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Abstract 
Summary: Genome-wide proximity ligation based assays like Hi-C have opened a window to the 3D organization of 
genome; nevertheless, they present data structures that are different from the conventional 1D signal tracks. To ex-
ploit the 2D nature of Hi-C contact maps, matrix techniques like spectral analysis are particular useful. Here, we pre-
sent HiC-spector, a collection of matrix-related functions for analyzing Hi-C contact maps. In particular, we introduce a 
novel reproducibility metric for quantifying the similarity between contact maps based on spectral decomposition. The 
metric successfully separates contact maps mapped from Hi-C data coming from biological replicates, pseudo-
replicates and different cell types.   
Availability:	Source code written in Julia and the documentation of HiC-spector can be freely obtained at 
https://github.com/gersteinlab/HiC_spector 
Contact:	pi@gersteinlab.org 

 
 

1 Introduction  
Genome-wide proximity ligation assays such as Hi-C have 
emerged as powerful techniques to understand the 3D organiza-
tion of genome (Lieberman-Aiden et al., 2009; Kalhor et al., 
2011). While the new techniques offer new biological insights, 
they demand different data structures and present new computa-
tional questions (Dekker et al., 2013; Ay and Noble, 2015). For 
instance, a basic question of particular practical importance is, 
how can we determine if two experimental replicates are really 
close enough? Or more generally, how to quantify the similarity 
between two sets of Hi-C?  

Data of Hi-C experiments are usually summarized by the so-
called chromosomal contact maps. By binning the genome into 
equally sized bins, a contact map is essentially a matrix whose 
elements store the population-averaged co-location frequencies 
between loci. Therefore naturally, mathematical tools like spec-
tral analysis can be extremely useful in understanding these 
chromosomal contact maps. The aim of the project is provide a 
set of basic analysis tools for handling Hi-C contact maps. In 
particular, we introduce a simple but novel metric to quantify the 
reproducibility of the maps using spectral decomposition.  

2 Algorithms 
We represent a chromosomal contact map by a symmetric and 

non-negative adjacency matrix 𝑊. The matrix elements repre-
sent the frequencies of contact between genomic loci and there-
fore serve as a proxy of spatial distance. The large is the value of 
𝑊!", the closer is the distance between bin 𝑖 and bin 𝑗. The start-
ing point of spectral analysis is the Laplacian matrix 𝐿, which is 
defined as 𝐿 = 𝐷 −𝑊. Here 𝐷 is a diagonal matrix in which 
𝐷!! = 𝑊!"!  (the coverage of bin 𝑖 in the context of Hi-C). As in 
many other applications, the Laplacian matrix further takes a 
normalized form ℒ = 𝐷!!/!𝐿𝐷!!/! (Chung, 1997). It can be 
verified that 0 is an eigenvalue of ℒ, and the set of eigenvalues 
of ℒ (0 ≤ 𝜆! ≤ 𝜆! ≤ ⋯ ≤ 𝜆!!!) is referred as the spectrum of 
ℒ. Like common dimension reduction procedure, the first few 
eigenvalues are of particular importance because it captures the 
basic structure of the matrix, whereas the large eigenvalues are 
essentially noise. The normalized Laplacian matrix is closely 
related to random walk processes taking place in the underlying 
graph of 𝑊. In fact, the first few eigenvalues correspond to the 
slower decay modes of the random walk process, and capture the 
large-scale structure of the contact map. 

Given two contact maps 𝑊! and 𝑊!, we propose to quantify 
their similarity by decomposing their corresponding Laplacian 
matrices ℒ! and ℒ! respectively and then compare their eigen-
vectors. Let us denote {𝜆!!, 𝜆!!,… , 𝜆!!!! } and {𝜆!! , 𝜆!! ,… , 𝜆!!!! } be 
the spectra of ℒ! and ℒ!, whereas {𝑣!!, 𝑣!!,… , 𝑣!!!! } and 
{𝑣!! , 𝑣!! ,… , 𝑣!!!! } are their sets of normalized eigenvectors. A 
distance metric 𝑆! is defined as  
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𝑆! 𝐴,𝐵 = 𝑣!! − 𝑣!!

!
!!!

!!!

. (1) 

Here .  represents the Euclidean distance between the two 
vectors. In general, the 𝑆!  provides a metric to gauge the similar-
ity between two contact maps.  𝑣!! and 𝑣!! are more correlated if 
A and B are two biological replicates as compared to the case 
they are two different cell lines (see Supplemental Information).  

We next determine the parameter r, the number of leading ei-
genvectors picked from ℒ! and ℒ!. Like any principal compo-
nent analysis, the contribution of leading eigenvectors is more 
important. In fact, the Euclidean distance between a pair of high-
order eigenvectors is the same as the distance between a pair of 
unit vectors whose components are randomly sampled from a 
standard normal distribution (see Supplemental Information). In 
other words, the high-order eigenvectors are essentially noise 
terms whereas the signals are stored in the leading vectors. As a 
rule of thumb, we found the choice 𝑟 = 20 are good enough for 
practical purposes. Further, as the distance between a pair of 
randomly sampled unit vectors present a natural limit 𝑙 = 2, 
we therefore rescale the distance metric into a reproducibility 
score Q ranges from 0 to 1 by  

 
 𝑄 𝐴,𝐵 =

1
𝑟
1 −

𝑆!
2
. 

(2) 

As shown in Figure 1, the reproducibility scores between pseu-
do-replicates are greater than the scores for real biological repli-
cates, which are greater than the scores for between maps from 
different cell lines. 

 
Figure 1 Reproducibility scores for 3 sets of Hi-C contact maps pairs. Contact 
maps came from Hi-C experiments performed in 11 cancer cell lines by the 
ENCODE consortium (https://www.encodeproject.org/). Biological replicates 
refer to a pair of replicates of the same experiment. Pseudo replicates are 
obtained by pooling the reads from two replicates together and perform down 
sampling. There are 11 biological replicates, 33 pairs of pseudo replicates, and 
110 pairs of maps between different cell types. Each box shows the distribution 
of Q in 23 chromosomes.  

Apart from the reproducibility score, a number of matrix algo-
rithms useful for analyzing contact maps are provided in HiC-
spector. For instance, we have a function for performing matrix 
balancing using the Knight-Ruiz algorithm (Knight and Ruiz, 
2012), which is widely used as a normalization procedure for 
contact maps (Imakaev et al., 2012). In addition, we have in-
cluded the functions for estimating the average contact frequen-
cy with respect to the genomic distance, as well as identifying 
the so-called A/B compartments (Lieberman-Aiden et al., 2009) 

using the corresponding correlation matrix. 

3 Implementation and Benchmark 
HiC-spector is a library written in Julia, a high-performance 
language for technical computing. The bottleneck for evaluating 
the reproducibility metric we introduced is matrix diagonaliza-
tion. The runtime therefore depends very much on the size of 
contact maps. For most practical purposes, we found the perfor-
mance efficient. 
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Figure	S1:	Leading	eigenvectors	of	contact	maps.	Blue	refers	to	a	pair	of	pseudo-replicates.	The	
corresponding	leading	eigenvectors	are	more	correlated	as	compared	to	red,	which	refers	to	a	pair	of	
contact	maps	originated	from	two	different	cell	lines.	
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Figure	S2:	Euclidean	distance	between	corresponding	eigenvectors	in	a	pair	of	Hi-C	contact	maps.	The	
distance	between	leading	eigenvectors	is	low.	The	red	line	is	the	distance	between	two	random	unit	
vectors	whose	components	are	sampled	from	a	standard	normal	and	then	rescaled.	The	distance	
between	two	high-order	eigenvectors	is	very	close	to	the	red	line,	suggesting	they	are	noise	instead	of	
the	actual	signal.	
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