
SIGNIFICANCE 
 

Renal cell carcinoma (RCC) makes up over 90% of kidney 
cancers and is the most lethal genitourinary malignancy [1]. The incidence of RCC has tripled in recent years 
in all races; however, the most dramatic increase is seen 
in African-Americans relative to other populations [1, 2]. 
According to the NCI Surveillance and Epidemiology End 
Results (SEER) Cancer Program [3], the age-adjusted 
incidence of kidney cancers compared to Caucasians is 
30% greater (18.5 and 15.5 cases per 100,000 persons, 
respectively)(Figure 1). To date, research has not fully explained increased susceptibility to RCC among 
African-Americans [4]. Known RCC risk factors include male gender, increased age, hypertension, obesity, 
chronic kidney disease, and smoking history, some of which may be more commonly observed in African 
Americans[5, 6, 7, 8]. Besides the different frequency RCC risk factors, it has been hypothesized that genetic 
risk variants may contribute to radical disparity. 

Besides the higher incidence of RCC among African-
Americans, several other racial disparities have been described. Some studies have demonstrated that African-
Americans have a younger median age of RCC presentation, between 3-8 years earlier than Caucasians (Table 

1). In RCC, age of onset is a major criterion for genetic 
testing as many hereditary cancers develop at a 
younger age than observed in the generation 
population [9]. While over a dozen known RCC 

syndromes exist, inherited risk and early disease onset may be more frequently related to a complex inheritance 
pattern. Specific risk alleles may contribute to the racial disparity in kidney cancer perhaps, predisposing to an 
earlier age of onset.  

Figure 1: Standardized incidence ratios of cancer of 
the kidney and renal pelvis for Caucasians (Green) 
and African Americans (Red). Data from the 
Surveillance Epidemiology and End Result program 
from 1975-2011, [3]) 
 

Table 1: Age distribution of kidney cancer by race 
from a prior series  ADDIN cite{25956269}[61] and 
ongoing work from the Yale Kidney Cancer group 
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An additional disparity in RCC is the large racial difference 
in the distribution of histologic subtypes. RCC is a group of cancers arising from the nephron with the two most 
common subtypes, clear cell RCC (ccRCC) and  papillary RCC (pRCC) accounting for 85% of all cases. 
Although pRCC is reported to account for 10-15% of renal tumors (Figure 2), several published and ongoing 
studies demonstrate this subtype is three-fold more common in African-Americans, accounting for 35-40% of 
cases (Table 2) [10, 11, 12]. The reason for the increased pRCC frequency in African-Americans is currently 
unknown. Unfortunately, metastatic pRCC has an abysmal prognosis with limited therapeutic options. 

Another racial disparity in kidney cancer is that survival is also significantly worse among African-
Americans. One explanation is  that African-Americans less frequently receive standard treatments in the 
United States. However even controlling for treatment and tumor characteristics including, stage, grade, and 
subtype, survival is still significantly worse [4, 13, 14]. Similar to prostate cancer where African-Americans 
patients have a more aggressive disease biology,[15] it has been proposed that differences in molecular biology 
are involved racial disparities in kidney cancer [4, 6, 16, 17]. A recent report suggests that VHL loss and the 
resultant dysregulated HIF pathway are less frequently observed in African-Americans with ccRCC. 

While significant racial differences exist in the incidence, mortality, age of onset, subtype distribution, 
and survival of RCC, no comprehensive study has specifically focused on deciphering the genetic mechanisms 
associated with racial disparity while controlling for specific comorbidities known to influence kidney cancer 
development. While the Cancer Genome Atlas (TCGA) and other sequencing efforts have analyzed hundreds 
of kidney cancer specimens, the majority of tumors are from Caucasian patients. Without tumors from a diverse 
cohort of subjects it is difficult to explore the reasons for these racial disparities. It is not known whether clinical 
differences are based on varying genomic backgrounds or specific driver alterations. e set out to identify 
possible coding and non-coding alterations explaining the genomic basis of kidney cancer racial disparity. 
 
B. INNOVATION 
 
In this work, we are interested in identifying key genomic alterations, which contribute to greater incidence, 
earlier age of onset, and different histologic distribution of kidney cancer in African-Americans compared to 
Caucasians. This study will be the first comprehensive assessment of somatic and germline genomic 
alterations in kidney cancer by race. We expand upon prior work from TCGA, by including an additional 
cohort of African-Americans with ccRCC matched by kidney cancer risk factors. By including these samples 
and performing secondary data analysis of the existing ccRCC and pRCC datasets, we can compare 
differences in risk variants, driver mutations, and driver copy number alterations by race. Using our novel 
bioinformatic tools to analyze whole genome data, we will define and then validate non-coding driver 
alterations important in kidney cancer risk and progression. This study will be the initial step in addressing the 
biological/genetic causes of cancer health disparities in kidney cancer.  
 
C. APPROACH 
 
Aim 1: To perform whole genome sequencing (WGS) of African-Americans with ccRCC to complete a 
missing aspect of the cancer genome atlas (TCGA). 

Figure 2: Histologic distribution of kidney 
cancer ( ADDIN cite{24857407}[60]) 
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C-1-a Rationale: In recent years various TCGA 
efforts have furthered our understanding of the genomic basis of the various forms of kidney cancer. These 
studies have led to the understanding that 
some of the diversity within kidney cancer 
results from different cells of origin giving rise 
to distinct types of cancer within the same organ. Additionally, differences in somatic alterations (driver 
mutations and copy number variations) are important in determining a cancer’s molecular profile. In the TCGA, 
cases were submitted from various high volume tertiary centers to the Bio-specimen Core Resource (BCR) for 
accessioning and specimen processing. Specimens however were not submitted in a coordinated fashion to 
ensure the study population has a similar profile of that encountered nationally. Not surprising, there was clearly 
a limited number of African-Americans with clear-cell kidney cancer included in the TCGA analysis. Despite 
African-Americans accounting for approximately 1 in 7 cases of ccRCC, only a cursory analysis was performed 
in this population including 14/427 (3.3%) samples that underwent whole exome sequencing (Table 2) and 1/40 
(2.5%) (Table 2) that underwent whole genome sequencing. Failing to include a larger population of African-
Americans with clear cell RCC limits our ability to explore the genomic basis for racial disparities. With a higher 
incidence of pRCC in African-Americans, the papillary kidney cancer TCGA cohort was able to include a larger 
number of African-Americans. However, despite the available data, there has not been a thorough analysis of 
somatic driver alterations or germline risk variants more prevalent in African-American kidney cancer. We 
propose to complete the TCGA analysis of the top two subtypes of kidney cancer, papillary and clear cell, by 
analyzing an additional cohort of African-Americans with ccRCC. By performing whole genome sequencing on 
this additional cohort of samples, we will have an adequate number of cases to allow balanced comparisons 
between African-American and Caucasian clear cell and papillary kidney cancers. 
 
C-1-b Sample acquisition, comorbidity/demographics matching, and DNA extraction: All patients 
undergoing scheduled kidney cancer surgery at Yale New Haven Hospital are offered enrollment into an IRB-
approved Genitourinary Biospecimen repository (P.I. Shuch, HIC# 0805003787). Within 30 minutes of removal, 
fresh tumor tissue is snap frozen in liquid nitrogen by the pathology team. Additionally whole blood is procured 
to serve as a genomic control. In the past 2 years, over 300 subjects with kidney cancer have been 
prospectively enrolled.  All fresh bio-specimens are stored at -80˚C and are available for immediate analysis. 
For the purpose of completion of the TCGA dataset, we will utilize a 15 African-American subjects with ccRCC 
from 2013-2016.  The TCGA kidney cancer projects have captured patient age, sex, race, smoking history, and 
has limited information from a secondary analysis on obesity status. To account for the influence of comorbidity 
and demographics, we will employ an Optimal match algorithm (CRAN-R-project, optmatch) to match 
characteristics of patients to previously sequenced ccRCC in the TCGA. 
 
DNA will be extracted from fresh tumor tissue and whole blood using an automated Maxwell 16® System 
(Promega, Madison, WI).  
 
C-1-c WGS and variant calling: Sequencing of the normal and tumor sample will performed using Illumina’s 
Hiseq 2000 technology. In brief, DNA fragments from each sample will be hybridized using HiSeq Paired-End 
cluster Kits and will be further amplified using the Illumina cBOT. Paired–end libraries will be generated by 
utilizing HiSeq (2x101) cycle and imaging will be performed by TruSeq kits.  

We have extensive experience in large-scale variant calling and interpretation through being active 
members of the 1000 Genomes Consortium, especially in the analysis working group and the structural variant 

Table 2: Racial and histologic distribution of available whole exome 
and whole genome data available from TCGA datasets 
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(SV) and functional interpretation (FIG) subgroups of the consortium where the majority of the variant calling 
tools were developed, deployed and interpreted [18, 19, 20]. We have already developed a prototype pipeline 
for calling germline and somatic variants. We will use the Genome Analysis Toolkit (GATK)[21] to call germline 
SNPs and INDELS. We use parameters consistent with those used in TCGA[22].We will map raw FASTQ files 
of each sample to the hg19 reference genome using bwa-mem algorithm with default parameters to generate 
BAM files. These bam files will be further processed to sort and mark duplicates reads before calling variants. 

We will follow GATK best practices [21] to generate initial raw variant call sets using GATK haplotype 
caller. We will filter these initial call sets by running GATK variant recalibration tool. The filtering strategy based 
on variant recalibration method uses a continuous adaptive error model. The adaptive error model takes into 
account the relationship between annotation of each variant (Quality score, mapping quality, strandedness and 
allele information) and the probability of it being a true positive instead of a sequencing artifact. Furthermore, 
we will exclude any filtered variant, which falls in a low mappability region of the genome.  In addition, we will 
utilize MuTect [23] and Strelka [24] to call somatic SNVs and INDELs, respectively. 

Structural variations (SVs) are important 
contributors to human polymorphism, have great functional impact and are often implicated in various diseases 
including cancer. We have developed a number of SV calling algorithms, including BreakSeq [25], which 
compares raw reads with a breakpoint library (junction mapping), CNVnator, which measures read depth[26], 
AGE, which refines local alignment [27], and PEMer, which uses paired ends [28]. We have also developed 
array-based approaches [29] and a sequencing-based Bayesian model [30]. Furthermore, we have intensively 
studied the distinct features of SVs originated from different mechanisms. This indicates specific creation 
processes and potentially divergent functional impacts [31, 32]. We will perform extensive molecular 
characterization of germline and somatic SVs in these cancer samples. We will run CNVnator to identify 
germline and somatic copy number variations in each cancer samples. We will apply CREST [33] to generate 
germline and somatic large structural variations including large deletions, insertion, inversion, intra & inter-
chromosomal translocations. Furthermore, we will run our BreakSeq tool to decipher the underlying mechanism 
of somatic and germline SV formation. 

 
C-1-d Deliverables: In this aim, we will generate an extensive catalogue of germline and somatic variants 
including SNPs, INDELs and large SVs for African-American ccRCC cases. This will be done consistent with 
methodology already used in TCGA. This catalogue can be used conjunction with TCGA kidney cancer 
genomic variant datasets, to serve as an excellent comparison for the identification of genomic aberrations, 
associated with racial disparity observed in the emergence of kidney cancer. We plan to make our sequencing 
data available via dbGAP (see data dissemination plan).  
 
Aim 2: To assemble a set of coding and non-coding regions associated with kidney cancer -- both 
somatic and germline alterations. 
 

Figure 3: Read depth based identification of copy number 
variation by CNVnator. 
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C-2-a Rationale: In this study, we aim to discover genetic regions that explain racial disparity in RCC. Due to 
limited numbers of sequenced samples, it is not feasible to test every single region in the genome.  
Furthermore, it is important to limit our search space to achieve statistical power. Therefore, we will first 
assemble a catalog of mutations that are relevant to renal cell carcinoma, and prioritize regions with greatest 
impact. In this way, we will incorporate our best prior knowledge of RCC and cancer genomics into this study. 
 
C-2-b Relevant Preliminary Results 

 
C-2-b-1 We have developed ways of prioritizing high-functional impact variants: We have completed extensive 
analysis of patterns of variation in non-coding regions, and their coding targets [34, 35, 36]. We used metrics 
such as diversity, and fraction of rare variants, to characterize selection on various classes and subclasses of 
functional annotations [34]. In addition, we have also defined variants that are disruptive to a TF-binding motif 
in a regulatory region [37]. Further studies showed relationships between selection and protein network 
topology (for instance, quantifying selection in hubs relative to proteins on the network periphery) [38, 39]. In 
recent studies [31, 40], we have integrated and extended these methods to develop a prioritization pipeline 
called FunSeq. It identifies sensitive and ultra-sensitive regions (i.e., those annotations under strong selective 
pressure, as determined using genomes from many individuals from diverse populations). It identifies 
deleterious variants in many non-coding functional elements, including TF binding sites, enhancer elements, 
and regions of open chromatin corresponding to DNase I hypersensitive sites. It also detects their specific 
disruptiveness to TF binding sites, annotating both loss-of and gain-of function events. Integrating large-scale 
data from various resources (including ENCODE and The 1000 Genomes Project) with cancer genomics data, 
our method is able to prioritize the known TERT promoter driver mutations, and it scores somatic recurrent 
mutations higher than those that are non-recurrent. Using FunSeq, we identified ~100 non-coding candidate 
drivers in ~90 WGS medulloblastoma, breast, and prostate cancer samples [31]. We have also applied our 
method to investigate non-coding mutation patterns in subtypes of gastric cancer [41]. Drawing on this 
experience, we are currently co-leading the International Cancer Genomics Consortium (ICGC) pan-cancer 
analysis-working group (PCAWG)-2 (analysis of mutations in regulatory regions) group.  

We have also used allelic variability to prioritize regions of the genome. That is, we prioritize regions 
that differ in functional genomic response, for example, allele-specific expression and binding between the 
maternal and paternal alleles. Our variant analysis work includes 
AlleleSeq [42], a computational pipeline to identify allele-specific 
events, and AlleleDB, our database connecting single nucleotide 
variants with allele-specific binding and expression [43].  

 

Figure 4: Workflow for Funseq based variant 
prioritization  
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C-2-b-2 We have developed tools for somatic 
and germline burden tests: We have worked on statistical methods for analysis of non-coding regulatory 

regions. LARVA (Large-scale Analysis of 
Recurrent Variants in noncoding 
Annotations) identifies significant mutation 
enrichments in noncoding elements, by 
comparing observed mutation counts with 

expected counts under a whole genome background mutation model. LARVA includes corrections for biases 
in mutation rate owing to DNA replication timing. LARVA can also be targeted exclusively to coding regions to 
prioritize genes. We used this tool in a pan-cancer analysis of 760 cancer whole genomes’ variants spanning 
a number of cancer data portals and some published datasets. Our analyses demonstrated that LARVA can 
recapitulate previously established coding and noncoding cancer drivers, including the TERT and TP53 
promoters [44]. 
 
C-2-b-3 We have identified regions associated with kidney cancer through our involvement in the papillary 
TCGA team: Related to Yale’s expertise in the clinical management and genetics of kidney cancer, we were 
invited to participate in TCGA kidney cancer projects. Our role in the TCGA KICH (chromophobe RCC) included 
coordination of the Cancer Cell manuscript. Our team performed the analysis of the whole genome sequencing 
for the TCGA KIRP (pRCC), now published in New England Journal of Medicine [22]. This provided further 
experience with available RCC genomic datasets. Finally, our team has participated in two ongoing pan-RCC 
manuscripts serving a central role assessing evaluating the cluster of clusters’ (cluster of cluster assignments 
-- COCA) immunologic profile from gene and miRNA expression datasets. Together with other published results 
on RCC [45, 46, 47, 48, 49], we already have the ability assembled an extensive list of impactful regions on 
the genome that have shown statistical significance in previous studies. However, most of these studies 
focused on coding regions only. 
 
C-2-b-4 We have identified racial disparities in high impact germline variants, affecting known kidney cancer 
associated genes: As initial exploration of the origins of racial disparity in RCC, we evaluated 14 genes with 
known association to RCC, for difference in frequency of high impact germline variants between Caucasians 
and African Americans. This analysis was based on the ExAC consortium’s database of exomic variants in 
non-cancer patients [CITE MAIN ExAC PAPER]. African Americans displayed a ~20% higher rate of 
deleterious germline variants in RCC associated genes than Caucasians. Deleterious variants in the VHL gene 
occur in 1/1270 caucasian individuals, and 1/190 individuals of African descent. This preliminary data suggests 
a genetic predisposition to kidney cancer in African American Individuals. 
 

Overall African 
American  

(AFR) 

Non-Finnish 
European 

(NFE) 

Finnish 
European 

(FIN) 

1/23 indiv. 1/17* indiv 1/20 indiv 1/54 indiv. 

*Highest rate among all races in the ExAC database 

Figure 5: Comparison of β-binomial distribution fit (turquoise) 
and binomial distribution fit (pink) to observed cancer somatic 
mutation counts. The β-binomial distribution betters models the 
empirical distirbution’s (black) overdispersion. 
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C-2-c Research plan  
 
C-2-c-1 Identify known genomic alterations contributing to kidney cancer: We will take a comprehensive 
approach to identifying genomic regions that may contribute to racial disparity in RCC. First, we will perform a 
literature search, to identify previous work documenting association between genomic alterations and RCC. 
We will gather genetic changes that include single nucleotide variation (SNP), structural variation/copy number 
variation (SV/CNV), and mutation process signature. We will also annotate regions that are associated with 
disparity between Caucasian and African-Americans in other forms of cancer, such as prostate cancer [50, 51]. 
Prior study has shown that RCC is uniquely characterized by copy number variations (RCC) as an early and 
major driver event [45]. Because repeats are triggering factors for many structural variation events, we will pay 
particular attention to repeats polymorphisms around known cancer associated genes, and recurrent CNV 
regions in RCC. Repeats may put certain RCC related genes at predisposition to CNV events.  
 
C-2-c-2 Extend FunSeq to find connected modules of elements: FunSeq connects non-coding elements to 
target genes. It exploits locality of promoters, and correlates epigenetic markers on distal regulatory elements 
with gene expression. Here will extend this capability to develop modules of elements. Genetic modules extend 
high impact regions by linking them with other genomic elements according to physical interaction, epigenetic 
marker and expression correlation, molecule pathway/network and other evidence. Elements in the same 
genetic module are expected to play similar roles in ccRCC and pRCC initialization and development. In the 
end, we will integrate this new feature into FunSeq and use to assemble genetic modules. Genetic modules 
group potentially impactful elements that share similar or collaborative biological functions, increasing statistical 
power in our study. Last, genetic modules offer annotation to less known noncoding regions. Our results will 
be more biologically interpretable because these regions will be linked with genes.  
 In order to systematically integrate evidence from various sources (which can mostly be represented in 
graph form), we will use a random walk on multiple graph layers. At each step, we chose to update the state 
on one graph. The walk stops at certain distance from its starting point (boundary condition). Starting from the 
gene that we are interested with and simulating this random walk multiple times, we will finally tally the number 
of visits to each node and pick out “hot” nodes (that are often covered in walks). Those nodes represent the 
linked nodes with our starting gene. Since random walk will give an empirical distribution of number of visits to 
the nodes, we will be able to set up our cut-off value for linked nodes in a robust manner. 
 
C-2-c-3 Extend LARVA to include additional covariates: It is known that various genomic features affect 
background mutation rate in most cancer types, which results in numerous false positives in somatic mutation 
recurrence analysis [50]. Hence, we have been working on an update to LARVA, which incorporates corrections 
for additional covariates that influence the somatic mutation rate in different genomic regions, including 
sequence content, replication timing, expression level, histone modification marks, and chromatin status. Our 
intention is to iteratively refine the underlying whole genome background mutation model to reflect all factors 
that influence the accumulation rate of background mutations.  
 
C-2-c-4 Run our updated and extended FunSeq & LARVA on WGS sequences from TCGA and aim 1: We 
expect many changes in noncoding regions play a critical role in renal cell cancer. In order to find high impact 
mutations in noncoding regions, we will run our updated and extended FunSeq and LARVA on variation calls 
from TCGA whole genome sequenced samples as well as our newly sequenced samples, both cancer and 
normal. In a first pass run, we have already run FunSeq on 32 whole genome sequenced samples from the 
TCGA KIRP group. We have found several disruptive mutation hot spots in the genome. We also have found 
excessive somatic mutations in MET intronic and promoter regions, along with several other recurrent mutated 
regions that merit further investigation. 
 
C-2-c-5 Identify critical regions burdened by germline mutations: First, we will try to find regions that are 
significantly burdened by germline mutations in the kidney cancer cases versus healthy people. As a non-
cancer control, we will use both the 1000 Genome Project (2504 individuals) for the whole genome as 
controls as well as the Exome Aggregation Consortium (ExAC, non cancer) for the exome[51]. We will look 
for regions and genes that are burdened significantly in RCC, compared to the control. Given the size of the 
datasets, we will be well powered in our tests (comparing numbers discussed later in aims 3 and 4). We will 
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also prioritize regions that are less significantly associated with RCC that are known to have racial disparities 
in healthy people.  
 
C-2-d Deliverables: We aim to generate a list of regions in genome that have greatest potential for impact on 
the development of RCC. We will construct a list of genetic modules that are assembled from high impact 
regions. We will make these regions available from our project website and as tables in published papers (see 
data dissemination plan). In Aim 3, we will directly test those elements on our samples. 
 
Aim 3: To identify genomic alterations differing most between African-Americans and Caucasians with 
kidney cancer 
 
C-3-a Rationale:	We will take genomic regions and modules developed in Aim 2, and test for evidence of racial 
disparity. Our intention is to investigate differences in occurrence of common SNPs, and differential burdening 
of rare germline or somatic mutations between African-American and Caucasians.  Our specific goal is to score 
and prioritize these genomic regions. The 550 regions with the highest score will be selected for validation in 
Aim 4. using a larger cohort. 	
 
C-3-b Compare germline mutations in coding regions between Caucasian and African-Americans in 
prioritized regions using WES Data 
 
C-3-b-1 Variant level analysis: For coding region analysis, we will utilize the full 556 samples with whole exome 
data analysis from TCGA. For common variants analysis at a single locus, Fisher’s exact test can be used to 
evaluate the racial disparity between Caucasian and African-American subjects with RCC. Here, we prioritize 
common variants according to their associations with RCC disparity in race. For a common SNP identified in 
African Americans and Caucasians with RCC, we record minor allele frequencies and major allele frequencies 
in African Americans and Caucasians with RCC, respectively. For these counts of the focal SNP, Fisher-exact 
test is used to determine whether the SNP tends to be associated with the African Americans with RCC. The 
p-values of the tests for all the common variants are used to prioritize them for further study and validation. 
Moreover, the power of the Fisher exact test can readily be estimated in this context. For instance, for an 
ordinary SNP with allele frequency 7% in the total samples, when its frequency in the African American subjects 
is 12%, the power of the test can reach 0.4 with a p-value < 5e-5. This indicates that these SNPs can be 
detected with statistical significance from 1000 candidates, even when a Bonferroni correction is used. 
 
C-3-b-2 Region based analysis: Beyond investigating the association between single common variants and 
race, we will focus on the evaluating the cumulative effects of a set of rare variants in certain genomic regions, 
such as genes, using both burden and non burden test. Burden test are often applied on regions where most 
of the variants in the same region are causal and their effect on the phenotype are on the same direction.  We 
assume that in total there are n patients with whole exome sequencing data available. Also for a target region, 

for example, a gene, there are m variants. Let  denote the population information of the  patient.  for 

African-Americans and 0 otherwise. Let  represent the genotype of patient . Then a logistic 

regression model can be set up to evaluate the association as in (1). Suppose that  describes the mean of 
the population status, then 

                                                               (1).  

For the burden test, we could treat the coefficient  for each patient as a weighted coefficient like 
. Then equation (1) can be rewritten to 

                                               (2). 
Then under the null hypothesis that there is no association of variants in this region with race, the coefficient 

 should be zero. So the test statistic for H0:  should be  
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                                                 (3). 

The allele frequency can be used to assign the weight for each variant. For example, , where 

 is the minor allele frequency. However, in some cases, where the target region has many non-causal 
variants or the effect of such variants is quite heterogenous, burden tests, such as equation (3), may lose 
statistical power. Here, sequence kernel association test (SKAT) can be used. Instead of assuming a weighted 

coefficient effect in the burden test, s are treated as independent random variables with 0 mean and variance 

. Then the null hypothesis can be changed to H0: . Then the test statistic under equation (1) can be 
written into:  

                                                    (4). 

In (4),  is the kernal matrix, and  is the genotype information vector.  is 
the weight matrix which can choose based on allele frequency or external information, such as conservation 
score. The test statistic in (4) can be rewritten into  

                                  (5). 
In the coding variant analysis, because for most genes, we do not know which of the two cases each gene falls 
into, a unified test can be used as the following 

                                          (6) 
Since the best route in (6) is unknown, the best test statistic can be used as the following:  

                                                              (7) 
 

C-3-b-3 Power analysis using SKAT for per region 
based analysis: In the above, we are planning to use aggregated burden tests (i.e. SKAT) to look for 
differential burdening between populations and use this to rank the regions. While we are not striving for 
absolute statistical significance in the differential burdening, we do think that the sample size is enough to get 
an appreciable signal for ranking. Here, we discuss the power aspects of the burden tests in detail and 
substantiate. SKAT analysis has been developed for rare genomic mutations and remains robust even for 
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common variants. We will utilize SKAT to identify genomic regions with significant variant disparity in kidney 
cancer between Caucasian and African-American populations. To estimate the sample size that we need to 
use in order to obtain statistical power, we used the SKAT package from R project, running several 
population models with different parameters (Figure 6). In the proposed study, we will focus on genomic 
modules linked with kidney cancer; therefore we expect a greater number of effective mutations.  

 
C-3-c Compare germline mutations in noncoding 
regions between Caucasian and African-
Americans in prioritized regions using WGS Data 
 
C-3-c-1 Pooled variant test for limited target regions: 
For the noncoding region analysis, since we only 
have limited power with 32 WGS samples in both 

populations, target regions instead of the whole genome wide analysis will be carried out on only a small set of 
regions. From our experience with TCGA KIRP, we already prioritized MET intronic and promoter regions, 
along with several other recurrent mutated regions that merit further investigation. We will only focus on these 
selected regions to use the unified test mentioned above (in section C-3-b). 
 
C-3-c-2 Non-parametric test for FunSeq score distribution difference: We suspect that the casual regions may 
not only be under differential mutational burden between races, but may also be overly affected by high-impact 
mutations. Thus, for the prioritized regions given above, we plan to calculate all the FunSeq scores on both 
African-American and Caucasian populations. Subsequently, by ranking and pairing the scores between the 
two population groups we intend to use the Wilcoxon signed-rank test to evaluate the significance of the 
mutational impact on each region. This test is a non-parametric version of the paired t-test and is used when 
we cannot assume that the populations follow a normal distribution. As the population size increases, a Z-score 
can then be calculated.  
 
C-3-d Compare somatic mutations between Caucasian and African-Americans in prioritized regions: 
Previously, we developed an integrative framework LARVA to discover the highly recurrent regions in cancer 
genomes as candidates for drivers [43]. We will further develop our method by correcting many other genomic 
features for more accurate background mutation rate calculation. Specifically, in a region with length , suppose 
the mutation rate is known as , then the number of mutations y within  given µ should follow a Poisson 
distribution as the following: 

                                                         (8) 
However, we discovered in our previous analysis that there is great cancer type, sample, and regional 
heterogeneity in the mutation count data [43]. Such mutational heterogeneity violates the constant mutation 
rate assumption and results in over-dispersion. Hence, instead of supposing µ is constant, we set up the 
following model  

                                                (9) 
Then the marginal distribution of Y could be expressed as the type I negative binomial distribution 

                          (10), 

Where , . Let , are the genomic covariates to be corrected, such as 
replication timing, GC content, and chromatin status, we could use the following negative binomial regression 
to estimate the local mutation rate under the covariant set. 

Figure 6: Using the default haplotype information in the 
SKAT.haplotypes dataset, we randomly selected 
subregions of size=5k and ran 100 simulations. In A, we 
show the statistical power obtained across the different 
models of maximum Odds Ratio. In B) we show the 
required sample size for each of these models in order 
to obtain significant statistical power (α=0.01, β=0.2) 
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                            (11) 
Consequently, instead of estimating a genome wide mutation rate  we are now estimating a coefficient vector 
for the mean and a constant over-dispersion value. For each region to be estimated, a local mutation rate can 
be reconstructed by equation (11) for accurate background rate and false positive/negative controls.  

We will apply our new method on the 16 African-American and then the 16 Caucasian WGS samples 
separately. Highly recurrent regions in each will be reported and compared. Those regions that are unique to 
either population will be prioritized for detailed validation. 

 
C-3-e Deliverables: This aim will create a ranking on the list of genes, non-coding regions and variants from 
Aim 2 to pass to the validation in Aim 4. We will combine the rankings from the sections above by comparing 
their corresponding p-values. However, we will keep a minimum number of validations of each category. Also, 
we plan to make our racial disparity rankings of genes and non-coding regions publicly available from the 
project web server (see data dissemination plan). 
 
Aim 4: To validate specific regions with either germline or somatic mutations suspected of contributing 
to kidney cancer racial disparity.  
 
C-4-a Rationale: Typically, traditional GWAS studies require thousands of sequenced genomes to associate 
genetic variants and disease with confidence. Therefore, aim 2 and 3 may not render the necessary statistical 
support to associate kidney cancer variants with racial disparities. However, in aim II and III, our main intention 
is to obtain, prioritize and rank ~550 genomic regions using our Funseq algorithm [40]. These regions will be 
further processed and validated in aim 4, by using sequences from Yale’s Genitourinary Biospecimen 
Repository.  We intend to validate 55 regions (100bp each) for 384 individuals.  

In particular, we will assemble a independent validation cohort from Yale’s Repository. This will contain 
both African-Americans and Caucasian with clear cell and papillary RCC to allow comparisons across both 
histologic type and race. [[matched by age, sex.... We'll use the super R script to find optimal matches. sincce 
we have a patient pool of 30M individuals we should have no problem]]Besides confirming an association with 
kidney cancer, a large cohort will help us better understanding of how frequently these alterations occur. 

 
C-4-b Power analysis for the validation cohort: Here we focus on 550 common SNPs prioritized by the 
Fisher exact test proposed in Aim 3. The same test is adopted to detect the SNPs associated with racial 
disparity of RCC, using the equal number (192) of African American and Caucasian patients with RCC. To 
analyze the test power, we survey the parameter space of a candidate SNP, i.e. the frequencies of the SNP in 
total patients (f) and in the African American (fa) and Caucasian (fc) patients. Due to correcting multiple tests 
with Bonferroni method, only SNPs with p-value < 1.0e-4 are considered to be associated with race disparity 
of RCC. Using STATMOD package [52], we find that to be detected with power at 0.8, a candidate SNP requires 
its f and fa /fc larger than 0.08 and 3.5 respectively. However, note, Bonferroni correction is overly stringent, 
rendering this power analysis conservative. 

In the other extreme, when all the prioritized regions are genes after pooled rare SNP tests, we suppose 
eventually 10 genes with 5kb length. Using the SKAT R package, we performed a power analysis of 100 
simulations and we could still detect regions with an Odds Ratio (OR) equal to 4 with this number of samples 
(power > 0.8). 
 
C-4-c Sample matching, specimen acquisition, and DNA extraction: For our validation cohort, an equal 
number (n=96) of Caucasian and African-American clear cell and papillary tumors (total n=384) will be selected 
as a Validation Cohort. As mentioned above, specific kidney cancer risk factors may influence the risk of RCC. 
To control for these differences, these cases will be matched using the similar Optimal match algorithm above 
using variables such as age, sex, smoking status, and obesity. Once cases are selected, we will access archival 
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fresh or formalin-fixed, paraffin-embedded (FFPE) tissue blocks to retrieve tumor and the adjacent normal 
kidney tissue for a genomic control. Our IRB-approved Genitourinary Bio-specimen protocol provides access 
to tissue from 1988-2016. If further cases are needed, we have access to specimens and clinical data over the 
past two decades in Connecticut State through a Connecticut Tumor Registry IRB approved protocol. All tumors 
will have centrally reviewed by our genitourinary pathologists and classified according to recent International 
Society of Urologic Pathology (ISUP) criteria [53]. For both fresh and FFPE tissue, DNA will be extracted from 
the tumor and adjacent normal kidney using an automated Maxwell 16® System (Promega, Madison, WI).  
 
C-4-d Genotyping kidney cancer non-coding genomic variants: Frequently, next generation sequencing 
results find variants that require validation to confirm significance. We will employ similar methods to various 
other studies involving novel variants found on either exome or whole genome sequencing [54, 55, 56, 57] 
These studies utilize the MassArray system (Agena Biosciences, San Diego, CA), a mass spectrometry 
platform that measures PCR-derived amplicons. The system can be multiplexed to analyze a large number of 
alterations with high sensitivity but a low cost. DNA from FFPE and fresh tissue can be analyzed on the same 
chip without difficulty. The MassArray system has been utilized to study genomes in the study of cancers, 
benign conditions, and even ecologic research. This approach has been used in the screening of large case-
control series and independent validation cohorts of affected individuals. For the analysis, 20 ng of DNA from 
genomic control will be used in Yale’s Validation cohort. The 384-subject cohort will have their germline DNA 
assessed for non-coding variants identified. The MassArray Assay Design Suite will be used for designing 
custom PCR primers to detect potential germline variants using the genomic coordinates of interest. For 
genotyping, up to 40 genomic variants can be multiplexed per well per silicon chip. Mutation calls for each 
tumor and germline sample will be assessed using the MassArray Typer 3.4 Analyzer. Unlike next generation 
sequencing, the results can be quickly automated and generated into both a graphical or table interactive 
format. 
 
C-4-e Tumor profiling for somatic non-coding mutations: The MassArray system is frequently used for the 
rapid detection of known or suspected somatic alterations important in cancer [58, 59]. Panels exist to detect 
common alterations in specific cancers and are employed for testing at various clinical laboratories. We will 
perform somatic mutational profiling using the MassArray System that allows multiplexing for up to 15 somatic 
variants per 384-well chip. The technology can detect variants with as low as 1% mutant allele frequency using 
a small DNA quantity. A total of 20 ng of total DNA will be obtained from tumor DNA from the Yale Validation 
Cohort to determine if racial differences exist in somatic non-coding mutations between African-Americans and 
Caucasians with kidney cancer. Small insertions/deletions or single nucleotide alterations found from the WGS 
and secondary TCGA data analysis will be assessed in the validation cohort. For somatic variants, the 
MassArray Assay Design Suite will be used for designing custom PCR primers. Similar to above, mutation calls 
will be assessed using the MassArray Typer 3.4 Analyzer. 
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D. Potential Pitfalls and Alternative Strategies 
 
One potential issue we see with our proposal is that, despite our design, we may not find any regions in the 
validation cohort that are significantly different between races. We have designed the study so that we believe 
we will have adequate power to detect racial differences but, of course, we will not know until we get to the 
validation. If after doing the first third of the validations (~185) we are not finding any regions that are 
significantly different, we have a number of courses of action: (1) We can remove somatic variants from the 
validation. Validating somatic variants is more expensive than germline ones. Removing them will allow us to 
validate a potentially larger number of regions. (2) We can focus only on disparities in coding genes as opposed 
to non-coding regions. There are many more kidney cancer exome sequences done than WGS (by more than 
an order of magnitude) and coupling this with the much smaller genomic space being queried should 
substantially increase the power of our analysis. (3) The validation cohort can be expanded to increase power. 
Currently the Yale Biospecimen Repository is adding 150 new kidney cancer subjects each year. Additionally 
our close collaborator in the US Kidney Cancer Study has access to a large cohort of genomic DNA in 
individuals with kidney cancer (843 Caucasians and 358 African-Americans). Finally if needed, the Yale Kidney 
Cancer Program recently was granted approval from the Connecticut State Tumor Registry to access records 
and/or tissue from individuals with a diagnosed with kidney cancer from 1998 to present. 
 
E. Expected Outcomes and Future Directions 
 
At the conclusion of this research, our analyses will determine candidate coding and non-coding regions 
associated with papillary and clear cell kidney cancer. We will identify and validate specific germline and 
somatic alterations that are disparate between African-Americans and Caucasians with kidney cancer. These 
findings will be an initial step towards understanding the genomic cause of kidney cancer racial disparity and 
have implications beyond the scope of this project. Understanding inherited predisposition to kidney cancer 
may have important screening implications in high-risk individuals such as African-Americans. Additionally, 
racial disparity in candidate driver alterations has the potential to impact how we view treatment in the age of 
precision-based cancer therapeutics. The findings from this project have far reaching implications, justifying 
further research beyond the scope of this proposal. 
 
 

Figure 7: Workflow for validation of whole genome sequencing findings using Yale cohort of tissue. DNA 
from formalin-fixed, paraffin embedded tumor tissue and also genomic controls will be amplified, have 
primer extension, mass spectroscopy detection, and analysis. Germline and somatic, coding and non-
coding variants will be validated with a large Yale patient cohort. 
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Figure 7: Workflow for validation of whole genome sequencing findings using Yale cohort of tissue. DNA 
from formalin-fixed, paraffin embedded tumor tissue and also genomic controls will be amplified, have 
primer extension, mass spectroscopy detection, and analysis. Germline and somatic, coding and non-
coding variants will be validated with a large Yale patient cohort. 



 

 


