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Background & conceptualization
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Background & conceptualization
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straight lines: Favorable ferromagnetic interactions
squiggly lines: Favorable antiferromagnetic interactions



Changes in localized frustration may disrupt essential
functionality without introducing global destabilization

Note that frustration is intrinsic to many biological processes!

* Catalytic centers

» Allosteric contexts & local conformational switches
* Binding sites are often frustrated

 Metastable and multi-stable proteins

* Protein aggregation

* Nucleic acids & protein complexes

j—— | Srrr—
Compitible Cunflifting

% . . open (pdb:4AKE) closed (pdb:1AKE)

Dill et al, 1997 Bhardwaj et al, 2011 Ferreiro et al, 2014 4



ASN

Background & conceptualization
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Computational simplicity offers opportunities for application to large SNV datasets
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Energies calculated using

Computational simplicity offers opportunities for application to large SNV datasets

Demonstration of a typical deleterious SNV

the wild-type structure
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Corrected formulation

total energy of Mean energy of
the wt protein all decoys

ET,N . <ET, U>

- \/ /NS _(EY — (B |

Ferreiro et al, 2014

F;

Criteria for "minimal frustration" (think of wt structures):
F.>=+0.78
(a contact is highly frustrated if Fi < -1)



Corrected formulation

Frustration in biomolecules

Diego U. Ferreiro', Elizabeth A. Komives™* and Peter G. Wolynes®*

"Protein Physiology Lab, Dep de Quimica Bioldgica, Facultad de Ciencias Exactas y Naturales,
UBA-CONICET-IQUIBICEN, Buenos Aires, Argentina

2Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
3 Department of Physics, Department of Chemistry, and Center for Theoretical Biological Physics,

Rice University, Houston, TX 77005, USA

Abstract. Biomolecules are the prime information processing elements of living matter.
Most of these inanimate systems are polymers that compute their own structures and dynamics
using as input seemingly random character strings of their sequence, following which they
coalesce and perform integrated cellular functions. In large computational systems with finite
interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can




Corrected formulation

Frustration in biomolecules

On the role of frustration in the energy
landscapes of allosteric proteins

Diego U. Ferreiro®, Joseph A. Hegler"s, Elizabeth A. Komives®, and Peter G. Wolynes®<'

°Protein Physiology Lab, Department of Biological Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Consejo
Nacional de Investigaciones Cientificas y Técnicas de Argentina, Buenos Aires, Argentina C1428EGA; PDepartment of Chemistry and Biochemistry; and
“Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, CA 92107.

Contributed by Peter G. Wolynes, December 16, 2010 (sent for review November 24, 2010)

Natural protein domains must be sufficiently stable to fold but
often need to be locally unstable to function. Overall, strong ener-
getic conflicts are minimized in native states satisfying the principle
of minimal frustration. Local violations of this principle open up
possibilities to form the complex multifunnel energy landscape

here how local violations of the minimal frustration principle
open up possibilities for more complex energy landscapes needed
for allostery and large-scale conformational changes (12, 13).
Multiple funnels to structurally distinct low-free-energy states
can also be achieved by other mechanisms (14), symmetry being



Corrected formulation

Frustration in biomolecules

On the role of frustration in the energy
landscapes of allosteric proteins

Localizing frustration in native proteins
and protein assemblies

Diego U. Ferreiro**, Joseph A. Hegler*", Elizabeth A. Komives®, and Peter G. Wolynes*'*

*Center for Theoretical Biological Physics and 'Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive,
La Jolla, CA 92093-0365

Contributed by Peter G. Wolynes, October 17, 2007 (sent for review September 28, 2007)

We propose a method of quantifying the degree of frustration  identify frustrated sites. It appears that frustrated sites identified
manifested by spatially local interactions in protein biomolecules. by anomalous kinetics are indeed often implicated in function
This method of localization smoothly generalizes the global crite- (11, 33). In the absence of such experiments, finding sites of
rion for an energy landscape to be funneled to the native state,  frustration requires the availability of a sufficiently reliable
which is in keeping with the principle of minimal frustration. A energy function, because significant error in the energy function
survey of the structural database shows that natural proteins are  could lead to the appearance of spurious frustration even where

11
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(advantages of secondary calculations)

First order
calculation (F)
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calculation (AF)
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Data survey and processing

Nonsynonymous
SNVs

ExAC
(79.3%)

Kumar et al, NAR 2016

PANCANCER (10.2%)
HGMD (1.18%)

(18.60%)

HG”

CAG (14.51%)

Passenger <
CAG

- Oncogenes

Disease- 9

associated Tumor
Cancer Suppressors
ExAC (48.53%)
1KG (9.32%) 1KG (7.44%)

DRIVER (2.32%)
NON-CAG (8.60%)

13



Data survey and processing

Table 1. Summary statistics on the number of SNVs used in comparative analyses. Shown are variant
counts for non-disease (fop), HGMD (bottom-left), and pan-cancer SNV (bottom-right).

Conservation 1000 Genomes ExAC
measure core surface core surface
DAF
2267 (85) 1570 (106) 17972 (102) 11550 (83)
rare (common)
GERP 1552 (287) 1132 (212) 12165 (2174) 7637 (1406)
conserved (variable)
Conservation HGMD SNV PANCAN
measure core surface type core surface
non-CAG 2153 1848
GERP 5158 (961) 1113 (221) CAG 4140 2767
conserved (variable)
driver 877 486

Kumar et al, NAR 2016
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Data survey and processing

"Another known issue is strong annotation disparity between known Mendelian
disease mutations (e.g. HGMD disease variants) and other variants: most of HGMD
mutations are reported in a small subset of proteins, while majority of the proteins only
have fewer and mostly benign or unknown significance variants reported for them. This
creates bias when performing comparisons between the two functional classes of
variants. In case of PDB-mapped variants, such annotation bias might have been
alleviated to some extent by the PDB intrinsic bias (mentioned above, skews PDB &

HGMD data towards the same proteins) but it requires further investigation. Authors
should present statistics for the number of unique proteins and the distribution
of variants in the unique proteins for each of their datasets. They should also
attempt to perform their analysis on a (semi-)balanced set(s) of variants, using

sets of proteins where both disease and neutral mutations are present. See
Grimm et al. (2015) Human Mut. 36:513-523 for an example of such balanced sets and
trends analysis."



1) Determine the # of unique proteins in each dataset

all_structures
unique_proteins*

1kg EXAC HGMD
2675 3327 1728
618 907 303

3500

3000

2500

2000

1500

1000

500

1kg

& all_structures

& unique_proteins*

ExXAC HGMD

* Defined to be unique if no 2 proteins within the set
have chains sharing more than 90% sequence similarity
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2) Within the set of non-redundant (i.e., unique) set of proteins: “present statistics for the

number of unique proteins and the distribution of variants in the unique proteins”

ExAC (907 prot/ 90% seqlD)

1KG (618 prot / 90% seql
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Kumar et al, NAR 2016
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2) Within the set of non-redundant (i.e., unique) set of proteins: “present statistics for the
number of unique proteins and the distribution of variants in the unique proteins”

HGMD (303 PDBs) 1KG (618 PDBs)

HGMD (303 PDBs) EXAC (907 PDBs)

188



MAF analysis (rare alleles associated with extreme delta_F)

Core

Surface

0.5

MAF

1000 Genomes

ao o

05 0.0

ExAC
MAF

Q]
o

Kumar et al, NAR 2016
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Cancer SNVs & genes (rationalize in TSGs + Oncogenes)
Are Cancer-Associated SNVs enriched in frustrated regions?

I Cancer-associated SNV

NON-frustrated region

Frustrated region

Observed: X = # of cancer-associated SNVs that intersect frustrated regions (5 in this case)

| | L1LI

Expected: E[X] = [# frustrated residues / total # residues in protein] * [ total # of cancer-associated SNVs]

20



Cancer SNVs & genes (rationalize in TSGs + Oncogenes)
Are Cancer-Associated SNVs enriched in maximally frustrated regions?

-- YES --
TSGs Oncogenes
= ] RS °7 °
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p-value = 0.005519 p-value = 2.834e-07

N =28 N =80



Cancer SNVs & genes (rationalize in TSGs + Oncogenes)
Drilling into potential mechanisms

Naive mechanism for the effects Naive mechanism for the effects of
of many TSG-associated SNVs many oncogene-associated SNVs
Loss-of-Function Affects Gain-of-Function Affects

VA
N
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Cancer SNVs & genes (rationalize in TSGs + Oncogenes)

V = Missense mutation
A = Truncating mutation

Oncogenes N(AB§*; Rsoii’ RN AT A —————————— L

PIK3CA 1068 aa Substrate binding sites IDH1 414 aa
v vV v W wwy 9.28 .aa 213 aa
TSGs N m T-Ag and E1A-binding MC N 5 aa repeats CCT BC c
A A A4 A AM A A
RB1 VHL

Vogelstein, Bert, et al. "Cancer genome landscapes." Science (2013)
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# SNVs Overlapping Burried Regions

“Redundant” model: Counting
the # of SNVs that intersect buried regions

TSGs Oncogenes
p=7.07E-4 p=1.22E-11
o
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“Non-Redundant” model: Counting
the # of buried residues that intersect cancer-associated SNVs

TSGs Oncogenes
p=1.17E-3 p=8.38E-11
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Asymmetric Unit vs. Biological Assembly
Ex PDB: 3GFT

Asymetric Bio Assembly

26



“Redundant” model: Counting (using Bio Assembly Files)
the # of SNVs that intersect buried regions

# SNVs Overlapping Burried Regions

15 20 25 30

10

TSGs

Redundant
p=0.3534

# SNVs Overlapping Burried Regions

Oncogenes

Redundant
p=2.9E-12

obs exp
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“Non-Redundant” model: Counting (using Bio Assembly Files)
the # of buried residues that intersect cancer-associated SNVs

TSGs Oncogenes
Non-Redundant Non-Redundant
p=0.3391 p=3.8E-11

8 10 12 14
l l

6
I

# Buried Res Intersecting SNVs
# Buried Res Intersecting SNVs

28




Applications to Cancer-Associated SNVs & Genes
Drilling into potential mechanisms
Frustration is a continuous quantity — go beyond counts & enrichment!

TSG Drivers Oncogene Drivers
N —
TR
<
(I\l _
<|]' _|
core surface core surface
»4;'\1:
)
L WL 0‘
E g

Kumar et al, NAR 2016



Thresholding to classify SNVs

“... how the workflow was applied to variants
of unknown significance to help classify/
predict their impact, e.g., using a certain
value of AF as a threshold. This would be

extremely valuable and useful for other
investigators.”



Given an SNV, is there a specific AF threshold that may optimally be used to
classify SNVs as benign or deleterious?

HGMD SNVs generally induce more negative AF values relative to benign SNVs

Probaiblity Densities of Delta_F values

o
e
HGMD
< —
S ExAC
P
.
& o
()]
)
2 o
S o 7]
o
g_
o
S
I I I I I I I
6 4 2 0 2 4 6

delta_F
Adapted from Kumar et al, NAR 2016
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Given an SNV, is there a specific AF threshold that may optimally be used to
classify SNVs as benign or deleterious?

The objective is to maximize f(x)
J(x) = h(x) +e(x)
h(x) = fract{AFugmp < X]) - fract[AFycup > x])
e(x) = fract|AFgxac > x]) - fract[AFgxac < x])
Let AFyogMmp denote the distribution of AF scores induced by HGMD SNVs.

AFgxac 1s defined for the distribution of AF values associated with EXAC SNVs (note the

reversed directions relative to the equation above):

ol
[}

<
<)

HGMD
ExAC

@
o

Probability Density

0.1

0.0
|

delta_F



Probability Density

Probability Density

Given an SNV, is there a specific AF threshold that may optimally be used to
classify SNVs as benign or deleterious?
Sanity checks on simulated data

0.3 0.4 0.5
1 1 1 1

0.2

0.1

0.0




Given an SNV, is there a specific AF threshold that may optimally be used to
classify SNVs as benign or deleterious?
Sanity checks on simulated data
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0.2

0.1

0.0

Probability Density
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Given an SNV, is there a specific AF threshold that may optimally be used to

classify SNVs as benign or deleterious?

Probaiblity Densities of Delta_F values

AF=-12 |
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Kumar et al, NAR 2016
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“There are methods existing in order to evaluate potential effects of low-allele-frequency
variants in unbiased ways (SIFT, PolyPhen2, MutationTaster, and many others). | would like
to see how exactly your method adds up to this ... One could [use] tools to predict the
deleteriousness of SNVs (e.g. PolyPhen2 and MutationTaster2) and then check if there are
disease variants predicted as "harmless" by these tools (i.e. false negative) which are then
correctly seen as locally maximal frustrated by your method...”

- Find HGMD SNVs not captured by PolyPhen
(yet are captured through frustration)

single chain PDBs Multi- chain PDBs
PDB # HGMD SNVs PDB # HGMD SNVs

2VGB 2
3GXP 7
1A4] 1
1IIL 1
1AD6 1 204H 1
2AMY 1 3HN3 1
10G5 1
2X6U 1

36



Linearized depiction of HGMD SNVs that
constitute AF-rescued false negatives

Glucokinase (PDB ID: 1V4S)
SNVs associated with type 2 diabetes

AF predicts damaging SNV

PolyPhen AND SIFT predict benign SNV
PolyPhen OR SIFT predict benign SNV
HGMD SNV

= = = = PolyPhen AND SIFT predict benign SNV (AF predicts damaging)
--------- PolyPhen OR SIFT predict benign SNV (AF predicts damaging)

10 160 Residue ID 310 460

Adapted from Kumar et al, NAR 2016
37
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Background
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Albert and Kruglyak. Nature Reviews Genetics (2015) 39



Identifying the causal variants in differential gene expression

Expression level
Expression level

| | | |
Allele 1 Allele 2 Allele 1 Allele 2

T T T T T T T 1 T | | T |
12 3 4 56 7 8 910 11 12 13 14 15 16

Genome position (chromosome number)

Albert and Kruglyak. Nature Reviews Genetics (2015) 40



Reproducibility in Covariates

Gene-level normalized expression matrices (one per tissue)

Reads must:
- fall exclusively within exons or span them (i.e. not align into introns)
- contain no more than six non reference bases
- not map equally well to another locus

Genes must:
- have at least 10 samples with
- RPKM > 0.1 and
- raw read counts greater than 6

Covariate correction -- Includes:
known covariates (ex: gender, genotyping platform)
hidden covariates (PEER factors)

Selecting eQTL (Matri eQTL, FastQTL)
significant gene/snp pairs

41




PEER Factors

Correlations btwn PEER factors & known covariates (adipose tissue)

Associations between known and hidden factors

Code Meaning

InferredCov15 A . ‘ 0.1 SMGEBTCH ExpreSSion batch ID
InferredCov14 - 0.1 0.1 - 12 SMCENTER Collection center
InferredCov13 0.6 r DTHHRDY Hardy scale
InferredCov12 ' 10 SMTSISCH Ischemic time for sample
InferredCov11 - r TRISCHD Ischemic time for individual
InferredCov10 - 0.1 8 AGE Age of individual

InferredCov9 - 0.5 0.1 RACE Self reported race

InferredCovs 18 " He SMTPAX Time spent in fixative

InferredCov7 10.5 I SMTSTPTREF Procurement reference point

InferredCov6 0.1 . . .

4 SMNABTCH Nucleic acid isolation batch
InferredCov5 - 0.1 0.2 0.2 0.2 r
SMRIN RNA quality score (RIN)

InferredCov4 - 0.4 0.1 0.1 0.1 - Clid

InferredCov3 0.2 0.1 0.1 A -2 GENDER Gender of individual

InferredCov2 —. r

InferredCov1 0.5 0.1 0.1 0.1 0.2 0.2 - F0

S x\' O & & F & D& om10ia
(o ®« /\ Q’\ GJ/\Q Ny @éo
PN 6@ Z& PN

Known Covariates

GTEx Consortium. "The Genotype-Tissue Expression (GTEx) pilot
analysis: Multitissue gene regulation in humans." Science. (2015)
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0.019

Absolute deviations: |reported-computed|

IIIIIII III
ul II ‘I | |

cov_15

cov_14

cov_13

cov_12

cov_11

cov_10

cov_9

cov_8
I cov_7
cov_6
cov_5
I cov_4
cov_3

cov_2

m cov_1

96 samples
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29.4%

0.08%

Percentage deviations

96 samples

cov_15

cov_14

cov_13

cov_12

cov_11

cov_10

cov_9

cov_8

cov_7

cov_6

cov_5

cov_4

cov_3

cov_2

cov_1
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Potential Confounding Factors

PEER factors are generated using the top 1000 expressed genes per
tissue

PEER version differences (not specified in original paper)
Known covariates somehow included?

Parameters -- gamma distributed for noise & weight factors not
reported (a black-box!)

Number of PEERSs is determined by N (number of samples per tissue)



Frequency

5.0e+06 1.0e+07 1.5e+07

0.0e+00

Reproducibility in RPKM

Distribution of all fractional errors*

4.4% of values < -0.05

1 L

4.6% of values > 0.05

]

[ I [
-0.04 -0.02 0.00

Fractional_error = [RPKM

- RPKM

calculated

I ]
0.02 0.04
] / RPKM

true true

*for single-exon genes 40



Frequency

The substantial errors in
calculated values are very

5.0e+06 1.0e+07 1.5e+07

0.0e+00

Reproducibility in RPKM

account for disparities

Specific genes (not samples)

large over-estimates

genes

samples

40 60 80
calculated ~ ] / RPKM

0 20
Fractional_error = [RPKM RPKM

true true




Framingham data (miRNA-eQTLs)

Available attributes for each miR-eQTL (SNV-miRNA pair)

(5,269 cis-miR-eQTLs for 76 mature microRNAs)

snplD Chr.miR

mMiRNA_FHS miR.Start

sample size miR.End

beta miR.strand

MAF hsa_miR_name

Tvalue CisMark (ie: cis or trans)

Pval miRNA_alter_ID

h2q miR_Type* (ex: "intron" or "Intergenic")
BH_FDR mutated base

chr.SNP wt base

SNP.pos abs_dist_btwn_SNP_and_miRNA(kb)
SNP.strand

SNP.func (ex: intron)

Huan, Tianxiao, et al. "Genome-wide identification of microRNA
expression quantitative trait loci." Nature communications 6 (2015).



Framingham data (miRNA-eQTLs)

Genomic dist. btwn SNP &
miRNA vs. -log(P val)

Dist (kb)
1500 2000 2500 3000
| |

1000

500
I

o) 0@ o@%oo

-log(P Value)

miR_100 5p miR_133a
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Framingham data (miRNA-eQTLs)
Genomic dist. btwn SNP &

miRNA vs. T val
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miR_100 5p miR_133a
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h2miReQTL

miR_100_5p

0.05 0.10 0.15

0.00

Framingham data (miRNA-eQTLs)

Proportion of variance in miRNA expression
attributed to miR-eQTLs vs. T statistic

T Value

miR_133a
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h2miReQTL

Framingham data (miRNA-eQTLs)

Proportion of variance in miRNA expression

Proportion of variance in miRNA expression

attributed to miR-eQTLs vs. P val attributed to miR-eQTLs vs. -log(P val)
o O
: oo
uv—). -4 O 4 o
e 8 00
o | B
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3 g @ o o o .
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P Value -log(P Value)
miR_100_5p miR_133a
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Model w/Simple Linear regression
g=a+PBs+e
g: gene expression

S: genotype
€: noise

Probaiblity Densities of beta values

Expression level

\ \
Allele 1 Allele 2
q). | .
o
2
£ o
& o 7
o
2
%
=
§ 2-
a
N
o
o _|
o

[ [ [ [ [ [ I
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

beta_val 53



Dist (kb)

miR_100_5p

1000 1500 2000 2500 3000

500

Framingham data (miRNA-eQTLs)

beta vs. dist

Expression level

miR_133a
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Framingham data (miRNA-eQTLs)

beta vs. t-val
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h2q

miR_100_5p

0.15

0.10

0.05

0.00

Framingham data (miRNA-eQTLs)

beta vs. h2q

Expression level

Allele 1l Allele 2

Oo O
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I I I | | | I
-8 -6 4 -2 0 2 4

miR_133a
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Current Objectives (re eQTLs items)

> in brain group: commonMind bam files ---[htseq]---> raw reads
> HZ currently implementing k-means on Framingham data
> hear back from J. Freedman re. IRB
> hear back from RM
> networks analysis (eqtls constitute edges between miRNA & SNV)
> GTEX
+ consistent w/gtex (cis-only, and under different models)?
+ GO enrichment of affected genes
+ narrow in on specific cases (bio annotations — HZ)



SNP

eQTL GWAS

Phenotype

linking cis-miR-eQTL miRNAs with (health var.)
differentially expressed miRNAs for
complex traits

MiRNA
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A 1000 Genomes

B ExAC C HGMD
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AF
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AF

“They should also attempt to perform their analysis on a (semi-)balanced set(s) of
variants, using sets of proteins where both disease and neutral mutations are present.”
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“They should also attempt to perform their analysis on a (semi-)balanced set(s) of
variants, using sets of proteins where both disease and neutral mutations are present.”
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Additional scatterplots:

.//plot_delta_frustr_vs MAF/frustr vs MAF scatter plots/

.//plot_delta_frustr vs MAF/
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Maximally Frustr. Residues Using the Single-Residue Index

N ]
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p-value = 5.5E-3
N =28
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NON-frustrated region

I Cancer-associated SNV

|11 |

Observed: X = # of cancer-associated SNVs that intersect frustrated regions (5 in this case)

Expected: E[X] = [# frustrated residues / total # residues in protein] * [ total # of cancer-associated SNVs]
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To underline the usefulness of your method, which is, ... to meet a "growing and urgent
need to evaluate the potential effects of low-allele-frequency variants in unbiased ways
using high-throughput methodologies", | miss some extra calculations / benchmarking.
There are methods existing in order to evaluate potential effects of low-allele-
frequency variants in unbiased ways (SIFT, PolyPhen2, MutationTaster, and many
others). | would like to see how exactly your method adds up to this. Is the additional
information gained from structural analysis really an advantage over existing methods?
If you could show this, this would surely be an argument for people to use and cite
your method ... One could for ... create a small set of variants and analyse these with
one or two of the "common" tools to predict the deleteriousness of SNVs (e.g.
PolyPhen2 and MutationTaster2, since these are generally considered the most
accurate ones) and then check if there are disease variants predicted as "harmless" by
these tools (i.e. false negative) which are then correctly seen as locally maximal
frustrated by your method. Or any other way how it can be shown that the method is
indeed useful for the analysis of high-throughput data (e.g. compare with other existing
"structural prediction" tools, if those exist).



@O  Frustr (true pos | false pos)
@O PolyPhen (true pos | potent. | false pos)
@O  SIFT(true pos | false pos)
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Neutrophil cytosol factor 1 (pdb 1KQ6)
o e
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| I | — I | I
1 21 41 61 81 101 121

Residue ID

+ (reminder on nets disc)
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Acyl-CoA-dehydrogenase

deficiency
PDB SNPs ResPos |origR | mutRe
es S

2VIG chr12:121176108:| 217 MET |[ARG -1.802
T:G

2VIG chr12:121174892:| 105 ILE ASN -2.855
T:A

2VIG chrl12:121176421:|294 ALA |ASP -1.728
CA

2VIG chr12:121177182:|390 ILE MET |-2.909
C.G

2VIG chr12:121177150:|380 ARG |[TRP -5.352
CT

2VIEGMD 3R qisrupting oere reggues todiferenigxtentingas
C:T particullar disease

2VIG chr12:121176633:| 315 ALA |VAL 0.297
C.T

(0 o]




Acyl-CoA-dehydrogenase
deficiencv
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Autoimmune
Lymphoproliferative Syndrome

PDB SNPs ResPos |origR | mutRe
es S

3EZQ chr10:90773977: | 260 ASP | ASN -0.615
G:A

3EZQ chr10:90773978: | 260 ASP | GLY -2.129
A:G

3EZQ chr10:90773977: | 260 ASP | HIS -1.355
G:C

3EZQ chr10:90774008:C| 270 THR |ILE 0.396
T

3EZQ chr10:90774008:C| 270 THR | LYS -0.044
A

3EZQ chr10:90774002: |268 GLN [PRO -0.334

HGMD SNP€ disrupting surfgce residues to different extent.
3EZQ chr10:90774050:T | 284 LEU |PRO 0.015

:C




Autoimmune
Lymphoproliferative Syndrome
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TSG Driver disrupting core residues : NOTCH1

gene

PDB |[SNPs ResPo | origRes | mutR cancerTyp
S es e

2VJ3 | chr9:139412263: (461 CYS TYR -2.813 |Head &
C:T Neck

2VJ3 |(chr9:139412359:| 429 CYS TYR |-3.477 |Head &
C:T Neck

2VJ3 | chr9:139412360: (429 CYS SER -1.572 |Lung
AT

2VJ3 | chr9:139412299: (449 CYS SER -1.085 |Head &
C:T Neck

12
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Oncogene Driver disrupting surface residues : KRAS gene

PDB |[SNPs ResPo | origRes | mutR cancerTyp
S es e

4DSO |[chr12:25398213: (36 ILE LEU |-0.928 |Esophage
T:A al

4DSO |chr12:25380240: (73 ARG MET |[-2.495 |Astrocyto
C:A ma

4DSO | chr12:25398211: (36 ILE MET |-3.631 [AML
T:C

4DSO |chr12:25378603:|132 ASP GLY |[-1.408 |Stomach
T:C

12
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Potential causes of outlier error rates

single-exon genes (often associated w/pgenes) = duplications 2 low
mappability scores
low mappability scores? = check using intersect bed w/encode in UCSC
Genome Browser. Genome browser has a track for mappability = first
download and check w/intersect bed?
exon lengths from same genome build? In any case GTEx is reporting in GENE
read counts
With BAM file as input, GTEx uses RNA-SeQC: “Expression levels were
produced at the gene and exon level in RPKM units using RNA-SeQC”

- Black box & confounding factors (GC bias, mapability, uniqueness, etc)

Misc Notes

Strange that processed read counts data are not available at the GTEx Portal
BAM files not available to re-compute RPKM from RNA-SeqC

GTEx: tophat/bowtie, though will be STAR 2.4.2a in v7 (CommonMind= STAR)
PsychENCODE currently processing all to be uniform?



Framingham data (miRNA-eQTLs)

coding_syn (yellow) vs.
missense (cyan); p=3.2e-3

Density
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