that have inherited 

the other allele, the LOD score is high and the region is called an eQTL. An 

example is shown on the left end of chromosome 15 where the LOD score 

exceeds the genome-wide threshold (indicated by the dashed red line). 

When there is no difference in mRNA levels between genotype groups, the 

LOD score is low (see the example region on chromosome 4). The genome 

scan is repeated for the expression of every gene in the genome (see the 

figure, part b). Shown here are the LOD profiles for 200 randomly selected 

genes. The genes are sorted according to their genomic position. Local 

eQTLs form a diagonal, and eQTL hot spots are visible as vertical (for 

example, on chromosomes 14 and 15).

The figure was generated using data from REF. 50.
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Protein QTLs
(pQTLs). Genomic regions  
that carry one or more DNA 
sequence variants that 
influence the protein 
abundance of a given gene.

eQTL hot spots
Regions of the genome that 
contain more expression 
quantitative trait loci (eQTLs) 
than expected by chance.

Previous reviews have covered the various types of 
eQTLs and the ways in which they can be identified and 
fine-mapped13,35–37, the rich variety of molecular traits 
that can be assayed along the cascade of gene expression 
regulation38,39 and the ways to integrate these molecu-
lar traits in a systems genetics perspective40. Here, we 
review new insights into the molecular basis of eQTLs 
and the genetics of mRNA versus protein levels. We then 
present recent discoveries into the causal links between 
eQTLs and higher-order organismal phenotypes, such as 
physiology and disease. We describe recent experimen-
tal insights into eQTL causality (many of which were 

derived from model organisms) and close by presenting 
an overview of the emerging evidence for eQTL causality 
in human disease.

What are eQTLs?
eQTLs contain sequence variants that affect the expres-
sion of a gene. They are similar to other QTLs that can 
influence any given trait of interest (for example, height, 
growth rate and disease risk) except that the trait under 
study is gene expression. eQTLs are identified by meas-
uring gene expression in panels of genetically different, 
genotyped individuals13,36 (BOXES 1,2). These panels can be 

Box 1 | A beginner’s guide to eQTL mapping

Expression quantitative trait loci (eQTLs) are regions of the genome 

containing DNA sequence variants that influence the expression level  

of one or more genes. They are identified by studying a population of 

genetically different individuals (FIG. 1). These individuals can be members 

of an outbred population (for example, human individuals) or can be bred 

using experimental crosses (for example, from a cross between two 

genetically different yeast strains or a panel of mouse strains). The 

individuals in the population differ from each other at many sequence 

variants, from tens of thousands in yeast crosses to millions in human 

populations. Most of these variants do not have any consequences on gene 

expression (or on any other trait).

To identify the comparatively few variants that influence gene expression, 

two types of data are collected from each individual. First, each individual 

needs to be genotyped. If the sequence variants in the population are known, 

genotyping can be done by targeted assays of each variant in each individual 

(for example, using single-nucleotide polymorphism (SNP) microarrays). 

Otherwise, current technologies now allow the genome of each individual to 

be fully sequenced so that all variants are discovered. Second, the expression 

of each gene in the genome is measured in each individual using either 

expression microarrays or RNA sequencing. eQTLs are then identified by 

comparing the genotypes with the expression levels using association (in 

outbred populations) or linkage analysis (in pedigrees or designed crosses).

To test whether a given sequence variant has an effect on the expression of 

a given gene, a statistical test is performed (see the figure, part a). Individuals 

are grouped according to the allele they carry. If the gene has a significantly 

higher expression level in one group than in the other group, we can 

conclude that the variant (or another variant in linkage disequilibrium) 

influences the expression of this gene. The test is repeated at every DNA 

variant in the genome, resulting in a genome scan for eQTLs for this gene 

(see the figure, part a).

The figure (part a) shows a genome scan for mRNA levels of the yeast TPO1 

gene in a cross between two yeast strains. The logarithm of the odds (LOD) 

score is a measure of the strength of the statistical association between 

mRNA level and genotype. Light blue shapes show the distribution of 

expression levels, and blue dots are expression levels for individual 

segregants. The thick black bars show the central 50% of the data, and the 

white dot indicates the median. When mRNA levels are significantly higher 

in individuals that have inherited one allele than those that have inherited 

the other allele, the LOD score is high and the region is called an eQTL. An 

example is shown on the left end of chromosome 15 where the LOD score 

exceeds the genome-wide threshold (indicated by the dashed red line). 

When there is no difference in mRNA levels between genotype groups, the 

LOD score is low (see the example region on chromosome 4). The genome 

scan is repeated for the expression of every gene in the genome (see the 

figure, part b). Shown here are the LOD profiles for 200 randomly selected 

genes. The genes are sorted according to their genomic position. Local 

eQTLs form a diagonal, and eQTL hot spots are visible as vertical (for 

example, on chromosomes 14 and 15).

The figure was generated using data from REF. 50.

Ũ�

Ũ�

0

�

#NNGNG�� #NNGNG��

Ex
pr

es
si

on
 le

ve
l

0

5

��

��

Ũ�

Ũ�

0

�

#NNGNG�� #NNGNG��

Genome position (chromosome number)

� � 3 4 5 6 7 8 9 �� �� �� �� �� �� ��

Genome position (chromosome number)

� � 3 4 5 6 7 8 9 �� �� �� �� �� �� ��

Ex
pr

es
si

on
 le

ve
l

G
en

es
 s

or
te

d 
by

 g
en

om
ic

 p
os

it
io

n
LO

D

b

a

REVIEWS

198 | APRIL 2015 | VOLUME 16  www.nature.com/reviews/genetics

© 2015 Macmillan Publishers Limited. All rights reserved

56	  

Framingham	  data	  (miRNA-‐eQTLs)	  

miR_100_5p	  	  	  	  	  	  	  	  	  miR_1303	  	  	  	  	  	  	  	  	  miR_133a	  	  	  	  	  	  	  	  	  	  	  	  	  	  miR_30a_3p	  



	  Current	  Objec*ves	  (re	  eQTLs	  items)	  
	  
	  

	   	  >	  in	  brain	  group:	  commonMind	  bam	  files	  -‐-‐-‐[htseq]-‐-‐-‐>	  raw	  reads	  
	   	  >	  HZ	  currently	  implemen4ng	  k-‐means	  on	  Framingham	  data	  
	   	  >	  hear	  back	  from	  J.	  Freedman	  re.	  IRB	  
	   	  >	  hear	  back	  from	  RM	  
	   	  >	  networks	  analysis	  (eqtls	  cons4tute	  edges	  between	  miRNA	  &	  SNV)	  
	   	  >	  GTEx	  
	   	   	  +	  consistent	  w/gtex	  (cis-‐only,	  and	  under	  different	  models)?	  
	   	   	  +	  GO	  enrichment	  of	  affected	  genes	  
	   	   	  +	  narrow	  in	  on	  specific	  cases	  (bio	  annota4ons	  –	  HZ)	  
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Phenotype	  
(health	  var.)	  miRNA	  

SNP	  

linking	  cis-‐miR-‐eQTL	  miRNAs	  with	  
differen4ally	  expressed	  miRNAs	  for	  

complex	  traits	  

GWAS	  eQTL	  
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Figure S4: Histogram of the number of HGMD SNVs against the number of unique 
proteins. The histogram depicts the distribution of the number of distinct proteins in 
which non-synonymous HGMD SNVs may be mapped to high-quality crystal structures 
within the PDB. A total of 293 distinct proteins are shown for clarity (there are a total of 
303 distinct proteins such that HGMD SNVs affect structures in the semi-balanced set, 
but displaying the remaining 10 proteins in the histogram below would make visual 
interpretation difficult, as they have extremely high SNV counts). Redundancy was 
removed by ensuring that no pair of proteins within this dataset shares more than 90% 
sequence identity. 

 

 

 
 
 
 
 
 
 
 
 

 
 
 
Figure S5: Comparisons between the ∆F distributions within the semi-balanced set 
of structures. Violin plots showing ∆F distributions associated with SNVs affecting core 
or surface residues of structures for which at least one SNV is taken from A) 1000 
Genomes & HGMD, B) ExAC & HGMD and C) HGMD & ExAC. These trends on the 
semi-balanced SNV dataset are consistent with observations reported in the main text. 
However, the smaller sample sizes within the semi-balanced set may result in poorer 
statistical significance. The white dots, black boxes and vertical lines represent the 
medians, interquartile ranges, and 95% confidence intervals of the ∆F distributions, 
respectively. 
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“They	  should	  also	  aVempt	  to	  perform	  their	  analysis	  on	  a	  (semi-‐)balanced	  set(s)	  of	  
variants,	  using	  sets	  of	  proteins	  where	  both	  disease	  and	  neutral	  muta*ons	  are	  present.”	  

HGMD	  (303	  PDBs)	   1KG	  (618	  PDBs)	  

99	  204	   519	  

at position 31 is substantially more energetically favorable relative to the mean energy ⟨E⟩ that 

would result from having any of the possible 20 amino acids at that position. This disparity is 

designated by (⟨E⟩ - Enat)/σE = Fnat > 0. Right) The entire protein structure is then modeled (see 

methods) to generate the mutated structure after the SNV W31Y is introduced, thereby changing 

the relative energetic distributions for the different amino acids. The new mean and standard 

deviation associated with the energies of the modeled structure are designated by ⟨E⟩’	and σE’, 

respectively. In this case, the SNV that introduces 31Y results in an energy that is higher than the 

mean energy of all possible 20 amino acids at that position. This disparity is designated by (⟨E⟩’ - 
Emut)/σE’ = Fmut < 0. Taken together, the negative value associated with the disparity between the 

Fmut and Fnat values (Fmut - Fnat = ∆F < 0) indicates that the this SNV is locally unfavorable. 

 

 

 

 
 

Figure 2: Differential effects of “benign” and disease-associated SNVs on the localized 

frustration of minimally frustrated residues in the non-mutated (i.e., native) state. Violin 

plots showing ∆F distributions associated with SNVs affecting the core or surface, with SNVs 

taken from A) 1000 Genomes, B) ExAC and C) HGMD. Comparison between ∆F distributions 

for core and surface residues of the 1000 Genomes and ExAC datasets indicate that favorable 

interactions of surface residues in the native states are highly disrupted upon mutation compared 

to core residues. Furthermore, ∆F in HGMD core residues were highly negative compared to 

1KG and ExAC variants impacting core residues.  
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66	  

“They	  should	  also	  aVempt	  to	  perform	  their	  analysis	  on	  a	  (semi-‐)balanced	  set(s)	  of	  
variants,	  using	  sets	  of	  proteins	  where	  both	  disease	  and	  neutral	  muta*ons	  are	  present.”	  

HGMD	  (303	  PDBs)	   ExAC	  (907	  PDBs)	  

115	  188	   792	  

at position 31 is substantially more energetically favorable relative to the mean energy ⟨E⟩ that 

would result from having any of the possible 20 amino acids at that position. This disparity is 

designated by (⟨E⟩ - Enat)/σE = Fnat > 0. Right) The entire protein structure is then modeled (see 

methods) to generate the mutated structure after the SNV W31Y is introduced, thereby changing 

the relative energetic distributions for the different amino acids. The new mean and standard 

deviation associated with the energies of the modeled structure are designated by ⟨E⟩’	and σE’, 

respectively. In this case, the SNV that introduces 31Y results in an energy that is higher than the 

mean energy of all possible 20 amino acids at that position. This disparity is designated by (⟨E⟩’ - 
Emut)/σE’ = Fmut < 0. Taken together, the negative value associated with the disparity between the 

Fmut and Fnat values (Fmut - Fnat = ∆F < 0) indicates that the this SNV is locally unfavorable. 

 

 

 

 
 

Figure 2: Differential effects of “benign” and disease-associated SNVs on the localized 

frustration of minimally frustrated residues in the non-mutated (i.e., native) state. Violin 

plots showing ∆F distributions associated with SNVs affecting the core or surface, with SNVs 

taken from A) 1000 Genomes, B) ExAC and C) HGMD. Comparison between ∆F distributions 

for core and surface residues of the 1000 Genomes and ExAC datasets indicate that favorable 

interactions of surface residues in the native states are highly disrupted upon mutation compared 

to core residues. Furthermore, ∆F in HGMD core residues were highly negative compared to 

1KG and ExAC variants impacting core residues.  
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at position 31 is substantially more energetically favorable relative to the mean energy ⟨E⟩ that 

would result from having any of the possible 20 amino acids at that position. This disparity is 

designated by (⟨E⟩ - Enat)/σE = Fnat > 0. Right) The entire protein structure is then modeled (see 

methods) to generate the mutated structure after the SNV W31Y is introduced, thereby changing 

the relative energetic distributions for the different amino acids. The new mean and standard 

deviation associated with the energies of the modeled structure are designated by ⟨E⟩’	and σE’, 

respectively. In this case, the SNV that introduces 31Y results in an energy that is higher than the 

mean energy of all possible 20 amino acids at that position. This disparity is designated by (⟨E⟩’ - 
Emut)/σE’ = Fmut < 0. Taken together, the negative value associated with the disparity between the 

Fmut and Fnat values (Fmut - Fnat = ∆F < 0) indicates that the this SNV is locally unfavorable. 

 

 

 

 
 

Figure 2: Differential effects of “benign” and disease-associated SNVs on the localized 

frustration of minimally frustrated residues in the non-mutated (i.e., native) state. Violin 

plots showing ∆F distributions associated with SNVs affecting the core or surface, with SNVs 

taken from A) 1000 Genomes, B) ExAC and C) HGMD. Comparison between ∆F distributions 

for core and surface residues of the 1000 Genomes and ExAC datasets indicate that favorable 

interactions of surface residues in the native states are highly disrupted upon mutation compared 

to core residues. Furthermore, ∆F in HGMD core residues were highly negative compared to 

1KG and ExAC variants impacting core residues.  
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at position 31 is substantially more energetically favorable relative to the mean energy ⟨E⟩ that 

would result from having any of the possible 20 amino acids at that position. This disparity is 

designated by (⟨E⟩ - Enat)/σE = Fnat > 0. Right) The entire protein structure is then modeled (see 

methods) to generate the mutated structure after the SNV W31Y is introduced, thereby changing 

the relative energetic distributions for the different amino acids. The new mean and standard 

deviation associated with the energies of the modeled structure are designated by ⟨E⟩’	and σE’, 

respectively. In this case, the SNV that introduces 31Y results in an energy that is higher than the 

mean energy of all possible 20 amino acids at that position. This disparity is designated by (⟨E⟩’ - 
Emut)/σE’ = Fmut < 0. Taken together, the negative value associated with the disparity between the 

Fmut and Fnat values (Fmut - Fnat = ∆F < 0) indicates that the this SNV is locally unfavorable. 

 

 

 

 
 

Figure 2: Differential effects of “benign” and disease-associated SNVs on the localized 

frustration of minimally frustrated residues in the non-mutated (i.e., native) state. Violin 

plots showing ∆F distributions associated with SNVs affecting the core or surface, with SNVs 

taken from A) 1000 Genomes, B) ExAC and C) HGMD. Comparison between ∆F distributions 

for core and surface residues of the 1000 Genomes and ExAC datasets indicate that favorable 

interactions of surface residues in the native states are highly disrupted upon mutation compared 

to core residues. Furthermore, ∆F in HGMD core residues were highly negative compared to 

1KG and ExAC variants impacting core residues.  
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Addi1onal	  scagerplots:	  
	  
.//plot_delta_frustr_vs_MAF/frustr_vs_MAF_scager_plots/	  
	  
.//plot_delta_frustr_vs_MAF/	  
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Tumor	  Suppressor	  Genes	  
Minimally	  Frustr.	  Residues	  

Single	   Buried	  

p-‐value	  =	  3.163e-‐06	  
N	  =	  36	  

p-‐value	  =	  0.001912	  
N	  =	  39	  
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Tumor	  Suppressor	  Genes	  
Maximally	  Frustr.	  Residues	  

Single	   Buried	  

p-‐value	  =	  0.001818	  
N	  =	  34	  

p-‐value	  =	  0.005519	  
N	  =	  28	   71	  



Oncogenes	  
Minimally	  Frustr.	  Residues	  

Single	   Buried	  

p-‐value	  =	  0.7594	  
N	  =	  96	  

p-‐value	  =	  0.01498	  
N	  =	  118	   72	  



Oncogenes	  
Maximally	  Frustr.	  Residues	  

Single	   Buried	  

p-‐value	  =	  4.159e-‐06	  
N	  =	  112	  

p-‐value	  =	  2.834e-‐07	  
N	  =	  80	  
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*jpg	  and	  *pdf	  
	  
/Users/admin/Desktop/rsch/frustra1on/surf_and_core_enrichment/	  
	  
.//feb4_prs.pdf	  
	  
.//surf_and_core_enrichment/frustr_Mar16_mtg.pdf	  
	  

74	  



Maximally	  Frustr.	  Residues	  Using	  the	  Single-‐Residue	  Index	  

75	  

Oncogenes	  TSGs	  
p-‐value	  =	  2.83E-‐7	  
N	  =	  80	  

p-‐value	  =	  5.5E-‐3	  
N	  =	  28	  

Observed:	  	  X	  	  =	  	  #	  of	  cancer-‐associated	  SNVs	  that	  intersect	  frustrated	  regions	  (5	  in	  this	  case)	  
Expected:	  E[X]	  =	  [#	  frustrated	  residues	  /	  total	  #	  residues	  in	  protein]	  	  *	  [	  total	  #	  of	  cancer-‐associated	  SNVs]	  

Cancer-‐associated	  SNV	  NON-‐frustrated	  region	  Frustrated	  region	  
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To	  underline	  the	  usefulness	  of	  your	  method,	  which	  is,	  ...	  to	  meet	  a	  "growing	  and	  urgent	  
need	  to	  evaluate	  the	  poten4al	  effects	  of	  low-‐allele-‐frequency	  variants	  in	  unbiased	  ways	  
using	  high-‐throughput	  methodologies",	  I	  miss	  some	  extra	  calcula4ons	  /	  benchmarking.	  

There	  are	  methods	  exis4ng	  in	  order	  to	  evaluate	  poten4al	  effects	  of	  low-‐allele-‐
frequency	  variants	  in	  unbiased	  ways	  (SIFT,	  PolyPhen2,	  Muta4onTaster,	  and	  many	  

others).	  I	  would	  like	  to	  see	  how	  exactly	  your	  method	  adds	  up	  to	  this.	  Is	  the	  addi4onal	  
informa4on	  gained	  from	  structural	  analysis	  really	  an	  advantage	  over	  exis4ng	  methods?	  
If	  you	  could	  show	  this,	  this	  would	  surely	  be	  an	  argument	  for	  people	  to	  use	  and	  cite	  
your	  method	  ...	  One	  could	  for	  ...	  create	  a	  small	  set	  of	  variants	  and	  analyse	  these	  with	  

one	  or	  two	  of	  the	  "common"	  tools	  to	  predict	  the	  deleteriousness	  of	  SNVs	  (e.g.	  
PolyPhen2	  and	  Muta4onTaster2,	  since	  these	  are	  generally	  considered	  the	  most	  

accurate	  ones)	  and	  then	  check	  if	  there	  are	  disease	  variants	  predicted	  as	  "harmless"	  by	  
these	  tools	  (i.e.	  false	  nega4ve)	  which	  are	  then	  correctly	  seen	  as	  locally	  maximal	  

frustrated	  by	  your	  method.	  Or	  any	  other	  way	  how	  it	  can	  be	  shown	  that	  the	  method	  is	  
indeed	  useful	  for	  the	  analysis	  of	  high-‐throughput	  data	  (e.g.	  compare	  with	  other	  exis4ng	  

"structural	  predic4on"	  tools,	  if	  those	  exist).	  
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+	  (reminder	  on	  nets	  disc)	  

Frustr (true pos | false pos)
PolyPhen (true pos | potent. | false pos)
SIFT(true pos | false pos)
HGMD



PDB	   SNPs	   ResPos	   origR
es	  

mutRe
s	  

2VIG	   chr12:121176108:
T:G	  

217	   MET	   ARG	   -‐1.802	  

2VIG	   chr12:121174892:
T:A	  

105	   ILE	   ASN	   -‐2.855	  

2VIG	   chr12:121176421:
C:A	  

294	   ALA	   ASP	   -‐1.728	  

2VIG	   chr12:121177182:
C:G	  

390	   ILE	   MET	   -‐2.909	  

2VIG	   chr12:121177150:
C:T	  

380	   ARG	   TRP	   -‐5.352	  

2VIG	   chr12:121175763:
C:T	  

199	   ALA	   VAL	   0.693	  

2VIG	   chr12:121176633:
C:T	  

315	   ALA	   VAL	   0.297	  

Acyl-CoA-dehydrogenase 
deficiency 

HGMD	  SNP	  disrup4ng	  core	  residues	  to	  different	  extent	  in	  a	  
par4cular	  disease	  

8	   78	  
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Acyl-CoA-dehydrogenase 
deficiency 
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PDB	   SNPs	   ResPos	   origR
es	  

mutRe
s	  

3EZQ	   chr10:90773977:
G:A	  

260	   ASP	   ASN	   -‐0.615	  

3EZQ	   chr10:90773978:
A:G	  

260	   ASP	   GLY	   -‐2.129	  

3EZQ	   chr10:90773977:
G:C	  

260	   ASP	   HIS	   -‐1.355	  

3EZQ	   chr10:90774008:C
:T	  

270	   THR	   ILE	   0.396	  

3EZQ	   chr10:90774008:C
:A	  

270	   THR	   LYS	   -‐0.044	  

3EZQ	   chr10:90774002:
A:C	  

268	   GLN	   PRO	   -‐0.334	  

3EZQ	   chr10:90774050:T
:C	  

284	   LEU	   PRO	   0.015	  

3EZQ	   chr10:90773977:
G:T	  

260	   ASP	   TYR	   -‐4.995	  

3EZQ	   chr10:90773978:
A:T	  

260	   ASP	   VAL	   -‐2.193	  

Autoimmune 
Lymphoproliferative Syndrome 

HGMD	  SNPs	  disrup4ng	  surface	  residues	  	  to	  different	  extent.	  

9	   80	  
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PDB	   SNPs	   ResPo
s	  

origRes	   mutR
es	  

cancerTyp
e	  

2VJ3	   chr9:139412263:
C:T	  

461	   CYS	   TYR	   -‐2.813	   Head	  &	  
Neck	  

2VJ3	   chr9:139412359:
C:T	  

429	   CYS	   TYR	   -‐3.477	   Head	  &	  
Neck	  

2VJ3	   chr9:139412360:
A:T	  

429	   CYS	   SER	   -‐1.572	   Lung	  

2VJ3	   chr9:139412299:
C:T	  

449	   CYS	   SER	   -‐1.085	   Head	  &	  
Neck	  

TSG	  Driver	  disrup4ng	  core	  residues	  :	  NOTCH1	  
gene	  

12	  
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PDB	   SNPs	   ResPo
s	  

origRes	   mutR
es	  

cancerTyp
e	  

4DSO	   chr12:25398213:
T:A	  

36	   ILE	   LEU	   -‐0.928	   Esophage
al	  

4DSO	   chr12:25380240:
C:A	  

73	   ARG	   MET	   -‐2.495	   Astrocyto
ma	  

4DSO	   chr12:25398211:
T:C	  

36	   ILE	   MET	   -‐3.631	   AML	  

4DSO	   chr12:25378603:
T:C	  

132	   ASP	   GLY	   -‐1.408	   Stomach	  

Oncogene	  Driver	  disrup4ng	  surface	  residues	  :	  KRAS	  gene	  

12	  
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Poten*al	  causes	  of	  outlier	  error	  rates	  
•  single-‐exon	  genes	  (o�en	  associated	  w/pgenes)	  à	  duplica4ons	  à	  low	  

mappability	  scores	  
•  low	  mappability	  scores?	  à	  check	  using	  intersect	  bed	  w/encode	  in	  UCSC	  

Genome	  Browser.	  Genome	  browser	  has	  a	  track	  for	  mappability	  à	  first	  
download	  and	  check	  w/intersect	  bed?	  

•  exon	  lengths	  from	  same	  genome	  build?	  In	  any	  case	  GTEx	  is	  repor4ng	  in	  GENE	  
read	  counts	  

•  With	  BAM	  file	  as	  input,	  GTEx	  uses	  RNA-‐SeQC:	  “Expression	  levels	  were	  
produced	  at	  the	  gene	  and	  exon	  level	  in	  RPKM	  units	  using	  RNA-‐SeQC”	  
à	  Black	  box	  &	  confounding	  factors	  (GC	  bias,	  mapability,	  uniqueness,	  etc)	  

	  
	  
Misc	  Notes	  

•  Strange	  that	  processed	  read	  counts	  data	  are	  not	  available	  at	  the	  GTEx	  Portal	  
•  BAM	  files	  not	  available	  to	  re-‐compute	  RPKM	  from	  RNA-‐SeqC	  
•  GTEx:	  tophat/bow4e,	  though	  will	  be	  STAR	  2.4.2a	  in	  v7	  (CommonMind=	  STAR)	  
•  PsychENCODE	  currently	  processing	  all	  to	  be	  uniform?	  
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Framingham	  data	  (miRNA-‐eQTLs)	  


