Chromatin structure-based prediction of recurrent noncoding mutations in cancer

Journal club 10/25/2016

Aim of the work

To identify non-coding driver(recurrent) mutations that impact a cisregulatory element of a gene via chromatin interactions.

Compare this model with respect to site specific recurrence model.

SNV datasets utilized

Cohort	Cancer type	Number of samples	Number of point mutations
Sanger	Breast	119	647,695
	Lung	24	1,446,336
GIS	Lung	30	1,763,572
TCGA	Breast	92	756,434
	Lung	90	3,594,840

Cancer type	State	Cell line	Data source	Number of interaction pairs
Breast	Cancer	MCF7	ChIA-PET	24,501
		MCF7	IM-PET	25,746
		MCF7, T47D	DHS tag correlation	66,222
		MCF7, T47D	CAGE expression correlation	18,362
	Cell of origin	HMEC	IM-PET	20,254
		HMEC	DHS tag correlation	75,167
		HMEC	CAGE expression correlation	26,001
Lung	Cancer	A549	IM-PET*	27,435
		A549	DHS tag correlation	50,135
		A549	CAGE expression correlation	18,509
	Cell of origin	NHLF, IMR90	IM-PET	40,189
		AGO4550, HPF, NHLF, WI38	DHS tag correlation	70,785
		AGO4550, HPF, NHLF, WI38	CAGE expression correlation	25,400

Enhancer-promoter interaction data

Chromatin-structure based recurrence model

Deviation in expression for genes with recurrent mutations tend to higher compared to non-mutated samples.

Gene expression deviation of genes influenced by recurrent mutations

Lung cancer (TCGA)

Approximately 72% and 73% of genes with recurrent mutations show higher level of gene expression deviation for the mutated Breast and Lung samples, respectively.

Mutation profile of genes with recurrent and clustered mutations

Cluster of recurrent mutations observed in various genes on the chromosome 17 for breast cancer cohort. These genes had similar recurrent mutation profile.

Oncogenic relevance of gene-wise recurrent mutations

Recurrent mutations are in close proximity with cancer gene locus.

Expression of genes with recurrent mutations correlate better with patient survival.

Known cancer genes were over-represented among genes affected with recurrent mutations. 5

Interactions of gene-wise recurrent mutations with known cancer genes

Enrichment of interactions involving recurrently mutated genes with known cancer genes.

6

Functional enrichment analysis of gene-wise recurrent mutations

Breast cancer

Relative average gene-level recurrence

Recurrently mutated genes interact with genes enriched with biological function related to cancer genes.

Recurrently mutation among TSG enriched in enhancer active in the cell-of-origin epigenome.

For oncogenes, enrichment observed in enhancers active in cancer epigenome.

Lung cancer

Relative average gene-level recurrence

Classifier to predict recurrent mutations

Random forest classifier to predict gene level recurrent functional mutations with inclusion of additional samples.

	Feature ID	Description		
	Target_Cancer_Gene	Whether the target gene is a known cancer gene		
	Target_HumanNet.CGS_L1	Number of one-hop interactions of the target gene with known cancer genes in HumanNet		
	Target_HumanNet.CGS_L2	Number of two-hop interactions of the target gene with known cancer genes in HumanNet		
	Target_Interactome.CGS_L1	Number of one-hop interactions of the target gene with known cancer genes in Interactome		
	Target_Interactome.CGS_L2	Number of two-hop interactions of the target gene with known cancer genes in Interactome		
	Target GO cell.death	Whether the target gene belongs to a Gene Ontology term related to cell death		
Target gene features	Target GO cell.differentiation	Whether the target gene belongs to a Gene Ontology term related to cell differentation		
	Target GO cell.proliferation	Whether the target gene belongs to a Gene Ontology term related to cell proliferation		
	Target GO mitototic.cell.cycle	Whether the target gene belongs to a Gene Ontology term related to mitotic cell cycle		
	Target DEG score	Differential expression of the target gene between cancer and normal tissues*		
	Target Expression	Expression level of the target gene in cancer		
	Target CNA	Copy number alteration of the target region		
	TE Cancer Gene	Whether the regulator is a known cancer gene		
	TE HumanNet CGS 11	Number of one-hon interactions of the regulator with known cancer genes in HumanNet		
	TE HumanNet CGS 12	Number of two-hop interactions of the regulator with known cancer genes in HumanNet		
	TF_Interactore CCS_11	Number of two-nop interactions of the regulator with known cancer genes in Humanivet		
	TF_Interactome.CGS_L2	Number of one-hop interactions of the regulator with known cancer genes in interactome		
Binding TF features	IF_Interactome.CGS_L2	Number of two-hop interactions of the regulator with known cancer genes in Interactome		
	IF_GO_cell.death	Whether the regulator belongs to a Gene Ontology term related to cell death		
	TF_GO_cell.differentiation	Whether the regulator belongs to a Gene Ontology term related to cell differentation		
	TF_GO_cell.proliferation	Whether the regulator belongs to a Gene Ontology term related to cell proliferation		
	TF_GO_mitototic.cell.cycle	Whether the regulator belongs to a Gene Ontology term related to mitotic cell cycle		
	TF_DEG_score	Differential expression of the regulator gene between cancer and normal tissues*		
	diff_Pval	Change in the P value of the motif score by the mutation		
TFBS features	avg_Pval	Average of the P values of the motif scores with and without the mutation		
	TF_sign	Gain or loss of the TF binding site by the mutation		
	Dist_GWAS_2D	Chromosomal distance from the mutation to the closest cancer GWAS locus		
Genomic features	Early.to.late_Rate	Replication timing represented as the early-to-late ratio, (G1B+S1) /(S4+G2)**		
	PhastCons	Evolutionary conservation of the underlying sequences as meaured by PhastCons		
	Dnase	DNase peak score in the cancer cell line		
	H3k20me1	H3K20me1 modification peak score in the cancer cell line		
	H3k27ac	H3K27ac modification peak score in the cancer cell line		
	H3k27me3	H3K27me3 modification peak score in the cancer cell line		
Concerenizanomo	H3k36me3	H3K36me3 modification peak score in the cancer cell line		
features	H3k4me1	H3K4me1 modification peak score in the cancer cell line		
leatures	H3k4me2	H3K4me2 modification peak score in the cancer cell line		
	H3k4me3	H3K4me3 modification peak score in the cancer cell line		
	H3k79me2	H3K79me2 modification peak score in the cancer cell line		
	H3k9ac	H3K9ac modification peak score in the cancer cell line		
	H3k9me3	H3K9me3 modification peak score in the cancer cell line		
	Orig_Dnase	DNase peak score in the cells of origin		
	Orig_H3k20me1	H3K20me1 modification peak score in the cells of origin		
	Orig H3k27ac	H3K27ac modification peak score in the cells of origin		
	Orig_H3k27me3	H3K27me3 modification peak score in the cells of origin		
	Orig H3k36me3	H3K36me3 modification peak score in the cells of origin		
Cell-of-origin	Orig H3k4me1	H3K4me1 modification peak score in the cells of origin		
epigenome features	Orig H3k4me2	H3K4me2 modification peak score in the cells of origin		
	Orig H3k4me3	H3K4me3 modification peak score in the cells of origin		
	Orig_H3k79me2	H3K79me2 modification peak score in the cells of origin		
	Orig H3k9ac	H3K9ac modification peak score in the cells of origin		
	Orig H3k9me3	H3K9ma3 modification peak score in the cells of origin		

Features contributing to the efficacy of recurrence classifiers

Gene-level recurrence model outperform site-specific model.

Important predictive features include cancer/cell-of-origin epigenome and TFBS.

Features contributing to the efficacy of recurrence classifiers

Rescue frequency and power analysis to identify recurrence

1.0 Rescue fraction with addition of 100 samples.

2k-15K samples per tumor type are required to fully rescue recurrent mutations.

Correlation of gene-level mutation burden and expression level

Survival gene	Survival P value (expression- survival correlation)	Correlation between mutation burden and expression level	Correlation P value
SNORA48	0.027	0.418	5.59E-05
SNORA14B	0.014	0.386	2.19E-04
LAMP1	0.005	0.34	1.28E-03
MAPK12	0.048	0.332	1.70E-03
PRSS54	0.044	0.329	1.83E-03
PITPNM2	0.033	0.328	1.92E-03
LOC100129935	0.044	0.328	1.61E-03
APCS	0.035	0.314	3.06E-03
VCX3B	0.029	0.311	2.86E-03
CARS2	0.011	0.304	4.16E-03
RPS6KA1	0.007	0.304	4.20E-03

Mutation burden of survival-associated genes correlates with gene expression level.

Functional validation of predicted noncoding TERT mutations

Luciferase assay based validation for 10 out of 18 TERT diver mutation.

4 mutations showed significant increase in the luciferase activity.

Discussion

This method is heavily reliant on chromatin interaction data.

Need to have accurate interaction data

Absence of complete chromatin-interaction data

The predictive power is still limited similar to site specific driver identification approaches.

Need more samples to identify recurrent mutations

Rescue frequency poor for False negative mutations