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between the spins. The simplest energy describing the interactions between two spins, one on
the ith atom, Si, and on another, usually neighboring atom jth, Sj, has the form Eij=−JijSiSj
where the two choices for Si and Sj are ±1, i.e. up or down. If Jij is positive, the low-energy
state aligns the two spins in the same direction; if Jij is negative the spins prefer to point in op-
posite directions.
If we have a large magnet the energy can be taken as the sum of the individual (pair) interactions

E=−∑i≠j JijSiSj. The potentially frustrating problem to solve then is, at low temperature, what is
the lowest energy arrangement of the up and down spins that can be reached dynamically? (See
Fig. 2). This problem is ‘solved’ by the system when it is cooled and random thermal motions
allow it to try out various configurations or arrangements of the spins, according to their energy.
If all the Jij are positive, it is easy even for people to see the answer: the lowest energy state has

all the spins pointing in the same direction – they are either all up or all down. What if all (or even
some) of the Jij’s are negative? Now things seem to be tricky, but sometimes people can figure out
the answer pretty quickly for certain situations. Consider first what turns out to be an easy prob-
lem: suppose the atoms bearing the spins are situated on a simple square lattice and all the Jij are
negative. In this case, an interlaced checkerboard of up and down spins has the lowest energy and
minimizes simultaneously every local interaction Eij. The possible conflict between different local
interactions can be resolved (see Fig. 2). The resulting pattern is called an anti-ferromagnet. This
solution, while it can be quickly checked by anyone, was not really that easy to see a priori, and
indeed (along with other insights) figuring out this pattern netted its discoverer, Louis Neel, a
Nobel laureate in Physics (Néel, 1970). Although it takes at least a few moments for humans
to see the answer for the square lattice antiferromagnet, the system itself has a much easier
time figuring out what to do. When an antiferromagnet is cooled below a certain temperature
it orders spontaneously and fairly quickly.
But antiferromagnets on other lattices can be more complex than the uniform square lattice

antiferromagnet case. Imagine the spins reside on atoms situated on a triangular lattice with all
antiferromagnetic interactions (Fig. 2). Already a single triangle of the lattice shows the problem.
There is no way to arrange the spins, so that every component interaction can simultaneously be
minimized; always at least one interaction must be still in a high-energy state. We would say the
individual triangle is ‘frustrated’.
What happens for a big lattice of frustrated triangles? In the strictly two-dimensional system,

one finds a huge degeneracy of possibilities. There is no unique ground state. This would lead to

Fig. 2. Frustration entered the physics lexicon in the study of magnets. The arrows represent spins that can
be in any two states: up or down. Favorable antiferromagnetic interactions between spins are represented by
squiggly lines. The potentially frustrating problem is: what is the lowest energy arrangement of the up and
down spins that can be reached dynamically? On the left, the particles are arranged on a rectangular lattice.
How would you set the spins such that all local interactions are satisfied? What happens if the particles are
arranged on a triangular lattice, as shown on the right? There is no way to arrange the spins so that every
component interaction can be minimized. The triangle is ‘frustrated’.
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an apparent contradiction to the Third Law of Thermodynamics, which requires entropy to
vanish at absolute zero, implying a unique ground state. Wannier showed that T=0 was a critical
point for the triangular antiferromagnet and thus there would be large length scale fluctuations
even at low temperature (Wannier, 1950a). In real three-dimensional systems, weaker interactions
between planes of spins restore the Third Law and lead to ordering to a unique lowest energy
state, but the energies required to excite the system from the ground state now depend only
on the weak interactions and so are much smaller than you would otherwise expect. The kind
of ordering found in such three-dimensional systems is also very complex and generally hard
to predict with precision (Collins & Petrenko, 1997).
You might think the triangular antiferromagnet case is special because of the exact symmetry

of the frustration and indeed it is. Without symmetry, frustration and degeneracy still go together
but manifest themselves in a very different way: very slow dynamics emerges that gives the system
difficulty reaching equilibrium at low temperatures. Although there is a ground state it can be
hard to find. Such a system is called a ‘spin glass’. The models that are simplest to describe
place spins on a simple lattice and at random assign some bonds to be ferromagnetic and others
to be antiferromagnetic (Fig. 3). A particular assignment of bonds is analogous to a sophism
having a particular combination of logical connectors (AND, NOT, OR. . .). Although there
are numerous approaches for finding the low-energy states of such a magnet, in the general
case all known algorithms take a very long time. This time scales up exponentially with the
size of the magnet. The reason for this slowness is there are many choices of spin assignments
that have similar energies that are relatively stable but that are globally quite dissimilar. It is
difficult for the system to carry out such rearrangements between degenerate states. How does
frustration lead to barriers? In fact, the locality of moves makes this hard to understand but
you can get some intuition from a weakly frustrated spin system with only a few frustrated inter-
actions like the example shown in Fig. 3. Since most of the bonds in Fig. 3a are ferromagnetic, at
low temperature most of the spins will be parallel, let us say oriented up. However, some

Fig. 3. Frustration leads to barriers in the energy landscape. The arrows represent spins that can be in any
two states on a rectangular lattice. Favorable ferromagnetic interactions are represented by straight lines
antiferromagnetic interactions by squiggly lines. In this case most of the bonds are ferromagnetic so at
low temperature most of the spins will be parallel. Two choices of spin assignments are shown. These
have similar energies, are relatively stable, but they are globally dissimilar. At left most spins are down, at
right most spins are up. In both cases, the same number of interactions remains locally unsatisfied (red
dots). There are two ways of arranging the ‘misaligned’ spins. To rearrange from one to the other a very
complicated set of spin changes must be made. This rearrangement is entropically disfavored at high
temperature and energetically disfavored at low temperature. Many large-scale moves must be made for
the system to find out which arrangement or set of arrangements are most stable. Although there is a
ground state it can be hard to find because of the very slow dynamics that emerges.
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Results

Creation of DynaSIN v1.0
As part of our study here, we expanded SIN v1.0,
created earlier by Kim et al.,3 to not only include
more mappings for yeast but also include human
and E. coli in the analysis, thus creating a high-con-
fidence SIN v2.0 (Table I). To do so, we first filtered
a high-confidence interaction set for human from
BioGrid (2.0.44) by including only those interactions
that were at least reported in vivo and then removed
the redundant ones. For consistency, we then used

Figure 1. Flowchart for generating DynaSIN. We start with the interaction network. The information about the interfaces from

the PDB is then mapped onto the network. This enables classification of edges as permanent (those associated with a unique

interface, dark blue solid edges) and transient interactions (those which share an interface, light blue dotted edges). Nodes

are also classified into singlish-interface (those with one or two interfaces, light blue circles) and multi-interface (those with

more than two interfaces, dark blue squares) proteins. This structural annotation of nodes and edges gives us the structural

interaction network. Next, all the alternate conformations of the proteins, whenever available, are aligned with the structure in

the complex. The nodes that adopt alternate conformations are shown in yellow. Because of these alternate conformations,

some interactions are likely to be affected by the conflicting motions (shown by solid red edges), whereas compatible motions

do not affect the associated interactions (shown by dotted green edges).

Table I. Size of the Dataset Used in This Study

Human Yeast

# of edges in SIN 2.0 Transient 6728 1,172
Permanent 1780 356

# of nodes in SIN 2.0 Non-hub 1348 297
Singlish-interface 597 142
Multi-interface 316 40

# of proteins with
alternate
conformations

Non-hub 66 32
Singlish-interface 88 34
Multi-interface 60 24

# of edges with
motions

Conflicting 228 30
Compatible 354 48

Bhardwaj et al. PROTEIN SCIENCE VOL 20:1745—1754 1747
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with hinges. Alternatively, the local frustration may destabilize a part of the protein in favor of
an ensemble of rather high entropy. In other words, a local region can locally unfold or
‘crack’. This possibility has been entertained previously (Miyashita et al. 2003) and elegantly
explains the observations of the way denaturants can catalyze conformational changes (Zhang
et al. 1997). Resolving experimentally the issue of hinges versus cracks requires an analysis of
the effect that local mutations exert on the conformational kinetics (Whitford et al. 2008).
Adenylate kinase is celebrated example of large-scale conformational change related to a func-

tional transition. The gross opening and closing of this protein requires at least two reaction co-
ordinates to be taken into account. Steered molecular dynamics calculations have identified

Fig. 24. Frustration in prototypic allosteric proteins. Hemoglobin is a tetrameric protein in which near
rigid-body rotation allows symmetrical packing of subunits to occur. In this multimeric protein, the
interface between the subunits is not frustrated in either form. Highly frustrated interactions do occur
internally in each subunit near the heme-binding site. This is a classical example of a Wyman–Monod
view of symmetry leading to near degeneracy, for which allostery does not depend on frustration. Below,
the case of adenylate kinase, a protein that undergoes a large-scale conformational transition upon
binding substrates. Steered molecular dynamics identified locations where ‘hinge’ motions are believed to
occur, shown here with blue arrows (Henzler-Wildman et al. 2007). An extensive minimally frustrated
network of contacts rigidifies the molecule in the closed form, and highly frustrated regions co-locate
with the hinges. Motion of adenylate kinase along the low-frequency normal modes contributing to the
closure accumulates stress in some regions (Miyashita et al. 2003). A high-stress region can ‘crack’ or
locally unfold releasing the strain and catalyzing the motion. This region is highly frustrated in both
forms. The presence of interactions that conflict with folding an enzyme is a general theme in the
realization of effective catalysts. Redrawn with the permission from Ferreiro et al. (2011).
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At the level of a single residue, a frustration index can be assigned to each residue via such a set
of mutations as

Fi =
ET ,N
i − kET ,U

i ′
l

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1/N

∑n
k=1(E

T,U
i ′ − kET ,U

i ′ l)2
√ . (6)

Here ET,N is the total energy of the protein in the native configuration, taken as
ET ,N =

∑N
k=i (Ei;k

contact + Ei;k
water) + Ei

burial, according to the tertiary interaction terms of the
associative memory Hamiltonean with water mediated interactions (AMW) energy function
(Papoian et al. 2003a). This energy considers all the interactions that residue i makes with residues
k, either in a direct contact, Ei;k

contact or in a water-mediated interaction, Ei;k
water and via a single-

body burial energy term, Ei
burial. The average energy of the decoys kET,U

i ′ l is computed by
mutating residue i to every other possible residue. As the 20 genetically coded amino acids are
not all equally probable, the decoy energy is calculated with weights according to the amino
acid composition of the chain. These mutations are evaluated from the sequence-specific contact
and burial terms from the AMW force field with parameters λi , ri,k ,ρi that correspond to the
amino acid identity, interaction distance, and density, respectively (Papoian et al. 2003a).
Similar recipes could be used for other coarse-grained energy functions.
In the case of pairs of residues, we ask: how favorable is the actual native pair relative to other

possible interactions? To compute the frustration index for interacting pairs of amino acids i,j
simultaneous mutations on residues i and j are made. We have proposed two related but comp-
lementary ways for localizing frustration at the pairwise contact level. These ways differ in how
the set of decoys is constructed. In one choice, the decoy set is made by randomizing only the
identities of the interacting amino acids i,j, keeping all other interaction parameters at their native
value. This scheme effectively evaluates every possible mutation of the amino acid pair that forms
a particular contact in a robustly fixed structure. We call the resulting index the ‘mutational frus-
tration’:

Fm
ij =

ET ,N
i,j − kET,U

i ′,j ′ l!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1/N

∑n
k=1(E

T ,U
i ′,j ′ − kET,U

i ′,j ′ l)2
√ . (7)

The decoy energy distribution is calculated by randomly selecting amino acid identities from
the protein composition and fixing the density ρi and the pairwise distances ri , j to the native
conformation. It is worth noting that the energy change upon pair mutation not only comes
directly from the particular contact probed but also changes through interactions of each resi-
due with other residues not in the pair, as those contributions may also vary upon mutation.
One advantage of the mutational frustration index is that, in principle, this local measure of frus-
tration also could be experimentally determined in the laboratory by combinatorial protein
engineering.
A second way of quantifying pairwise local frustration imagines that the residues are not only

changed in identity, but also can be displaced in location: how favorable is the native interaction
between two residues in the native structure relative to other interactions these residues could
form in globally different distinct compact structures? The energy variance thus reflects contribu-
tions from the energies of molten globule conformations of the same polypeptide chain. For
this index, specially suitable for examining alternative tertiary structures, the decoy set involves
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Abstract. Biomolecules are the prime information processing elements of living matter.
Most of these inanimate systems are polymers that compute their own structures and dynamics
using as input seemingly random character strings of their sequence, following which they
coalesce and perform integrated cellular functions. In large computational systems with finite
interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can
lead to quite complex structures and behaviors, leading to the concept of frustration in condensed
matter. We present here some basic ideas about frustration in biomolecules and how the
frustration concept leads to a better appreciation of many aspects of the architecture of
biomolecules, and especially how biomolecular structure connects to function by means of
localized frustration. These ideas are simultaneously both seductively simple and perilously subtle
to grasp completely. The energy landscape theory of protein folding provides a framework for
quantifying frustration in large systems and has been implemented at many levels of description.
We first review the notion of frustration from the areas of abstract logic and its uses in simple
condensed matter systems. We discuss then how the frustration concept applies specifically to
heteropolymers, testing folding landscape theory in computer simulations of protein models and
in experimentally accessible systems. Studying the aspects of frustration averaged over many
proteins provides ways to infer energy functions useful for reliable structure prediction.
We discuss how frustration affects folding mechanisms. We review here how the biological
functions of proteins are related to subtle local physical frustration effects and how frustration
influences the appearance of metastable states, the nature of binding processes, catalysis and
allosteric transitions. In this review, we also emphasize that frustration, far from being always a
bad thing, is an essential feature of biomolecules that allows dynamics to be harnessed for
function. In this way, we hope to illustrate how Frustration is a fundamental concept in
molecular biology.
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Natural protein domains must be sufficiently stable to fold but
often need to be locally unstable to function. Overall, strong ener-
getic conflicts areminimized in native states satisfying the principle
of minimal frustration. Local violations of this principle open up
possibilities to form the complex multifunnel energy landscapes
needed for large-scale conformational changes. We survey the
local frustration patterns of allosteric domains and show that
the regions that reconfigure are often enriched in patches of highly
frustrated interactions, consistent both with the idea that these
locally frustrated regions may act as specific hinges or that proteins
may “crack” in these locations. On the other hand, the symmetry
of multimeric protein assemblies allows near degeneracy by recon-
figuring while maintaining minimally frustrated interactions.
We also anecdotally examine some specific examples of complex
conformational changes and speculate on the role of frustration
in the kinetics of allosteric change.

minimal frustration principle ∣ protein folding ∣ protein function

Allostery and large-scale conformational changes are wide-
spread in molecular biology but historically have been

considered to be exceptional and somewhat mysterious. In fact,
cryobiochemical (1) and single molecule (2) experiments show
that the underlying energy landscapes of all biomolecules are gen-
erally quite complex (3). These findings surprised many because
there has been so much success in modeling even large pieces of
biological machinery as simple chemical entities obeying elemen-
tary laws of equilibrium and kinetics (4). The mystery of allostery
was thus a first hint of landscape complexity (5). In contrast to
experimentalists, who were surprised by emergent complexity,
theorists are more surprised by the seeming simplicity of the
free energy landscape of proteins at physiological temperatures.
Theorists expect that the apparent randomness of a protein se-
quence will result in many competing forces between residues,
and thus structurally disparate states should be at least transiently
populated (6). Indeed statistical mechanical theory suggests
completely random heteropolymers have rugged landscapes, like
glasses, which provide paradigms of complex kinetics (7–9). The
resolution of this dialectic lies in evolution: Proteins emerge from
selected sequences that give rise to organized energy landscapes.
Most of this organization encodes the ability of the molecule
to spontaneously find a fairly specific (although decidedly not
unique) configuration, the so-called folded or average native
structure. By having specific structures, proteins become limited
in their range of interaction partners thus allowing complex net-
works of biological interactions to be built up. Overall, the energy
landscapes of proteins resemble a rough funnel leading toward
the native state (10, 11). This funnel structure is only possible
for those selected sequences that are chosen so that energetic
conflicts are for the most part avoided and the native structure
is more stable than expected for random associating residues.
This thesis is known as the “principle of minimal frustration”
(6). If the minimal frustration principle is satisfied everywhere,
the protein molecule becomes a beautiful sculpture with a ten-
dency to remain intact and move as a rigid body. We will explore

here how local violations of the minimal frustration principle
open up possibilities for more complex energy landscapes needed
for allostery and large-scale conformational changes (12, 13).

Multiple funnels to structurally distinct low-free-energy states
can also be achieved by other mechanisms (14), symmetry being
the main route to such degeneracy (15). Nearly rigid macromo-
lecular subunits can pack in a number of symmetry equivalent
ways with similar free energies. This mathematical phenomenon
is the core of the brilliant insight of Monod et al. (16) which
spotlighted symmetric multimeric proteins as prime candidates
for allostery.

To investigate the role of frustration in large-scale conforma-
tional changes, we need to locate sites both where the minimal
frustration principle is strongly violated as well as the web of mini-
mally frustrated interactions that impart rigidity to much of the
protein structure. A simple heuristic based on energy landscape
theory proposed by us earlier is able to do this localization. We
previously showed that some clusters of highly frustrated interac-
tions signal binding sites for protein–protein assembly and recog-
nition (17). Using the same algorithm, we now survey in this
paper a large number of proteins that undergo large-scale con-
figurational motions, generally as monomers. Our survey sample
consists of proteins crystallized in pairs of alternative forms (18).
Usually the alternate structures are stabilized by adding appro-
priate ligands, although in some cases, modest sequences changes
have allowed the capture in the crystal of the alternate configura-
tions. We show that the more rigid parts of the proteins, which
are locally structurally superimposable, are connected by a dense
web of largely minimally frustrated interactions. On the other
hand, regions that are highly frustrated often reconfigure locally
between the two forms. In some cases, frustrated regions display
rather extensive reconfigurations of compact regions. In other
cases, the frustrated clusters localize around apparent pivot
points between the more rigid elements. The accompanying
structural change is then a combination of local rearrangements
in the vicinity of these pivots and large-amplitude rigid-body
motions through space of the minimally frustrated elements
neighboring them. The motion thus superficially resembles a
macroscopic hinge. The frustration analysis is consistent both
with the idea that these locally frustrated regions may be specific
hinges or that the proteins crack in these locations (12). Cracking
is encouraged by the low local stability that accompanies high
local frustration (17, 19).

We first briefly review the algorithm for localizing frustration
and the criteria we use for locating residues locally displaced
between the pairs of proteins. We then show that frustrated
clusters are indeed colocated with those residues whose local
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Frustration in biomolecules
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Abstract. Biomolecules are the prime information processing elements of living matter.
Most of these inanimate systems are polymers that compute their own structures and dynamics
using as input seemingly random character strings of their sequence, following which they
coalesce and perform integrated cellular functions. In large computational systems with finite
interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can
lead to quite complex structures and behaviors, leading to the concept of frustration in condensed
matter. We present here some basic ideas about frustration in biomolecules and how the
frustration concept leads to a better appreciation of many aspects of the architecture of
biomolecules, and especially how biomolecular structure connects to function by means of
localized frustration. These ideas are simultaneously both seductively simple and perilously subtle
to grasp completely. The energy landscape theory of protein folding provides a framework for
quantifying frustration in large systems and has been implemented at many levels of description.
We first review the notion of frustration from the areas of abstract logic and its uses in simple
condensed matter systems. We discuss then how the frustration concept applies specifically to
heteropolymers, testing folding landscape theory in computer simulations of protein models and
in experimentally accessible systems. Studying the aspects of frustration averaged over many
proteins provides ways to infer energy functions useful for reliable structure prediction.
We discuss how frustration affects folding mechanisms. We review here how the biological
functions of proteins are related to subtle local physical frustration effects and how frustration
influences the appearance of metastable states, the nature of binding processes, catalysis and
allosteric transitions. In this review, we also emphasize that frustration, far from being always a
bad thing, is an essential feature of biomolecules that allows dynamics to be harnessed for
function. In this way, we hope to illustrate how Frustration is a fundamental concept in
molecular biology.
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Natural protein domains must be sufficiently stable to fold but
often need to be locally unstable to function. Overall, strong ener-
getic conflicts areminimized in native states satisfying the principle
of minimal frustration. Local violations of this principle open up
possibilities to form the complex multifunnel energy landscapes
needed for large-scale conformational changes. We survey the
local frustration patterns of allosteric domains and show that
the regions that reconfigure are often enriched in patches of highly
frustrated interactions, consistent both with the idea that these
locally frustrated regions may act as specific hinges or that proteins
may “crack” in these locations. On the other hand, the symmetry
of multimeric protein assemblies allows near degeneracy by recon-
figuring while maintaining minimally frustrated interactions.
We also anecdotally examine some specific examples of complex
conformational changes and speculate on the role of frustration
in the kinetics of allosteric change.

minimal frustration principle ∣ protein folding ∣ protein function

Allostery and large-scale conformational changes are wide-
spread in molecular biology but historically have been

considered to be exceptional and somewhat mysterious. In fact,
cryobiochemical (1) and single molecule (2) experiments show
that the underlying energy landscapes of all biomolecules are gen-
erally quite complex (3). These findings surprised many because
there has been so much success in modeling even large pieces of
biological machinery as simple chemical entities obeying elemen-
tary laws of equilibrium and kinetics (4). The mystery of allostery
was thus a first hint of landscape complexity (5). In contrast to
experimentalists, who were surprised by emergent complexity,
theorists are more surprised by the seeming simplicity of the
free energy landscape of proteins at physiological temperatures.
Theorists expect that the apparent randomness of a protein se-
quence will result in many competing forces between residues,
and thus structurally disparate states should be at least transiently
populated (6). Indeed statistical mechanical theory suggests
completely random heteropolymers have rugged landscapes, like
glasses, which provide paradigms of complex kinetics (7–9). The
resolution of this dialectic lies in evolution: Proteins emerge from
selected sequences that give rise to organized energy landscapes.
Most of this organization encodes the ability of the molecule
to spontaneously find a fairly specific (although decidedly not
unique) configuration, the so-called folded or average native
structure. By having specific structures, proteins become limited
in their range of interaction partners thus allowing complex net-
works of biological interactions to be built up. Overall, the energy
landscapes of proteins resemble a rough funnel leading toward
the native state (10, 11). This funnel structure is only possible
for those selected sequences that are chosen so that energetic
conflicts are for the most part avoided and the native structure
is more stable than expected for random associating residues.
This thesis is known as the “principle of minimal frustration”
(6). If the minimal frustration principle is satisfied everywhere,
the protein molecule becomes a beautiful sculpture with a ten-
dency to remain intact and move as a rigid body. We will explore

here how local violations of the minimal frustration principle
open up possibilities for more complex energy landscapes needed
for allostery and large-scale conformational changes (12, 13).

Multiple funnels to structurally distinct low-free-energy states
can also be achieved by other mechanisms (14), symmetry being
the main route to such degeneracy (15). Nearly rigid macromo-
lecular subunits can pack in a number of symmetry equivalent
ways with similar free energies. This mathematical phenomenon
is the core of the brilliant insight of Monod et al. (16) which
spotlighted symmetric multimeric proteins as prime candidates
for allostery.

To investigate the role of frustration in large-scale conforma-
tional changes, we need to locate sites both where the minimal
frustration principle is strongly violated as well as the web of mini-
mally frustrated interactions that impart rigidity to much of the
protein structure. A simple heuristic based on energy landscape
theory proposed by us earlier is able to do this localization. We
previously showed that some clusters of highly frustrated interac-
tions signal binding sites for protein–protein assembly and recog-
nition (17). Using the same algorithm, we now survey in this
paper a large number of proteins that undergo large-scale con-
figurational motions, generally as monomers. Our survey sample
consists of proteins crystallized in pairs of alternative forms (18).
Usually the alternate structures are stabilized by adding appro-
priate ligands, although in some cases, modest sequences changes
have allowed the capture in the crystal of the alternate configura-
tions. We show that the more rigid parts of the proteins, which
are locally structurally superimposable, are connected by a dense
web of largely minimally frustrated interactions. On the other
hand, regions that are highly frustrated often reconfigure locally
between the two forms. In some cases, frustrated regions display
rather extensive reconfigurations of compact regions. In other
cases, the frustrated clusters localize around apparent pivot
points between the more rigid elements. The accompanying
structural change is then a combination of local rearrangements
in the vicinity of these pivots and large-amplitude rigid-body
motions through space of the minimally frustrated elements
neighboring them. The motion thus superficially resembles a
macroscopic hinge. The frustration analysis is consistent both
with the idea that these locally frustrated regions may be specific
hinges or that the proteins crack in these locations (12). Cracking
is encouraged by the low local stability that accompanies high
local frustration (17, 19).

We first briefly review the algorithm for localizing frustration
and the criteria we use for locating residues locally displaced
between the pairs of proteins. We then show that frustrated
clusters are indeed colocated with those residues whose local
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We propose a method of quantifying the degree of frustration
manifested by spatially local interactions in protein biomolecules.
This method of localization smoothly generalizes the global crite-
rion for an energy landscape to be funneled to the native state,
which is in keeping with the principle of minimal frustration. A
survey of the structural database shows that natural proteins are
multiply connected by a web of local interactions that are individ-
ually minimally frustrated. In contrast, highly frustrated interac-
tions are found clustered on the surface, often near binding
sites. These binding sites become less frustrated upon complex
formation.

protein folding ! protein function ! energy landscape

The complexity of protein sequences suggests they may con-
tain conflicting signals encoding separately folding and

function. Yet searching the immense energy landscape of a
protein for the native structure would be slow if the landscape
were very rugged due to many conflicting local interactions (1,
2). Experimental folding kinetics suggests that proteins indeed
do not possess the many traps that such conflicts would cause but
instead are ‘‘minimally frustrated’’ (1). The notion of minimal
frustration has been made quantitatively precise by using the
statistical mechanics of spin glasses (3). A global criterion for the
landscape to be funneled to the native state emerges from this
theory, which hinges on a ratio of the energy difference between
the native structure from alternatives to the magnitude of the
fluctuations of the decoy energies (3). This global Z-score
criterion provides a practical, quantitative route to decoding
effective energy functions for predicting protein structure from
sequence (3, 4), predicting folding intermediates (5, 6), and
designing de novo foldable proteins (7, 8).

Minimal frustration implies protein structure also is robust to
mutation. However, neither the proteins’ kinetic foldability nor
their mutational robustness deny the possibility that some frus-
tration from conflicting signals may be present locally in some
proteins. Such local frustration, being tolerable, might naturally
arise from random neutral evolution. Local frustration also
could be a functionally useful adaptation. The possible adaptive
value for a molecule to have spatially localized frustration arises
from the way such frustration may sculpt protein dynamics for
specific functions. In a monomeric protein the alternate config-
urations caused by locally frustrating an otherwise largely un-
frustrated structure could provide specific control of the thermal
motions, so the protein can function much like a macroscopic
machine having only a few moving parts. Alternatively, a site
frustrated in a monomeric protein may become less frustrated in
the final larger assembly containing that protein, thus guiding
specific association (9, 10). Thermodynamic folding studies of
enzymes also show that catalytic sites exhibit signs of frustration
(31, 32). These arguments suggest that quantitative methods for
localizing frustration in proteins can give insights into the
functional constraints on the evolution of protein energy land-
scapes. Protein engineering studies of folding kinetics provide
such a way of localizing where frustration occurs through ! value
analysis (11, 12). Negative ! values or ! values exceeding 1

identify frustrated sites. It appears that frustrated sites identified
by anomalous kinetics are indeed often implicated in function
(11, 33). In the absence of such experiments, finding sites of
frustration requires the availability of a sufficiently reliable
energy function, because significant error in the energy function
could lead to the appearance of spurious frustration even where
true frustration is absent. Beyond requiring an accurate energy
function, spatially localizing frustration also requires a mathe-
matical scheme to generalize the global aspects of energy
landscape theory so as to apply to only local parts of the protein.
Because folding is a collective process, ultimately locking most
of the molecule together, the manner we choose of breaking the
energy into parts may not be operationally unique. Nevertheless,
in this paper we will provide a heuristic but quantitative ap-
proach to localizing frustration in folded protein structures that
seems both to be reasonable and to provide useful structural
insights.

We develop a spatially local version of the global gap criterion
formulation of the minimal frustration principle. To be precise,
we compare the contribution to the extra stabilization energy
ascribed to a given pair of amino acids in the native protein to
the statistics of the energies that would be found by placing
different residues in the same native location or by creating a
different environment for the pair. If there is a sufficient
additional stabilization for an individual native pair as normal-
ized by the typical energy fluctuation (in accord with the global
Z-score criterion for minimal frustration) the local interaction
can be called minimally frustrated. The precise magnitude of the
threshold to be designated minimally frustrated depends on the
configurational entropy that must be overcome when the protein
folds. If the stabilization of the native pair lies in the middle of
the distribution of alternatives, the interaction can be considered
‘‘neutral.’’ On the other hand, if the native pair is sufficiently
destabilizing compared with the other possibilities we will call
the pair interaction ‘‘frustrated.’’ Such a high level of local
frustration may be the result of an evolutionary constraint that
conflicts with robust folding. Because of the nonlinearity of
entropy loss on assembly, not all of the individual pair interac-
tions in a protein need to be minimally frustrated for the
landscape as a whole to be funneled. Indeed, we find that this
localized version of the landscape folding criterion, when com-
bined with a reasonably accurate water-mediated potential
inferred for structure prediction by a energy landscape optimi-
zation strategy (10), suggests that 40% of interactions individ-
ually can be considered minimally frustrated, 45% are neutral,
and only a small fraction can be called highly frustrated.
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Figure 1. Overview of SNV categories and their relative proportions within the analyzed data pool. (A) Flowchart representing the different categories and
origins of the variants analyzed in this study. A given non-synonymous SNV can be classi!ed as benign or disease-related on the basis of its provenance
(i.e. whether it is taken from 1000 Genomes, ExAC, HGMD or Pan-cancer variant data sets). Relative proportions of SNVs from various data sets (B)
prior to and (C) after mapping SNVs to high-resolution protein databank (PDB) structures.

acid favorably contributes to the energy of the system rela-
tive to all 20 possible amino acids at that position:

Fi = 〈ET, U
i 〉 − ET, N

i√
1/N

∑n
k = 1(ET, U

i − 〈ET, U
i 〉)

, where ET, N
i is the total

energy of the wild-type protein. This energy is calculated
using a function that includes an explicit water interaction

term, ET, N
i =

n∑
k%=i

(Ei ;k
contact + Ei ;k

water) + Ei
burial. This water-

mediated potential (44), describes the energies associated
with direct interactions between residues i and k (Ei ;k

contact),
as well as those with water-mediated interactions between
residues i and k (Ei ;k

water) and an energy term associated with
the burial of the residue (Ei

burial). The average energy of
the decoy conformations (〈ET, U

i 〉) is generated by mutating
the original residue i to each of the alternative possible 19
residues. The AMW potential includes different parameter
values for different residues, so the decoy energies calculated
vary based on the identity of the mutated residue.

This work"ow is computationally tractable when evalu-
ating !F values for large numbers of variants. Our bench-
mark calculations on 10,000 non-synonymous SNVs indi-
cate that we can map, build mutated models and calculate
!F values in ∼29 h on a single-core processor; speci!cally,
we used an E5-2660 v3 (2.60GHz) processor. This approach
is substantially more computationally tractable relative to
traditional molecular dynamics simulations. Thus, it can
readily be used to evaluate the effects of large numbers of
SNVs. We also provide source code for the work"ow on our
GitHub page (https://github.com/gersteinlab/frustration).

In Figure 2, we demonstrate an example case in which a
tryptophan residue at locus 31 within plastocyanin (PDB
ID 3CVD) is mutated to tyrosine. For the wild-type struc-
ture of this protein, 19 decoy energies are calculated by

changing the parameter values that are speci!c to each
amino acid within the potential function (note that, at
this stage, the structure is not altered or minimized in any
way). In this case, the energy computed using the wild-type
residue (ETRP) is substantially lower than the mean value
〈E〉 (rendering a positive value for !ETRP). Because !ETRP
is greater than 0, the wild-type residue is said to be ‘mini-
mally frustrated’.

This same protein is known to contain a disease-related
SNV at locus 31 (W31Y). To quantify the associated change
in frustration, we !rst introduce tyrosine at locus 31 in sil-
ico, and then use Modeler to generate a model of the mu-
tated structure. Thus, we now not only change the residue
at locus 31, but also the con!guration of the entire protein;
the new structure is the model of the mutated protein. In
this new energy landscape, the energy associated with the
residue at the mutated locus 31 is higher than the mean en-
ergy among all 20 amino acids within the modeled structure
(!E′

TYR < 0), suggesting that the mutated residue is ‘max-
imally frustrated’. We are primarily interested in the differ-
ence between these two states (!F). !F is proportional to
the difference between !E′

TYR and !ETRP. !!E is de!ned
to be the difference between the two energetic disparity mea-
sures (!!E = !E′

TYR − !ETRP). Here, !!E is less than 0,
suggesting that the frustration value is higher in the mutated
structure than that of the wild type.

Downstream analyses

In order to investigate the differential effects of SNVs in
various data sets, we ‘bin’ each SNV into distinct categories
based on their frustration indices and relative accessible sur-
face areas (RSASA) in the wild-type structure. SNVs are
classi!ed into three groups (all in wild-type structures): (i)
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1000 Genomes
core                         surface

ExAC
core                         surface

Conservation
measure

DAF
rare (common)

GERP
conserved (variable)

2267 (85)                 1570 (106)                              17972 (102)               11550 (83)     

1552 (287)              1132 (212)                              12165 (2174)             7637 (1406)

HGMD
core                       surface

Conservation
measure

   5158 (961)          1113 (221)GERP
conserved (variable)

PANCAN
core                       surface

SNV 
type

non-CAG

CAG

driver

2153

4140

877

1848

2767

486

Table 1. Summary statistics on the number of SNVs used in comparative analyses. Shown are variant 

counts for non-disease (top), HGMD (bottom-left), and pan-cancer SNVs (bottom-right).
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  "Another	
  known	
  issue	
  is	
  strong	
  annota4on	
  disparity	
  between	
  known	
  Mendelian	
  
disease	
  muta4ons	
  (e.g.	
  HGMD	
  disease	
  variants)	
  and	
  other	
  variants:	
  most	
  of	
  HGMD	
  
muta4ons	
  are	
  reported	
  in	
  a	
  small	
  subset	
  of	
  proteins,	
  while	
  majority	
  of	
  the	
  proteins	
  only	
  
have	
  fewer	
  and	
  mostly	
  benign	
  or	
  unknown	
  significance	
  variants	
  reported	
  for	
  them.	
  This	
  
creates	
  bias	
  when	
  performing	
  comparisons	
  between	
  the	
  two	
  func4onal	
  classes	
  of	
  
variants.	
  In	
  case	
  of	
  PDB-­‐mapped	
  variants,	
  such	
  annota4on	
  bias	
  might	
  have	
  been	
  
alleviated	
  to	
  some	
  extent	
  by	
  the	
  PDB	
  intrinsic	
  bias	
  (men4oned	
  above,	
  skews	
  PDB	
  &	
  
HGMD	
  data	
  towards	
  the	
  same	
  proteins)	
  but	
  it	
  requires	
  further	
  inves4ga4on.	
  Authors	
  
should	
  present	
  sta*s*cs	
  for	
  the	
  number	
  of	
  unique	
  proteins	
  and	
  the	
  distribu*on	
  
of	
  variants	
  in	
  the	
  unique	
  proteins	
  for	
  each	
  of	
  their	
  datasets.	
  They	
  should	
  also	
  
aVempt	
  to	
  perform	
  their	
  analysis	
  on	
  a	
  (semi-­‐)balanced	
  set(s)	
  of	
  variants,	
  using	
  
sets	
  of	
  proteins	
  where	
  both	
  disease	
  and	
  neutral	
  muta*ons	
  are	
  present.	
  See	
  
Grimm	
  et	
  al.	
  (2015)	
  Human	
  Mut.	
  36:513-­‐523	
  for	
  an	
  example	
  of	
  such	
  balanced	
  sets	
  and	
  
trends	
  analysis."	
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Figure S2: Histogram of the number of 1000 Genomes SNVs against the number of 
unique proteins. The histogram depicts the distribution of the number of distinct 
proteins in which non-synonymous 1000 Genomes SNVs may be mapped to high-quality 
crystal structures within the PDB. A total of 618 distinct proteins are available. 
Redundancy was removed by ensuring that no pair of proteins within this dataset shares 
more than 90% sequence identity. 

 

 

 

 

 

 
 
 
 
 
 
 

 
 
 
Figure S3: Histogram of the number of ExAC SNVs against the number of unique 
proteins. The histogram depicts the distribution of the number of distinct proteins in 
which non-synonymous ExAC SNVs may be mapped to high-quality crystal structures 
within the PDB. A total of 907 distinct proteins are available. Redundancy was removed 
by ensuring that no pair of proteins within this dataset shares more than 90% sequence 
identity. 
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Figure S3: Histogram of the number of ExAC SNVs against the number of unique 
proteins. The histogram depicts the distribution of the number of distinct proteins in 
which non-synonymous ExAC SNVs may be mapped to high-quality crystal structures 
within the PDB. A total of 907 distinct proteins are available. Redundancy was removed 
by ensuring that no pair of proteins within this dataset shares more than 90% sequence 
identity. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S4: Histogram of the number of HGMD SNVs against the number of unique 
proteins. The histogram depicts the distribution of the number of distinct proteins in 
which non-synonymous HGMD SNVs may be mapped to high-quality crystal structures 
within the PDB. A total of 293 distinct proteins are shown for clarity (there are a total of 
303 distinct proteins such that HGMD SNVs affect structures in the semi-balanced set, 
but displaying the remaining 10 proteins in the histogram below would make visual 
interpretation difficult, as they have extremely high SNV counts). Redundancy was 
removed by ensuring that no pair of proteins within this dataset shares more than 90% 
sequence identity. 

 

 

 
 
 
 
 
 
 
 
 

 
 
 
Figure S5: Comparisons between the ∆F distributions within the semi-balanced set 
of structures. Violin plots showing ∆F distributions associated with SNVs affecting core 
or surface residues of structures for which at least one SNV is taken from A) 1000 
Genomes & HGMD, B) ExAC & HGMD and C) HGMD & ExAC. These trends on the 
semi-balanced SNV dataset are consistent with observations reported in the main text. 
However, the smaller sample sizes within the semi-balanced set may result in poorer 
statistical significance. The white dots, black boxes and vertical lines represent the 
medians, interquartile ranges, and 95% confidence intervals of the ∆F distributions, 
respectively. 
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To evaluate the extent to which such effects manifest in
our set of TSGs and oncogenes, we applied frustration to

evaluate changes in local perturbation when SNVs impact
these distinct categories of driver genes (Figure 7A and B).
We observed that SNVs in TSGs induce stronger perturba-
tions in minimally frustrated core residues relative to sur-
face residues (Figure 7A; P-value = 4.765e-03 from two-
sample KS test). In contrast, SNVs in oncogenes induce
greater !F values within minimally frustrated residues in
the surface relative to core residues (Figure 7B; P-value =
1.91e-13 from two-sample KS test). Moreover, SNVs im-
pacting oncogenes lead to larger disruptions in favorable lo-
cal interactions compared to TSGs for minimally frustrated
surface residues (P-value = 2.3e-3 from two-sample KS
test). However, SNVs impacting TSGs lead to greater dis-
ruptions in favorable local interactions compared to onco-
genes affecting driver SNVs in core residues (P-value =
6.753e-13 from two-sample KS test).

Localized frustration as a means of complementing global
metrics

As discussed, existing structure-based methods for predict-
ing SNV deleteriousness rely on global metrics of protein
stability. These approaches may incorrectly predict known
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regions of the genome in an apparently random
fashion (28). Thus, at best, methods based on mu-
tation frequency can only prioritize genes for fur-
ther analysis but cannot unambiguously identify
driver genes that are mutated at relatively low
frequencies.

Further complicating matters, there are two
distinct meanings of the term “driver gene”
that are used in the cancer literature. The driver-
versus-passenger concept was originally used to
distinguish mutations that caused a selective
growth advantage from those that did not (29).
According to this definition, a gene that does not
harbor driver gene mutations cannot be a driver
gene. But many genes that contain few or no
driver gene mutations have been labeled driver
genes in the literature. These include genes that
are overexpressed, underexpressed, or epigenet-
ically altered in tumors, or those that enhance
or inhibit some aspect of tumorigenicity when
their expression is experimentally manipulated.
Though a subset of these genes may indeed
play an important role in the neoplastic pro-
cess, it is confusing to lump them all together
as driver genes.

To reconcile the two connotations of driver
genes, we suggest that genes suspected of increas-
ing the selective growth advantage of tumor cells
be categorized as either “Mut-driver genes” or
“Epi-driver genes.” Mut-driver genes contain a
sufficient number or type of driver gene muta-
tions to unambiguously distinguish them from
other genes. Epi-driver genes are expressed aber-

rantly in tumors but not frequently mutated; they
are altered through changes in DNA methyla-
tion or chromatin modification that persist as the
tumor cell divides.

A Ratiometric Method to Identify and
Classify Mut-Driver Genes
If mutation frequency, corrected for mutation
context, gene length, and other parameters, can-
not reliably identify modestly mutated driver
genes, what can? In our experience, the best
way to identify Mut-driver genes is through
their pattern of mutation rather than through
their mutation frequency. The patterns of mu-
tations in well-studied oncogenes and tumor
suppressor genes are highly characteristic and
nonrandom. Oncogenes are recurrently mu-
tated at the same amino acid positions, where-
as tumor suppressor genes are mutated through
protein-truncating alterations throughout their
length (Fig. 4 and table S2A).

On the basis of these mutation patterns rather
than frequencies, we can determine which of the
18,306 mutated genes containing a total of
404,863 subtle mutations that have been recorded
in the Catalogue of Somatic Mutations in Cancer
(COSMIC) database (30) are Mut-driver genes
and whether they are likely to function as onco-
genes or tumor suppressor genes. To be classified
as an oncogene, we simply require that >20% of
the recorded mutations in the gene are at re-
current positions and are missense (see legend to
table S2A). To be classified as a tumor suppres-

sor gene, we analogously require that >20% of
the recorded mutations in the gene are inac-
tivating. This “20/20 rule” is lenient in that all
well-documented cancer genes far surpass these
criteria (table S2A).

The following examples illustrate the value
of the 20/20 rule. When IDH1 mutations were
first identified in brain tumors, their role in tu-
morigenesis was unknown (2, 31). Initial func-
tional studies suggested that IDH1 was a tumor
suppressor gene and that mutations inactivated
this gene (32). However, nearly all of the muta-
tions in IDH1 were at the identical amino acid,
codon 132 (Fig. 4). As assessed by the 20/20
rule, this distribution unambiguously indicated
that IDH1 was an oncogene rather than a tumor
suppressor gene, and this conclusion was even-
tually supported by biochemical experiments
(33, 34). Another example is provided by muta-
tions in NOTCH1. In this case, some functional
studies suggested that NOTCH1 was an onco-
gene, whereas others suggested it was a tumor
suppressor gene (35, 36). The situation could be
clarified through the application of the 20/20
rule to NOTCH1 mutations in cancers. In “liq-
uid tumors” such as lymphomas and leuke-
mias, the mutations were often recurrent and did
not truncate the predicted protein (37). In squa-
mous cell carcinomas, the mutations were not
recurrent and were usually inactivating (38–40).
Thus, the genetic data clearly indicated that
NOTCH1 functions differently in different tumor
types. The idea that the same gene can function

ABD RBD C2 Helical Kinase

CCT BCT-Ag and E1A-binding E4F1 binding 5 aa repeats 

N C

PIK3CA

RB1

N C

1068 aa

928 aa

C
414 aa 

C
213 aa 

IDH1
N

Substrate binding sites 

VHL

N

=  Missense mutation
=  Truncating mutation

Fig. 4. Distribution of mutations in two oncogenes (PIK3CA and IDH1)
and two tumor suppressor genes (RB1 andVHL). The distribution of missense
mutations (red arrowheads) and truncating mutations (blue arrowheads) in rep-
resentative oncogenes and tumor suppressor genes are shown. The data were

collected from genome-wide studies annotated in the COSMIC database (release
version 61). For PIK3CA and IDH1, mutations obtained from the COSMIC database
were randomized by the Excel RAND function, and the first 50 are shown. For RB1
and VHL, all mutations recorded in COSMIC are plotted. aa, amino acids.
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Figure S6: Empirical distribution to predict deleterious SNVs. In order to determine 
an optimal threshold for discriminating between benign and deleterious SNVs using ΔF, 
we use a simple function to be optimized with respect to ΔF. Details of the simple 
formalism used are provided in SI section “S3: Threshold to identify potentially 
deleterious SNVs”. The optimum ΔF value obtained (ΔF = -1.221) is marked with a 
vertical dotted line. The blue density plot designates the ΔF values associated with benign 
SNVs from ExAC, and the red density plot designates the ΔF values associated with 
deleterious SNVs from HGMD. Both plots are normalized to have an integral of unity. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(15,044; Figure1C). In contrast, 4,041 SNVs in driver genes may be mapped to protein 

structures; these constitute 2% of the total structurally mapped SNVs (Figure1C). 

 

Supplementary Note S2:  ΔF distributions within the semi-balanced 
SNV dataset 
We also performed comparisons between 1000 Genomes, ExAC and HGMD variants 

using the semi-balanced dataset (details are provided in Materials & Methods). We find 

that, overall, the results obtained using this semi-balanced dataset are consistent with the 

∆F distributions obtained above (Fig S5). However, they lack statistical significance, 

potentially due to the smaller sample size of SNVs included in the semi-balanced set. 

 

Supplementary Note S3:  Threshold to identify potentially deleterious 
SNVs 
As discussed in the Results section of the main text, disease-related SNVs from HGMD 

generally induce more negative ΔF values relative to benign SNVs. Given a newly 

discovered SNV, is there a specific ΔF threshold that may optimally be used to classify 

SNVs as benign or deleterious? We address this question empirically by optimizing a 

simple function f(x) defined by two distributions (1): 

f(x) =  h(x) + e(x) 

Let ΔFHGMD denote the distribution of ΔF scores induced by HGMD SNVs. h(x) is 

defined to be the difference between the fraction of ΔFHGMD scores less than x 

(fract[ΔFHGMD < x]) and the fraction of ΔFHGMD scores greater than x (fract[ΔFHGMD > x]): 

h(x)  =  fract[ΔFHGMD < x])  -  fract[ΔFHGMD > x]) 

ΔFExAC is defined for the distribution of ΔF values associated with ExAC SNVs (note the 

reversed directions relative to the equation above): 

e(x)  =  fract[ΔFExAC > x])  -  fract[ΔFExAC < x]) 

In building the distribution of ΔFHGMD values, a random sample of HGMD SNVs was 

chosen in order to match the number of SNVs in the ΔFExAC distribution. The x that 

maximizes the function f(x) is taken as the ΔF threshold for predicting whether a newly 

discovered SNV is deleterious or benign. Using this approach, we find that this ideal 

threshold takes a value of ΔF = -1.2 

Given	
  an	
  SNV,	
  is	
  there	
  a	
  specific	
  ΔF	
  threshold	
  that	
  may	
  op1mally	
  be	
  used	
  to	
  
classify	
  SNVs	
  as	
  benign	
  or	
  deleterious?	
  

Kumar	
  et	
  al,	
  NAR	
  2016	
  

ΔF	
  

HGMD	
  
ExAC	
  

35	
  



single	
  chain	
  PDBs	
   Mul*-­‐	
  chain	
  PDBs	
  
PDB	
   #	
  HGMD	
  SNVs	
   PDB	
   #	
  HGMD	
  SNVs	
  
1T45	
   2	
   2VGB	
   2	
  
1V4S	
   15	
   3GXP	
   7	
  
1KQ6	
   1	
   1A4I	
   1	
  
3PXA	
   1	
   1IIL	
   1	
  
1AD6	
   1	
   2O4H	
   1	
  
2AMY	
   1	
   3HN3	
   1	
  
1OG5	
   1	
  
2X6U	
   1	
  

“There	
  are	
  methods	
  exis1ng	
  in	
  order	
  to	
  evaluate	
  poten1al	
  effects	
  of	
  low-­‐allele-­‐frequency	
  
variants	
  in	
  unbiased	
  ways	
  (SIFT,	
  PolyPhen2,	
  Muta1onTaster,	
  and	
  many	
  others).	
  I	
  would	
  like	
  

to	
  see	
  how	
  exactly	
  your	
  method	
  adds	
  up	
  to	
  this	
  ...	
  One	
  could	
  [use]	
  tools	
  to	
  predict	
  the	
  
deleteriousness	
  of	
  SNVs	
  (e.g.	
  PolyPhen2	
  and	
  Muta1onTaster2)	
  and	
  then	
  check	
  if	
  there	
  are	
  
disease	
  variants	
  predicted	
  as	
  "harmless"	
  by	
  these	
  tools	
  (i.e.	
  false	
  nega?ve)	
  which	
  are	
  then	
  

correctly	
  seen	
  as	
  locally	
  maximal	
  frustrated	
  by	
  your	
  method...”	
  

à Find	
  HGMD	
  SNVs	
  not	
  captured	
  by	
  PolyPhen	
  	
  
(yet	
  are	
  captured	
  through	
  frustra*on)	
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Figure S7: Linearized depiction of HGMD SNVs that constitute ΔF-rescued false 
negatives. Shown is a linear depiction of the distribution of HGMD SNVs (orange) 
predicted to be deleterious using a ΔF cutoff of -1.221, along with predictions from 
PolyPhen and SIFT. Heavy dotted lines demarcate loci in which both PolyPhen and SIFT 
provide false negatives (i.e., fail to predict deleteriousness), whereas light dotted lines 
designate SNVs for which either PolyPhen-2 or SIFT provide false negatives. The 
particular structure shown corresponds to human glucokinase (PDB ID: 1V4S).  
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Protein QTLs
(pQTLs). Genomic regions  
that carry one or more DNA 
sequence variants that 
influence the protein 
abundance of a given gene.

eQTL hot spots
Regions of the genome that 
contain more expression 
quantitative trait loci (eQTLs) 
than expected by chance.

Previous reviews have covered the various types of 
eQTLs and the ways in which they can be identified and 
fine-mapped13,35–37, the rich variety of molecular traits 
that can be assayed along the cascade of gene expression 
regulation38,39 and the ways to integrate these molecu-
lar traits in a systems genetics perspective40. Here, we 
review new insights into the molecular basis of eQTLs 
and the genetics of mRNA versus protein levels. We then 
present recent discoveries into the causal links between 
eQTLs and higher-order organismal phenotypes, such as 
physiology and disease. We describe recent experimen-
tal insights into eQTL causality (many of which were 

derived from model organisms) and close by presenting 
an overview of the emerging evidence for eQTL causality 
in human disease.

What are eQTLs?
eQTLs contain sequence variants that affect the expres-
sion of a gene. They are similar to other QTLs that can 
influence any given trait of interest (for example, height, 
growth rate and disease risk) except that the trait under 
study is gene expression. eQTLs are identified by meas-
uring gene expression in panels of genetically different, 
genotyped individuals13,36 (BOXES 1,2). These panels can be 

Box 1 | A beginner’s guide to eQTL mapping

Expression quantitative trait loci (eQTLs) are regions of the genome 

containing DNA sequence variants that influence the expression level  

of one or more genes. They are identified by studying a population of 

genetically different individuals (FIG. 1). These individuals can be members 

of an outbred population (for example, human individuals) or can be bred 

using experimental crosses (for example, from a cross between two 

genetically different yeast strains or a panel of mouse strains). The 

individuals in the population differ from each other at many sequence 

variants, from tens of thousands in yeast crosses to millions in human 

populations. Most of these variants do not have any consequences on gene 

expression (or on any other trait).

To identify the comparatively few variants that influence gene expression, 

two types of data are collected from each individual. First, each individual 

needs to be genotyped. If the sequence variants in the population are known, 

genotyping can be done by targeted assays of each variant in each individual 

(for example, using single-nucleotide polymorphism (SNP) microarrays). 

Otherwise, current technologies now allow the genome of each individual to 

be fully sequenced so that all variants are discovered. Second, the expression 

of each gene in the genome is measured in each individual using either 

expression microarrays or RNA sequencing. eQTLs are then identified by 

comparing the genotypes with the expression levels using association (in 

outbred populations) or linkage analysis (in pedigrees or designed crosses).

To test whether a given sequence variant has an effect on the expression of 

a given gene, a statistical test is performed (see the figure, part a). Individuals 

are grouped according to the allele they carry. If the gene has a significantly 

higher expression level in one group than in the other group, we can 

conclude that the variant (or another variant in linkage disequilibrium) 

influences the expression of this gene. The test is repeated at every DNA 

variant in the genome, resulting in a genome scan for eQTLs for this gene 

(see the figure, part a).

The figure (part a) shows a genome scan for mRNA levels of the yeast TPO1 

gene in a cross between two yeast strains. The logarithm of the odds (LOD) 

score is a measure of the strength of the statistical association between 

mRNA level and genotype. Light blue shapes show the distribution of 

expression levels, and blue dots are expression levels for individual 

segregants. The thick black bars show the central 50% of the data, and the 

white dot indicates the median. When mRNA levels are significantly higher 

in individuals that have inherited one allele than those that have inherited 

the other allele, the LOD score is high and the region is called an eQTL. An 

example is shown on the left end of chromosome 15 where the LOD score 

exceeds the genome-wide threshold (indicated by the dashed red line). 

When there is no difference in mRNA levels between genotype groups, the 

LOD score is low (see the example region on chromosome 4). The genome 

scan is repeated for the expression of every gene in the genome (see the 

figure, part b). Shown here are the LOD profiles for 200 randomly selected 

genes. The genes are sorted according to their genomic position. Local 

eQTLs form a diagonal, and eQTL hot spots are visible as vertical (for 

example, on chromosomes 14 and 15).

The figure was generated using data from REF. 50.
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Gene-­‐level	
  normalized	
  expression	
  matrices	
  (one	
  per	
  *ssue)	
  
	
  Reads	
  must:	
  
	
   	
  -­‐	
  fall	
  exclusively	
  within	
  exons	
  or	
  span	
  them	
  (i.e.	
  not	
  align	
  into	
  introns)	
  
	
   	
  -­‐	
  contain	
  no	
  more	
  than	
  six	
  non	
  reference	
  bases	
  
	
   	
  -­‐	
  not	
  map	
  equally	
  well	
  to	
  another	
  locus	
  
	
  Genes	
  must:	
  
	
   	
  -­‐	
  have	
  at	
  least	
  10	
  samples	
  with	
  	
  
	
   	
  -­‐	
  RPKM	
  >	
  0.1	
  and	
  	
  
	
   	
  -­‐	
  raw	
  read	
  counts	
  greater	
  than	
  6	
  

Covariate	
  correc*on	
  	
  -­‐-­‐	
  	
  Includes:	
  
	
  known	
  covariates	
  (ex:	
  gender,	
  genotyping	
  plaworm)	
  
	
  hidden	
  covariates	
  (PEER	
  factors)	
  

Selec*ng	
  eQTL	
  (Matri	
  eQTL,	
  FastQTL)	
  
	
  significant	
  gene/snp	
  pairs	
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Fig. S8. Analysis of PEER factors. (A) An assessment of correlations between inferred PEER factors and 
known covariates in adipose tissue as a representative example. The color signifies significance of the 
association. For significant associations (q value � 0.05), the r2 value is reported in the cell. (B) The meaning of 
each covariate abbreviation is given in the table. 

A 

B Code             Meaning 
SMGEBTCH Expression batch ID 
SMCENTER Collection center 
DTHHRDY Hardy scale 
SMTSISCH Ischemic time for sample 
TRISCHD Ischemic time for individual 
AGE Age of individual 
RACE Self reported race 
SMTPAX Time spent in fixative 
SMTSTPTREF Procurement reference point 
SMNABTCH Nucleic acid isolation batch 
SMRIN RNA quality score (RIN) 
GENDER Gender of individual 
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PEER	
  factors	
  are	
  generated	
  using	
  the	
  top	
  1000	
  expressed	
  genes	
  per	
  
4ssue	
  
	
  
PEER	
  version	
  differences	
  (not	
  specified	
  in	
  original	
  paper)	
  
	
  
Known	
  covariates	
  somehow	
  included?	
  
	
  
Parameters	
  -­‐-­‐	
  gamma	
  distributed	
  for	
  noise	
  &	
  weight	
  factors	
  not	
  
reported	
  (a	
  black-­‐box!)	
  
	
  
Number	
  of	
  PEERs	
  is	
  determined	
  by	
  N	
  (number	
  of	
  samples	
  per	
  4ssue)	
  
	
  

Poten*al	
  Confounding	
  Factors	
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4.4%	
  of	
  values	
  <	
  -­‐0.05	
   4.6%	
  of	
  values	
  >	
  0.05	
  

Distribu*on	
  of	
  all	
  frac*onal	
  errors*	
  

Frac4onal_error	
  =	
  [RPKMcalculated	
  	
  -­‐	
  	
  RPKMtrue]	
  /	
  RPKMtrue	
  

*for	
  single-­‐exon	
  genes	
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Frac4onal_error	
  =	
  [RPKMcalculated	
  	
  -­‐	
  	
  RPKMtrue]	
  /	
  RPKMtrue	
  

The	
  substan*al	
  errors	
  in	
  
calculated	
  values	
  are	
  very	
  

large	
  over-­‐es*mates	
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Available	
  aVributes	
  for	
  each	
  miR-­‐eQTL	
  (SNV-­‐miRNA	
  pair)	
  
(5,269	
  cis-­‐miR-­‐eQTLs	
  for	
  76	
  mature	
  microRNAs)	
  

•  snpID	
  
•  miRNA_FHS	
  
•  sample	
  size	
  
•  beta	
  
•  MAF	
  
•  Tvalue	
  
•  Pval	
  
•  h2q	
  
•  BH_FDR	
  
•  chr.SNP	
  
•  SNP.pos	
  
•  SNP.strand	
  
•  SNP.func	
  (ex:	
  intron)	
  

•  Chr.miR	
  
•  miR.Start	
  
•  miR.End	
  
•  miR.strand	
  
•  hsa_miR_name	
  
•  CisMark	
  (ie:	
  cis	
  or	
  trans)	
  
•  miRNA_alter_ID	
  
•  miR_Type*	
  (ex:	
  "intron"	
  or	
  "Intergenic")	
  
•  mutated	
  base	
  
•  wt	
  base	
  
•  abs_dist_btwn_SNP_and_miRNA(kb)	
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Protein QTLs
(pQTLs). Genomic regions  
that carry one or more DNA 
sequence variants that 
influence the protein 
abundance of a given gene.

eQTL hot spots
Regions of the genome that 
contain more expression 
quantitative trait loci (eQTLs) 
than expected by chance.

Previous reviews have covered the various types of 
eQTLs and the ways in which they can be identified and 
fine-mapped13,35–37, the rich variety of molecular traits 
that can be assayed along the cascade of gene expression 
regulation38,39 and the ways to integrate these molecu-
lar traits in a systems genetics perspective40. Here, we 
review new insights into the molecular basis of eQTLs 
and the genetics of mRNA versus protein levels. We then 
present recent discoveries into the causal links between 
eQTLs and higher-order organismal phenotypes, such as 
physiology and disease. We describe recent experimen-
tal insights into eQTL causality (many of which were 

derived from model organisms) and close by presenting 
an overview of the emerging evidence for eQTL causality 
in human disease.

What are eQTLs?
eQTLs contain sequence variants that affect the expres-
sion of a gene. They are similar to other QTLs that can 
influence any given trait of interest (for example, height, 
growth rate and disease risk) except that the trait under 
study is gene expression. eQTLs are identified by meas-
uring gene expression in panels of genetically different, 
genotyped individuals13,36 (BOXES 1,2). These panels can be 

Box 1 | A beginner’s guide to eQTL mapping

Expression quantitative trait loci (eQTLs) are regions of the genome 

containing DNA sequence variants that influence the expression level  

of one or more genes. They are identified by studying a population of 

genetically different individuals (FIG. 1). These individuals can be members 

of an outbred population (for example, human individuals) or can be bred 

using experimental crosses (for example, from a cross between two 

genetically different yeast strains or a panel of mouse strains). The 

individuals in the population differ from each other at many sequence 

variants, from tens of thousands in yeast crosses to millions in human 

populations. Most of these variants do not have any consequences on gene 

expression (or on any other trait).

To identify the comparatively few variants that influence gene expression, 

two types of data are collected from each individual. First, each individual 

needs to be genotyped. If the sequence variants in the population are known, 

genotyping can be done by targeted assays of each variant in each individual 

(for example, using single-nucleotide polymorphism (SNP) microarrays). 

Otherwise, current technologies now allow the genome of each individual to 

be fully sequenced so that all variants are discovered. Second, the expression 

of each gene in the genome is measured in each individual using either 

expression microarrays or RNA sequencing. eQTLs are then identified by 

comparing the genotypes with the expression levels using association (in 

outbred populations) or linkage analysis (in pedigrees or designed crosses).

To test whether a given sequence variant has an effect on the expression of 

a given gene, a statistical test is performed (see the figure, part a). Individuals 

are grouped according to the allele they carry. If the gene has a significantly 

higher expression level in one group than in the other group, we can 

conclude that the variant (or another variant in linkage disequilibrium) 

influences the expression of this gene. The test is repeated at every DNA 

variant in the genome, resulting in a genome scan for eQTLs for this gene 

(see the figure, part a).

The figure (part a) shows a genome scan for mRNA levels of the yeast TPO1 

gene in a cross between two yeast strains. The logarithm of the odds (LOD) 

score is a measure of the strength of the statistical association between 

mRNA level and genotype. Light blue shapes show the distribution of 

expression levels, and blue dots are expression levels for individual 

segregants. The thick black bars show the central 50% of the data, and the 

white dot indicates the median. When mRNA levels are significantly higher 

in individuals that have inherited one allele than those that have inherited 

the other allele, the LOD score is high and the region is called an eQTL. An 

example is shown on the left end of chromosome 15 where the LOD score 

exceeds the genome-wide threshold (indicated by the dashed red line). 

When there is no difference in mRNA levels between genotype groups, the 

LOD score is low (see the example region on chromosome 4). The genome 

scan is repeated for the expression of every gene in the genome (see the 

figure, part b). Shown here are the LOD profiles for 200 randomly selected 

genes. The genes are sorted according to their genomic position. Local 

eQTLs form a diagonal, and eQTL hot spots are visible as vertical (for 

example, on chromosomes 14 and 15).

The figure was generated using data from REF. 50.
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Protein QTLs
(pQTLs). Genomic regions  
that carry one or more DNA 
sequence variants that 
influence the protein 
abundance of a given gene.

eQTL hot spots
Regions of the genome that 
contain more expression 
quantitative trait loci (eQTLs) 
than expected by chance.

Previous reviews have covered the various types of 
eQTLs and the ways in which they can be identified and 
fine-mapped13,35–37, the rich variety of molecular traits 
that can be assayed along the cascade of gene expression 
regulation38,39 and the ways to integrate these molecu-
lar traits in a systems genetics perspective40. Here, we 
review new insights into the molecular basis of eQTLs 
and the genetics of mRNA versus protein levels. We then 
present recent discoveries into the causal links between 
eQTLs and higher-order organismal phenotypes, such as 
physiology and disease. We describe recent experimen-
tal insights into eQTL causality (many of which were 

derived from model organisms) and close by presenting 
an overview of the emerging evidence for eQTL causality 
in human disease.

What are eQTLs?
eQTLs contain sequence variants that affect the expres-
sion of a gene. They are similar to other QTLs that can 
influence any given trait of interest (for example, height, 
growth rate and disease risk) except that the trait under 
study is gene expression. eQTLs are identified by meas-
uring gene expression in panels of genetically different, 
genotyped individuals13,36 (BOXES 1,2). These panels can be 

Box 1 | A beginner’s guide to eQTL mapping

Expression quantitative trait loci (eQTLs) are regions of the genome 

containing DNA sequence variants that influence the expression level  

of one or more genes. They are identified by studying a population of 

genetically different individuals (FIG. 1). These individuals can be members 

of an outbred population (for example, human individuals) or can be bred 

using experimental crosses (for example, from a cross between two 

genetically different yeast strains or a panel of mouse strains). The 

individuals in the population differ from each other at many sequence 

variants, from tens of thousands in yeast crosses to millions in human 

populations. Most of these variants do not have any consequences on gene 

expression (or on any other trait).

To identify the comparatively few variants that influence gene expression, 

two types of data are collected from each individual. First, each individual 

needs to be genotyped. If the sequence variants in the population are known, 

genotyping can be done by targeted assays of each variant in each individual 

(for example, using single-nucleotide polymorphism (SNP) microarrays). 

Otherwise, current technologies now allow the genome of each individual to 

be fully sequenced so that all variants are discovered. Second, the expression 

of each gene in the genome is measured in each individual using either 

expression microarrays or RNA sequencing. eQTLs are then identified by 

comparing the genotypes with the expression levels using association (in 

outbred populations) or linkage analysis (in pedigrees or designed crosses).

To test whether a given sequence variant has an effect on the expression of 

a given gene, a statistical test is performed (see the figure, part a). Individuals 

are grouped according to the allele they carry. If the gene has a significantly 

higher expression level in one group than in the other group, we can 

conclude that the variant (or another variant in linkage disequilibrium) 

influences the expression of this gene. The test is repeated at every DNA 

variant in the genome, resulting in a genome scan for eQTLs for this gene 

(see the figure, part a).

The figure (part a) shows a genome scan for mRNA levels of the yeast TPO1 

gene in a cross between two yeast strains. The logarithm of the odds (LOD) 

score is a measure of the strength of the statistical association between 

mRNA level and genotype. Light blue shapes show the distribution of 

expression levels, and blue dots are expression levels for individual 

segregants. The thick black bars show the central 50% of the data, and the 

white dot indicates the median. When mRNA levels are significantly higher 

in individuals that have inherited one allele than those that have inherited 

the other allele, the LOD score is high and the region is called an eQTL. An 

example is shown on the left end of chromosome 15 where the LOD score 

exceeds the genome-wide threshold (indicated by the dashed red line). 

When there is no difference in mRNA levels between genotype groups, the 

LOD score is low (see the example region on chromosome 4). The genome 

scan is repeated for the expression of every gene in the genome (see the 

figure, part b). Shown here are the LOD profiles for 200 randomly selected 

genes. The genes are sorted according to their genomic position. Local 

eQTLs form a diagonal, and eQTL hot spots are visible as vertical (for 

example, on chromosomes 14 and 15).

The figure was generated using data from REF. 50.
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Protein QTLs
(pQTLs). Genomic regions  
that carry one or more DNA 
sequence variants that 
influence the protein 
abundance of a given gene.

eQTL hot spots
Regions of the genome that 
contain more expression 
quantitative trait loci (eQTLs) 
than expected by chance.

Previous reviews have covered the various types of 
eQTLs and the ways in which they can be identified and 
fine-mapped13,35–37, the rich variety of molecular traits 
that can be assayed along the cascade of gene expression 
regulation38,39 and the ways to integrate these molecu-
lar traits in a systems genetics perspective40. Here, we 
review new insights into the molecular basis of eQTLs 
and the genetics of mRNA versus protein levels. We then 
present recent discoveries into the causal links between 
eQTLs and higher-order organismal phenotypes, such as 
physiology and disease. We describe recent experimen-
tal insights into eQTL causality (many of which were 

derived from model organisms) and close by presenting 
an overview of the emerging evidence for eQTL causality 
in human disease.

What are eQTLs?
eQTLs contain sequence variants that affect the expres-
sion of a gene. They are similar to other QTLs that can 
influence any given trait of interest (for example, height, 
growth rate and disease risk) except that the trait under 
study is gene expression. eQTLs are identified by meas-
uring gene expression in panels of genetically different, 
genotyped individuals13,36 (BOXES 1,2). These panels can be 

Box 1 | A beginner’s guide to eQTL mapping

Expression quantitative trait loci (eQTLs) are regions of the genome 

containing DNA sequence variants that influence the expression level  

of one or more genes. They are identified by studying a population of 

genetically different individuals (FIG. 1). These individuals can be members 

of an outbred population (for example, human individuals) or can be bred 

using experimental crosses (for example, from a cross between two 

genetically different yeast strains or a panel of mouse strains). The 

individuals in the population differ from each other at many sequence 

variants, from tens of thousands in yeast crosses to millions in human 

populations. Most of these variants do not have any consequences on gene 

expression (or on any other trait).

To identify the comparatively few variants that influence gene expression, 

two types of data are collected from each individual. First, each individual 

needs to be genotyped. If the sequence variants in the population are known, 

genotyping can be done by targeted assays of each variant in each individual 

(for example, using single-nucleotide polymorphism (SNP) microarrays). 

Otherwise, current technologies now allow the genome of each individual to 

be fully sequenced so that all variants are discovered. Second, the expression 

of each gene in the genome is measured in each individual using either 

expression microarrays or RNA sequencing. eQTLs are then identified by 

comparing the genotypes with the expression levels using association (in 

outbred populations) or linkage analysis (in pedigrees or designed crosses).

To test whether a given sequence variant has an effect on the expression of 

a given gene, a statistical test is performed (see the figure, part a). Individuals 

are grouped according to the allele they carry. If the gene has a significantly 

higher expression level in one group than in the other group, we can 

conclude that the variant (or another variant in linkage disequilibrium) 

influences the expression of this gene. The test is repeated at every DNA 

variant in the genome, resulting in a genome scan for eQTLs for this gene 

(see the figure, part a).

The figure (part a) shows a genome scan for mRNA levels of the yeast TPO1 

gene in a cross between two yeast strains. The logarithm of the odds (LOD) 

score is a measure of the strength of the statistical association between 

mRNA level and genotype. Light blue shapes show the distribution of 

expression levels, and blue dots are expression levels for individual 

segregants. The thick black bars show the central 50% of the data, and the 

white dot indicates the median. When mRNA levels are significantly higher 

in individuals that have inherited one allele than those that have inherited 

the other allele, the LOD score is high and the region is called an eQTL. An 

example is shown on the left end of chromosome 15 where the LOD score 

exceeds the genome-wide threshold (indicated by the dashed red line). 

When there is no difference in mRNA levels between genotype groups, the 

LOD score is low (see the example region on chromosome 4). The genome 

scan is repeated for the expression of every gene in the genome (see the 

figure, part b). Shown here are the LOD profiles for 200 randomly selected 

genes. The genes are sorted according to their genomic position. Local 

eQTLs form a diagonal, and eQTL hot spots are visible as vertical (for 

example, on chromosomes 14 and 15).

The figure was generated using data from REF. 50.
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Protein QTLs
(pQTLs). Genomic regions  
that carry one or more DNA 
sequence variants that 
influence the protein 
abundance of a given gene.

eQTL hot spots
Regions of the genome that 
contain more expression 
quantitative trait loci (eQTLs) 
than expected by chance.

Previous reviews have covered the various types of 
eQTLs and the ways in which they can be identified and 
fine-mapped13,35–37, the rich variety of molecular traits 
that can be assayed along the cascade of gene expression 
regulation38,39 and the ways to integrate these molecu-
lar traits in a systems genetics perspective40. Here, we 
review new insights into the molecular basis of eQTLs 
and the genetics of mRNA versus protein levels. We then 
present recent discoveries into the causal links between 
eQTLs and higher-order organismal phenotypes, such as 
physiology and disease. We describe recent experimen-
tal insights into eQTL causality (many of which were 

derived from model organisms) and close by presenting 
an overview of the emerging evidence for eQTL causality 
in human disease.

What are eQTLs?
eQTLs contain sequence variants that affect the expres-
sion of a gene. They are similar to other QTLs that can 
influence any given trait of interest (for example, height, 
growth rate and disease risk) except that the trait under 
study is gene expression. eQTLs are identified by meas-
uring gene expression in panels of genetically different, 
genotyped individuals13,36 (BOXES 1,2). These panels can be 

Box 1 | A beginner’s guide to eQTL mapping

Expression quantitative trait loci (eQTLs) are regions of the genome 

containing DNA sequence variants that influence the expression level  

of one or more genes. They are identified by studying a population of 

genetically different individuals (FIG. 1). These individuals can be members 

of an outbred population (for example, human individuals) or can be bred 

using experimental crosses (for example, from a cross between two 

genetically different yeast strains or a panel of mouse strains). The 

individuals in the population differ from each other at many sequence 

variants, from tens of thousands in yeast crosses to millions in human 

populations. Most of these variants do not have any consequences on gene 

expression (or on any other trait).

To identify the comparatively few variants that influence gene expression, 

two types of data are collected from each individual. First, each individual 

needs to be genotyped. If the sequence variants in the population are known, 

genotyping can be done by targeted assays of each variant in each individual 

(for example, using single-nucleotide polymorphism (SNP) microarrays). 

Otherwise, current technologies now allow the genome of each individual to 

be fully sequenced so that all variants are discovered. Second, the expression 

of each gene in the genome is measured in each individual using either 

expression microarrays or RNA sequencing. eQTLs are then identified by 

comparing the genotypes with the expression levels using association (in 

outbred populations) or linkage analysis (in pedigrees or designed crosses).

To test whether a given sequence variant has an effect on the expression of 

a given gene, a statistical test is performed (see the figure, part a). Individuals 

are grouped according to the allele they carry. If the gene has a significantly 

higher expression level in one group than in the other group, we can 

conclude that the variant (or another variant in linkage disequilibrium) 

influences the expression of this gene. The test is repeated at every DNA 

variant in the genome, resulting in a genome scan for eQTLs for this gene 

(see the figure, part a).

The figure (part a) shows a genome scan for mRNA levels of the yeast TPO1 

gene in a cross between two yeast strains. The logarithm of the odds (LOD) 

score is a measure of the strength of the statistical association between 

mRNA level and genotype. Light blue shapes show the distribution of 

expression levels, and blue dots are expression levels for individual 

segregants. The thick black bars show the central 50% of the data, and the 

white dot indicates the median. When mRNA levels are significantly higher 

in individuals that have inherited one allele than those that have inherited 

the other allele, the LOD score is high and the region is called an eQTL. An 

example is shown on the left end of chromosome 15 where the LOD score 

exceeds the genome-wide threshold (indicated by the dashed red line). 

When there is no difference in mRNA levels between genotype groups, the 

LOD score is low (see the example region on chromosome 4). The genome 

scan is repeated for the expression of every gene in the genome (see the 

figure, part b). Shown here are the LOD profiles for 200 randomly selected 

genes. The genes are sorted according to their genomic position. Local 

eQTLs form a diagonal, and eQTL hot spots are visible as vertical (for 

example, on chromosomes 14 and 15).

The figure was generated using data from REF. 50.
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Protein QTLs
(pQTLs). Genomic regions  
that carry one or more DNA 
sequence variants that 
influence the protein 
abundance of a given gene.

eQTL hot spots
Regions of the genome that 
contain more expression 
quantitative trait loci (eQTLs) 
than expected by chance.

Previous reviews have covered the various types of 
eQTLs and the ways in which they can be identified and 
fine-mapped13,35–37, the rich variety of molecular traits 
that can be assayed along the cascade of gene expression 
regulation38,39 and the ways to integrate these molecu-
lar traits in a systems genetics perspective40. Here, we 
review new insights into the molecular basis of eQTLs 
and the genetics of mRNA versus protein levels. We then 
present recent discoveries into the causal links between 
eQTLs and higher-order organismal phenotypes, such as 
physiology and disease. We describe recent experimen-
tal insights into eQTL causality (many of which were 

derived from model organisms) and close by presenting 
an overview of the emerging evidence for eQTL causality 
in human disease.

What are eQTLs?
eQTLs contain sequence variants that affect the expres-
sion of a gene. They are similar to other QTLs that can 
influence any given trait of interest (for example, height, 
growth rate and disease risk) except that the trait under 
study is gene expression. eQTLs are identified by meas-
uring gene expression in panels of genetically different, 
genotyped individuals13,36 (BOXES 1,2). These panels can be 

Box 1 | A beginner’s guide to eQTL mapping

Expression quantitative trait loci (eQTLs) are regions of the genome 

containing DNA sequence variants that influence the expression level  

of one or more genes. They are identified by studying a population of 

genetically different individuals (FIG. 1). These individuals can be members 

of an outbred population (for example, human individuals) or can be bred 

using experimental crosses (for example, from a cross between two 

genetically different yeast strains or a panel of mouse strains). The 

individuals in the population differ from each other at many sequence 

variants, from tens of thousands in yeast crosses to millions in human 

populations. Most of these variants do not have any consequences on gene 

expression (or on any other trait).

To identify the comparatively few variants that influence gene expression, 

two types of data are collected from each individual. First, each individual 

needs to be genotyped. If the sequence variants in the population are known, 

genotyping can be done by targeted assays of each variant in each individual 

(for example, using single-nucleotide polymorphism (SNP) microarrays). 

Otherwise, current technologies now allow the genome of each individual to 

be fully sequenced so that all variants are discovered. Second, the expression 

of each gene in the genome is measured in each individual using either 

expression microarrays or RNA sequencing. eQTLs are then identified by 

comparing the genotypes with the expression levels using association (in 

outbred populations) or linkage analysis (in pedigrees or designed crosses).

To test whether a given sequence variant has an effect on the expression of 

a given gene, a statistical test is performed (see the figure, part a). Individuals 

are grouped according to the allele they carry. If the gene has a significantly 

higher expression level in one group than in the other group, we can 

conclude that the variant (or another variant in linkage disequilibrium) 

influences the expression of this gene. The test is repeated at every DNA 

variant in the genome, resulting in a genome scan for eQTLs for this gene 

(see the figure, part a).

The figure (part a) shows a genome scan for mRNA levels of the yeast TPO1 

gene in a cross between two yeast strains. The logarithm of the odds (LOD) 

score is a measure of the strength of the statistical association between 

mRNA level and genotype. Light blue shapes show the distribution of 

expression levels, and blue dots are expression levels for individual 

segregants. The thick black bars show the central 50% of the data, and the 

white dot indicates the median. When mRNA levels are significantly higher 

in individuals that have inherited one allele than those that have inherited 

the other allele, the LOD score is high and the region is called an eQTL. An 

example is shown on the left end of chromosome 15 where the LOD score 

exceeds the genome-wide threshold (indicated by the dashed red line). 

When there is no difference in mRNA levels between genotype groups, the 

LOD score is low (see the example region on chromosome 4). The genome 

scan is repeated for the expression of every gene in the genome (see the 

figure, part b). Shown here are the LOD profiles for 200 randomly selected 

genes. The genes are sorted according to their genomic position. Local 

eQTLs form a diagonal, and eQTL hot spots are visible as vertical (for 

example, on chromosomes 14 and 15).

The figure was generated using data from REF. 50.
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Protein QTLs
(pQTLs). Genomic regions  
that carry one or more DNA 
sequence variants that 
influence the protein 
abundance of a given gene.

eQTL hot spots
Regions of the genome that 
contain more expression 
quantitative trait loci (eQTLs) 
than expected by chance.

Previous reviews have covered the various types of 
eQTLs and the ways in which they can be identified and 
fine-mapped13,35–37, the rich variety of molecular traits 
that can be assayed along the cascade of gene expression 
regulation38,39 and the ways to integrate these molecu-
lar traits in a systems genetics perspective40. Here, we 
review new insights into the molecular basis of eQTLs 
and the genetics of mRNA versus protein levels. We then 
present recent discoveries into the causal links between 
eQTLs and higher-order organismal phenotypes, such as 
physiology and disease. We describe recent experimen-
tal insights into eQTL causality (many of which were 

derived from model organisms) and close by presenting 
an overview of the emerging evidence for eQTL causality 
in human disease.

What are eQTLs?
eQTLs contain sequence variants that affect the expres-
sion of a gene. They are similar to other QTLs that can 
influence any given trait of interest (for example, height, 
growth rate and disease risk) except that the trait under 
study is gene expression. eQTLs are identified by meas-
uring gene expression in panels of genetically different, 
genotyped individuals13,36 (BOXES 1,2). These panels can be 

Box 1 | A beginner’s guide to eQTL mapping

Expression quantitative trait loci (eQTLs) are regions of the genome 

containing DNA sequence variants that influence the expression level  

of one or more genes. They are identified by studying a population of 

genetically different individuals (FIG. 1). These individuals can be members 

of an outbred population (for example, human individuals) or can be bred 

using experimental crosses (for example, from a cross between two 

genetically different yeast strains or a panel of mouse strains). The 

individuals in the population differ from each other at many sequence 

variants, from tens of thousands in yeast crosses to millions in human 

populations. Most of these variants do not have any consequences on gene 

expression (or on any other trait).

To identify the comparatively few variants that influence gene expression, 

two types of data are collected from each individual. First, each individual 

needs to be genotyped. If the sequence variants in the population are known, 

genotyping can be done by targeted assays of each variant in each individual 

(for example, using single-nucleotide polymorphism (SNP) microarrays). 

Otherwise, current technologies now allow the genome of each individual to 

be fully sequenced so that all variants are discovered. Second, the expression 

of each gene in the genome is measured in each individual using either 

expression microarrays or RNA sequencing. eQTLs are then identified by 

comparing the genotypes with the expression levels using association (in 

outbred populations) or linkage analysis (in pedigrees or designed crosses).

To test whether a given sequence variant has an effect on the expression of 

a given gene, a statistical test is performed (see the figure, part a). Individuals 

are grouped according to the allele they carry. If the gene has a significantly 

higher expression level in one group than in the other group, we can 

conclude that the variant (or another variant in linkage disequilibrium) 

influences the expression of this gene. The test is repeated at every DNA 

variant in the genome, resulting in a genome scan for eQTLs for this gene 

(see the figure, part a).

The figure (part a) shows a genome scan for mRNA levels of the yeast TPO1 

gene in a cross between two yeast strains. The logarithm of the odds (LOD) 

score is a measure of the strength of the statistical association between 

mRNA level and genotype. Light blue shapes show the distribution of 

expression levels, and blue dots are expression levels for individual 

segregants. The thick black bars show the central 50% of the data, and the 

white dot indicates the median. When mRNA levels are significantly higher 

in individuals that have inherited one allele than those that have inherited 

the other allele, the LOD score is high and the region is called an eQTL. An 

example is shown on the left end of chromosome 15 where the LOD score 

exceeds the genome-wide threshold (indicated by the dashed red line). 

When there is no difference in mRNA levels between genotype groups, the 

LOD score is low (see the example region on chromosome 4). The genome 

scan is repeated for the expression of every gene in the genome (see the 

figure, part b). Shown here are the LOD profiles for 200 randomly selected 

genes. The genes are sorted according to their genomic position. Local 

eQTLs form a diagonal, and eQTL hot spots are visible as vertical (for 

example, on chromosomes 14 and 15).

The figure was generated using data from REF. 50.
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Protein QTLs
(pQTLs). Genomic regions  
that carry one or more DNA 
sequence variants that 
influence the protein 
abundance of a given gene.

eQTL hot spots
Regions of the genome that 
contain more expression 
quantitative trait loci (eQTLs) 
than expected by chance.

Previous reviews have covered the various types of 
eQTLs and the ways in which they can be identified and 
fine-mapped13,35–37, the rich variety of molecular traits 
that can be assayed along the cascade of gene expression 
regulation38,39 and the ways to integrate these molecu-
lar traits in a systems genetics perspective40. Here, we 
review new insights into the molecular basis of eQTLs 
and the genetics of mRNA versus protein levels. We then 
present recent discoveries into the causal links between 
eQTLs and higher-order organismal phenotypes, such as 
physiology and disease. We describe recent experimen-
tal insights into eQTL causality (many of which were 

derived from model organisms) and close by presenting 
an overview of the emerging evidence for eQTL causality 
in human disease.

What are eQTLs?
eQTLs contain sequence variants that affect the expres-
sion of a gene. They are similar to other QTLs that can 
influence any given trait of interest (for example, height, 
growth rate and disease risk) except that the trait under 
study is gene expression. eQTLs are identified by meas-
uring gene expression in panels of genetically different, 
genotyped individuals13,36 (BOXES 1,2). These panels can be 

Box 1 | A beginner’s guide to eQTL mapping

Expression quantitative trait loci (eQTLs) are regions of the genome 

containing DNA sequence variants that influence the expression level  

of one or more genes. They are identified by studying a population of 

genetically different individuals (FIG. 1). These individuals can be members 

of an outbred population (for example, human individuals) or can be bred 

using experimental crosses (for example, from a cross between two 

genetically different yeast strains or a panel of mouse strains). The 

individuals in the population differ from each other at many sequence 

variants, from tens of thousands in yeast crosses to millions in human 

populations. Most of these variants do not have any consequences on gene 

expression (or on any other trait).

To identify the comparatively few variants that influence gene expression, 

two types of data are collected from each individual. First, each individual 

needs to be genotyped. If the sequence variants in the population are known, 

genotyping can be done by targeted assays of each variant in each individual 

(for example, using single-nucleotide polymorphism (SNP) microarrays). 

Otherwise, current technologies now allow the genome of each individual to 

be fully sequenced so that all variants are discovered. Second, the expression 

of each gene in the genome is measured in each individual using either 

expression microarrays or RNA sequencing. eQTLs are then identified by 

comparing the genotypes with the expression levels using association (in 

outbred populations) or linkage analysis (in pedigrees or designed crosses).

To test whether a given sequence variant has an effect on the expression of 

a given gene, a statistical test is performed (see the figure, part a). Individuals 

are grouped according to the allele they carry. If the gene has a significantly 

higher expression level in one group than in the other group, we can 

conclude that the variant (or another variant in linkage disequilibrium) 

influences the expression of this gene. The test is repeated at every DNA 

variant in the genome, resulting in a genome scan for eQTLs for this gene 

(see the figure, part a).

The figure (part a) shows a genome scan for mRNA levels of the yeast TPO1 

gene in a cross between two yeast strains. The logarithm of the odds (LOD) 

score is a measure of the strength of the statistical association between 

mRNA level and genotype. Light blue shapes show the distribution of 

expression levels, and blue dots are expression levels for individual 

segregants. The thick black bars show the central 50% of the data, and the 

white dot indicates the median. When mRNA levels are significantly higher 

in individuals that have inherited one allele than those that have inherited 

the other allele, the LOD score is high and the region is called an eQTL. An 

example is shown on the left end of chromosome 15 where the LOD score 

exceeds the genome-wide threshold (indicated by the dashed red line). 

When there is no difference in mRNA levels between genotype groups, the 

LOD score is low (see the example region on chromosome 4). The genome 

scan is repeated for the expression of every gene in the genome (see the 

figure, part b). Shown here are the LOD profiles for 200 randomly selected 

genes. The genes are sorted according to their genomic position. Local 

eQTLs form a diagonal, and eQTL hot spots are visible as vertical (for 

example, on chromosomes 14 and 15).

The figure was generated using data from REF. 50.
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Protein QTLs
(pQTLs). Genomic regions  
that carry one or more DNA 
sequence variants that 
influence the protein 
abundance of a given gene.

eQTL hot spots
Regions of the genome that 
contain more expression 
quantitative trait loci (eQTLs) 
than expected by chance.

Previous reviews have covered the various types of 
eQTLs and the ways in which they can be identified and 
fine-mapped13,35–37, the rich variety of molecular traits 
that can be assayed along the cascade of gene expression 
regulation38,39 and the ways to integrate these molecu-
lar traits in a systems genetics perspective40. Here, we 
review new insights into the molecular basis of eQTLs 
and the genetics of mRNA versus protein levels. We then 
present recent discoveries into the causal links between 
eQTLs and higher-order organismal phenotypes, such as 
physiology and disease. We describe recent experimen-
tal insights into eQTL causality (many of which were 

derived from model organisms) and close by presenting 
an overview of the emerging evidence for eQTL causality 
in human disease.

What are eQTLs?
eQTLs contain sequence variants that affect the expres-
sion of a gene. They are similar to other QTLs that can 
influence any given trait of interest (for example, height, 
growth rate and disease risk) except that the trait under 
study is gene expression. eQTLs are identified by meas-
uring gene expression in panels of genetically different, 
genotyped individuals13,36 (BOXES 1,2). These panels can be 

Box 1 | A beginner’s guide to eQTL mapping

Expression quantitative trait loci (eQTLs) are regions of the genome 

containing DNA sequence variants that influence the expression level  

of one or more genes. They are identified by studying a population of 

genetically different individuals (FIG. 1). These individuals can be members 

of an outbred population (for example, human individuals) or can be bred 

using experimental crosses (for example, from a cross between two 

genetically different yeast strains or a panel of mouse strains). The 

individuals in the population differ from each other at many sequence 

variants, from tens of thousands in yeast crosses to millions in human 

populations. Most of these variants do not have any consequences on gene 

expression (or on any other trait).

To identify the comparatively few variants that influence gene expression, 

two types of data are collected from each individual. First, each individual 

needs to be genotyped. If the sequence variants in the population are known, 

genotyping can be done by targeted assays of each variant in each individual 

(for example, using single-nucleotide polymorphism (SNP) microarrays). 

Otherwise, current technologies now allow the genome of each individual to 

be fully sequenced so that all variants are discovered. Second, the expression 

of each gene in the genome is measured in each individual using either 

expression microarrays or RNA sequencing. eQTLs are then identified by 

comparing the genotypes with the expression levels using association (in 

outbred populations) or linkage analysis (in pedigrees or designed crosses).

To test whether a given sequence variant has an effect on the expression of 

a given gene, a statistical test is performed (see the figure, part a). Individuals 

are grouped according to the allele they carry. If the gene has a significantly 

higher expression level in one group than in the other group, we can 

conclude that the variant (or another variant in linkage disequilibrium) 

influences the expression of this gene. The test is repeated at every DNA 

variant in the genome, resulting in a genome scan for eQTLs for this gene 

(see the figure, part a).

The figure (part a) shows a genome scan for mRNA levels of the yeast TPO1 

gene in a cross between two yeast strains. The logarithm of the odds (LOD) 

score is a measure of the strength of the statistical association between 

mRNA level and genotype. Light blue shapes show the distribution of 

expression levels, and blue dots are expression levels for individual 

segregants. The thick black bars show the central 50% of the data, and the 

white dot indicates the median. When mRNA levels are significantly higher 

in individuals that have inherited one allele than those that have inherited 

the other allele, the LOD score is high and the region is called an eQTL. An 

example is shown on the left end of chromosome 15 where the LOD score 

exceeds the genome-wide threshold (indicated by the dashed red line). 

When there is no difference in mRNA levels between genotype groups, the 

LOD score is low (see the example region on chromosome 4). The genome 

scan is repeated for the expression of every gene in the genome (see the 

figure, part b). Shown here are the LOD profiles for 200 randomly selected 

genes. The genes are sorted according to their genomic position. Local 

eQTLs form a diagonal, and eQTL hot spots are visible as vertical (for 

example, on chromosomes 14 and 15).

The figure was generated using data from REF. 50.
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Figure S4: Histogram of the number of HGMD SNVs against the number of unique 
proteins. The histogram depicts the distribution of the number of distinct proteins in 
which non-synonymous HGMD SNVs may be mapped to high-quality crystal structures 
within the PDB. A total of 293 distinct proteins are shown for clarity (there are a total of 
303 distinct proteins such that HGMD SNVs affect structures in the semi-balanced set, 
but displaying the remaining 10 proteins in the histogram below would make visual 
interpretation difficult, as they have extremely high SNV counts). Redundancy was 
removed by ensuring that no pair of proteins within this dataset shares more than 90% 
sequence identity. 

 

 

 
 
 
 
 
 
 
 
 

 
 
 
Figure S5: Comparisons between the ∆F distributions within the semi-balanced set 
of structures. Violin plots showing ∆F distributions associated with SNVs affecting core 
or surface residues of structures for which at least one SNV is taken from A) 1000 
Genomes & HGMD, B) ExAC & HGMD and C) HGMD & ExAC. These trends on the 
semi-balanced SNV dataset are consistent with observations reported in the main text. 
However, the smaller sample sizes within the semi-balanced set may result in poorer 
statistical significance. The white dots, black boxes and vertical lines represent the 
medians, interquartile ranges, and 95% confidence intervals of the ∆F distributions, 
respectively. 
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“They	
  should	
  also	
  aVempt	
  to	
  perform	
  their	
  analysis	
  on	
  a	
  (semi-­‐)balanced	
  set(s)	
  of	
  
variants,	
  using	
  sets	
  of	
  proteins	
  where	
  both	
  disease	
  and	
  neutral	
  muta*ons	
  are	
  present.”	
  

HGMD	
  (303	
  PDBs)	
   1KG	
  (618	
  PDBs)	
  

99	
  204	
   519	
  

at position 31 is substantially more energetically favorable relative to the mean energy ⟨E⟩ that 

would result from having any of the possible 20 amino acids at that position. This disparity is 

designated by (⟨E⟩ - Enat)/σE = Fnat > 0. Right) The entire protein structure is then modeled (see 

methods) to generate the mutated structure after the SNV W31Y is introduced, thereby changing 

the relative energetic distributions for the different amino acids. The new mean and standard 

deviation associated with the energies of the modeled structure are designated by ⟨E⟩’	and σE’, 

respectively. In this case, the SNV that introduces 31Y results in an energy that is higher than the 

mean energy of all possible 20 amino acids at that position. This disparity is designated by (⟨E⟩’ - 
Emut)/σE’ = Fmut < 0. Taken together, the negative value associated with the disparity between the 

Fmut and Fnat values (Fmut - Fnat = ∆F < 0) indicates that the this SNV is locally unfavorable. 

 

 

 

 
 

Figure 2: Differential effects of “benign” and disease-associated SNVs on the localized 

frustration of minimally frustrated residues in the non-mutated (i.e., native) state. Violin 

plots showing ∆F distributions associated with SNVs affecting the core or surface, with SNVs 

taken from A) 1000 Genomes, B) ExAC and C) HGMD. Comparison between ∆F distributions 

for core and surface residues of the 1000 Genomes and ExAC datasets indicate that favorable 

interactions of surface residues in the native states are highly disrupted upon mutation compared 

to core residues. Furthermore, ∆F in HGMD core residues were highly negative compared to 

1KG and ExAC variants impacting core residues.  
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at position 31 is substantially more energetically favorable relative to the mean energy ⟨E⟩ that 

would result from having any of the possible 20 amino acids at that position. This disparity is 

designated by (⟨E⟩ - Enat)/σE = Fnat > 0. Right) The entire protein structure is then modeled (see 

methods) to generate the mutated structure after the SNV W31Y is introduced, thereby changing 

the relative energetic distributions for the different amino acids. The new mean and standard 

deviation associated with the energies of the modeled structure are designated by ⟨E⟩’	and σE’, 

respectively. In this case, the SNV that introduces 31Y results in an energy that is higher than the 

mean energy of all possible 20 amino acids at that position. This disparity is designated by (⟨E⟩’ - 
Emut)/σE’ = Fmut < 0. Taken together, the negative value associated with the disparity between the 

Fmut and Fnat values (Fmut - Fnat = ∆F < 0) indicates that the this SNV is locally unfavorable. 

 

 

 

 
 

Figure 2: Differential effects of “benign” and disease-associated SNVs on the localized 

frustration of minimally frustrated residues in the non-mutated (i.e., native) state. Violin 

plots showing ∆F distributions associated with SNVs affecting the core or surface, with SNVs 

taken from A) 1000 Genomes, B) ExAC and C) HGMD. Comparison between ∆F distributions 

for core and surface residues of the 1000 Genomes and ExAC datasets indicate that favorable 

interactions of surface residues in the native states are highly disrupted upon mutation compared 

to core residues. Furthermore, ∆F in HGMD core residues were highly negative compared to 

1KG and ExAC variants impacting core residues.  
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at position 31 is substantially more energetically favorable relative to the mean energy ⟨E⟩ that 

would result from having any of the possible 20 amino acids at that position. This disparity is 

designated by (⟨E⟩ - Enat)/σE = Fnat > 0. Right) The entire protein structure is then modeled (see 

methods) to generate the mutated structure after the SNV W31Y is introduced, thereby changing 

the relative energetic distributions for the different amino acids. The new mean and standard 

deviation associated with the energies of the modeled structure are designated by ⟨E⟩’	and σE’, 

respectively. In this case, the SNV that introduces 31Y results in an energy that is higher than the 

mean energy of all possible 20 amino acids at that position. This disparity is designated by (⟨E⟩’ - 
Emut)/σE’ = Fmut < 0. Taken together, the negative value associated with the disparity between the 

Fmut and Fnat values (Fmut - Fnat = ∆F < 0) indicates that the this SNV is locally unfavorable. 
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plots showing ∆F distributions associated with SNVs affecting the core or surface, with SNVs 

taken from A) 1000 Genomes, B) ExAC and C) HGMD. Comparison between ∆F distributions 

for core and surface residues of the 1000 Genomes and ExAC datasets indicate that favorable 

interactions of surface residues in the native states are highly disrupted upon mutation compared 

to core residues. Furthermore, ∆F in HGMD core residues were highly negative compared to 

1KG and ExAC variants impacting core residues.  
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at position 31 is substantially more energetically favorable relative to the mean energy ⟨E⟩ that 

would result from having any of the possible 20 amino acids at that position. This disparity is 

designated by (⟨E⟩ - Enat)/σE = Fnat > 0. Right) The entire protein structure is then modeled (see 

methods) to generate the mutated structure after the SNV W31Y is introduced, thereby changing 

the relative energetic distributions for the different amino acids. The new mean and standard 

deviation associated with the energies of the modeled structure are designated by ⟨E⟩’	and σE’, 

respectively. In this case, the SNV that introduces 31Y results in an energy that is higher than the 

mean energy of all possible 20 amino acids at that position. This disparity is designated by (⟨E⟩’ - 
Emut)/σE’ = Fmut < 0. Taken together, the negative value associated with the disparity between the 

Fmut and Fnat values (Fmut - Fnat = ∆F < 0) indicates that the this SNV is locally unfavorable. 

 

 

 

 
 

Figure 2: Differential effects of “benign” and disease-associated SNVs on the localized 

frustration of minimally frustrated residues in the non-mutated (i.e., native) state. Violin 

plots showing ∆F distributions associated with SNVs affecting the core or surface, with SNVs 

taken from A) 1000 Genomes, B) ExAC and C) HGMD. Comparison between ∆F distributions 

for core and surface residues of the 1000 Genomes and ExAC datasets indicate that favorable 

interactions of surface residues in the native states are highly disrupted upon mutation compared 

to core residues. Furthermore, ∆F in HGMD core residues were highly negative compared to 

1KG and ExAC variants impacting core residues.  
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Addi1onal	
  scagerplots:	
  
	
  
.//plot_delta_frustr_vs_MAF/frustr_vs_MAF_scager_plots/	
  
	
  
.//plot_delta_frustr_vs_MAF/	
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Tumor	
  Suppressor	
  Genes	
  
Minimally	
  Frustr.	
  Residues	
  

Single	
   Buried	
  

p-­‐value	
  =	
  3.163e-­‐06	
  
N	
  =	
  36	
  

p-­‐value	
  =	
  0.001912	
  
N	
  =	
  39	
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Tumor	
  Suppressor	
  Genes	
  
Maximally	
  Frustr.	
  Residues	
  

Single	
   Buried	
  

p-­‐value	
  =	
  0.001818	
  
N	
  =	
  34	
  

p-­‐value	
  =	
  0.005519	
  
N	
  =	
  28	
   71	
  



Oncogenes	
  
Minimally	
  Frustr.	
  Residues	
  

Single	
   Buried	
  

p-­‐value	
  =	
  0.7594	
  
N	
  =	
  96	
  

p-­‐value	
  =	
  0.01498	
  
N	
  =	
  118	
   72	
  



Oncogenes	
  
Maximally	
  Frustr.	
  Residues	
  

Single	
   Buried	
  

p-­‐value	
  =	
  4.159e-­‐06	
  
N	
  =	
  112	
  

p-­‐value	
  =	
  2.834e-­‐07	
  
N	
  =	
  80	
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*jpg	
  and	
  *pdf	
  
	
  
/Users/admin/Desktop/rsch/frustra1on/surf_and_core_enrichment/	
  
	
  
.//feb4_prs.pdf	
  
	
  
.//surf_and_core_enrichment/frustr_Mar16_mtg.pdf	
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Maximally	
  Frustr.	
  Residues	
  Using	
  the	
  Single-­‐Residue	
  Index	
  

75	
  

Oncogenes	
  TSGs	
  
p-­‐value	
  =	
  2.83E-­‐7	
  
N	
  =	
  80	
  

p-­‐value	
  =	
  5.5E-­‐3	
  
N	
  =	
  28	
  

Observed:	
  	
  X	
  	
  =	
  	
  #	
  of	
  cancer-­‐associated	
  SNVs	
  that	
  intersect	
  frustrated	
  regions	
  (5	
  in	
  this	
  case)	
  
Expected:	
  E[X]	
  =	
  [#	
  frustrated	
  residues	
  /	
  total	
  #	
  residues	
  in	
  protein]	
  	
  *	
  [	
  total	
  #	
  of	
  cancer-­‐associated	
  SNVs]	
  

Cancer-­‐associated	
  SNV	
  NON-­‐frustrated	
  region	
  Frustrated	
  region	
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To	
  underline	
  the	
  usefulness	
  of	
  your	
  method,	
  which	
  is,	
  ...	
  to	
  meet	
  a	
  "growing	
  and	
  urgent	
  
need	
  to	
  evaluate	
  the	
  poten4al	
  effects	
  of	
  low-­‐allele-­‐frequency	
  variants	
  in	
  unbiased	
  ways	
  
using	
  high-­‐throughput	
  methodologies",	
  I	
  miss	
  some	
  extra	
  calcula4ons	
  /	
  benchmarking.	
  

There	
  are	
  methods	
  exis4ng	
  in	
  order	
  to	
  evaluate	
  poten4al	
  effects	
  of	
  low-­‐allele-­‐
frequency	
  variants	
  in	
  unbiased	
  ways	
  (SIFT,	
  PolyPhen2,	
  Muta4onTaster,	
  and	
  many	
  

others).	
  I	
  would	
  like	
  to	
  see	
  how	
  exactly	
  your	
  method	
  adds	
  up	
  to	
  this.	
  Is	
  the	
  addi4onal	
  
informa4on	
  gained	
  from	
  structural	
  analysis	
  really	
  an	
  advantage	
  over	
  exis4ng	
  methods?	
  
If	
  you	
  could	
  show	
  this,	
  this	
  would	
  surely	
  be	
  an	
  argument	
  for	
  people	
  to	
  use	
  and	
  cite	
  
your	
  method	
  ...	
  One	
  could	
  for	
  ...	
  create	
  a	
  small	
  set	
  of	
  variants	
  and	
  analyse	
  these	
  with	
  

one	
  or	
  two	
  of	
  the	
  "common"	
  tools	
  to	
  predict	
  the	
  deleteriousness	
  of	
  SNVs	
  (e.g.	
  
PolyPhen2	
  and	
  Muta4onTaster2,	
  since	
  these	
  are	
  generally	
  considered	
  the	
  most	
  

accurate	
  ones)	
  and	
  then	
  check	
  if	
  there	
  are	
  disease	
  variants	
  predicted	
  as	
  "harmless"	
  by	
  
these	
  tools	
  (i.e.	
  false	
  nega4ve)	
  which	
  are	
  then	
  correctly	
  seen	
  as	
  locally	
  maximal	
  

frustrated	
  by	
  your	
  method.	
  Or	
  any	
  other	
  way	
  how	
  it	
  can	
  be	
  shown	
  that	
  the	
  method	
  is	
  
indeed	
  useful	
  for	
  the	
  analysis	
  of	
  high-­‐throughput	
  data	
  (e.g.	
  compare	
  with	
  other	
  exis4ng	
  

"structural	
  predic4on"	
  tools,	
  if	
  those	
  exist).	
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+	
  (reminder	
  on	
  nets	
  disc)	
  

Frustr (true pos | false pos)
PolyPhen (true pos | potent. | false pos)
SIFT(true pos | false pos)
HGMD



PDB	
   SNPs	
   ResPos	
   origR
es	
  

mutRe
s	
  

2VIG	
   chr12:121176108:
T:G	
  

217	
   MET	
   ARG	
   -­‐1.802	
  

2VIG	
   chr12:121174892:
T:A	
  

105	
   ILE	
   ASN	
   -­‐2.855	
  

2VIG	
   chr12:121176421:
C:A	
  

294	
   ALA	
   ASP	
   -­‐1.728	
  

2VIG	
   chr12:121177182:
C:G	
  

390	
   ILE	
   MET	
   -­‐2.909	
  

2VIG	
   chr12:121177150:
C:T	
  

380	
   ARG	
   TRP	
   -­‐5.352	
  

2VIG	
   chr12:121175763:
C:T	
  

199	
   ALA	
   VAL	
   0.693	
  

2VIG	
   chr12:121176633:
C:T	
  

315	
   ALA	
   VAL	
   0.297	
  

Acyl-CoA-dehydrogenase 
deficiency 

HGMD	
  SNP	
  disrup4ng	
  core	
  residues	
  to	
  different	
  extent	
  in	
  a	
  
par4cular	
  disease	
  

8	
   78	
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Acyl-CoA-dehydrogenase 
deficiency 
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PDB	
   SNPs	
   ResPos	
   origR
es	
  

mutRe
s	
  

3EZQ	
   chr10:90773977:
G:A	
  

260	
   ASP	
   ASN	
   -­‐0.615	
  

3EZQ	
   chr10:90773978:
A:G	
  

260	
   ASP	
   GLY	
   -­‐2.129	
  

3EZQ	
   chr10:90773977:
G:C	
  

260	
   ASP	
   HIS	
   -­‐1.355	
  

3EZQ	
   chr10:90774008:C
:T	
  

270	
   THR	
   ILE	
   0.396	
  

3EZQ	
   chr10:90774008:C
:A	
  

270	
   THR	
   LYS	
   -­‐0.044	
  

3EZQ	
   chr10:90774002:
A:C	
  

268	
   GLN	
   PRO	
   -­‐0.334	
  

3EZQ	
   chr10:90774050:T
:C	
  

284	
   LEU	
   PRO	
   0.015	
  

3EZQ	
   chr10:90773977:
G:T	
  

260	
   ASP	
   TYR	
   -­‐4.995	
  

3EZQ	
   chr10:90773978:
A:T	
  

260	
   ASP	
   VAL	
   -­‐2.193	
  

Autoimmune 
Lymphoproliferative Syndrome 

HGMD	
  SNPs	
  disrup4ng	
  surface	
  residues	
  	
  to	
  different	
  extent.	
  

9	
   80	
  



Autoimmune 
Lymphoproliferative Syndrome 
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PDB	
   SNPs	
   ResPo
s	
  

origRes	
   mutR
es	
  

cancerTyp
e	
  

2VJ3	
   chr9:139412263:
C:T	
  

461	
   CYS	
   TYR	
   -­‐2.813	
   Head	
  &	
  
Neck	
  

2VJ3	
   chr9:139412359:
C:T	
  

429	
   CYS	
   TYR	
   -­‐3.477	
   Head	
  &	
  
Neck	
  

2VJ3	
   chr9:139412360:
A:T	
  

429	
   CYS	
   SER	
   -­‐1.572	
   Lung	
  

2VJ3	
   chr9:139412299:
C:T	
  

449	
   CYS	
   SER	
   -­‐1.085	
   Head	
  &	
  
Neck	
  

TSG	
  Driver	
  disrup4ng	
  core	
  residues	
  :	
  NOTCH1	
  
gene	
  

12	
  
82	
  



PDB	
   SNPs	
   ResPo
s	
  

origRes	
   mutR
es	
  

cancerTyp
e	
  

4DSO	
   chr12:25398213:
T:A	
  

36	
   ILE	
   LEU	
   -­‐0.928	
   Esophage
al	
  

4DSO	
   chr12:25380240:
C:A	
  

73	
   ARG	
   MET	
   -­‐2.495	
   Astrocyto
ma	
  

4DSO	
   chr12:25398211:
T:C	
  

36	
   ILE	
   MET	
   -­‐3.631	
   AML	
  

4DSO	
   chr12:25378603:
T:C	
  

132	
   ASP	
   GLY	
   -­‐1.408	
   Stomach	
  

Oncogene	
  Driver	
  disrup4ng	
  surface	
  residues	
  :	
  KRAS	
  gene	
  

12	
  
83	
  



Poten*al	
  causes	
  of	
  outlier	
  error	
  rates	
  
•  single-­‐exon	
  genes	
  (o�en	
  associated	
  w/pgenes)	
  à	
  duplica4ons	
  à	
  low	
  

mappability	
  scores	
  
•  low	
  mappability	
  scores?	
  à	
  check	
  using	
  intersect	
  bed	
  w/encode	
  in	
  UCSC	
  

Genome	
  Browser.	
  Genome	
  browser	
  has	
  a	
  track	
  for	
  mappability	
  à	
  first	
  
download	
  and	
  check	
  w/intersect	
  bed?	
  

•  exon	
  lengths	
  from	
  same	
  genome	
  build?	
  In	
  any	
  case	
  GTEx	
  is	
  repor4ng	
  in	
  GENE	
  
read	
  counts	
  

•  With	
  BAM	
  file	
  as	
  input,	
  GTEx	
  uses	
  RNA-­‐SeQC:	
  “Expression	
  levels	
  were	
  
produced	
  at	
  the	
  gene	
  and	
  exon	
  level	
  in	
  RPKM	
  units	
  using	
  RNA-­‐SeQC”	
  
à	
  Black	
  box	
  &	
  confounding	
  factors	
  (GC	
  bias,	
  mapability,	
  uniqueness,	
  etc)	
  

	
  
	
  
Misc	
  Notes	
  

•  Strange	
  that	
  processed	
  read	
  counts	
  data	
  are	
  not	
  available	
  at	
  the	
  GTEx	
  Portal	
  
•  BAM	
  files	
  not	
  available	
  to	
  re-­‐compute	
  RPKM	
  from	
  RNA-­‐SeqC	
  
•  GTEx:	
  tophat/bow4e,	
  though	
  will	
  be	
  STAR	
  2.4.2a	
  in	
  v7	
  (CommonMind=	
  STAR)	
  
•  PsychENCODE	
  currently	
  processing	
  all	
  to	
  be	
  uniform?	
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Framingham	
  data	
  (miRNA-­‐eQTLs)	
  


