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Abstract 

Genome-wide proximity ligation based assays such as Hi-C have revealed that eukaryotic 
genomes are organized into structural units called topological associating domains (TADs). From 
visual examination of the so-called chromosomal contact map, however, it is clear that the 
organization of the domains is not clear-cut. TADs appear to be overlapping and in many cases 
nested organization can also be found. Therefore it is important to develop new computational 
framework to understand the rich structures stored in a contact map. Here, based on the concept 
of modularity, we formulate TADs identification as an optimization problem and propose a 
network-based algorithm to identify TADs from intra-chromosomal contact maps. We introduce a 
matrix iteration procedure to derive a null model that preserves the coverage of each genomic bin 
as well as the distance dependence of contact frequencies for any observed contact map. In 
addition, by introducing a tunable parameter, our method, MrTADFinder, is able to identify TADs 
in different resolutions. In a low resolution, larger TADs are found whereas in a high resolution, 
smaller TADs are identified as the nucleome is viewed on a finer scale. We apply MrTADFinder to 
identify TADs in various Hi-C datasets. The identified TADs are confirmed by several downstream 
analyses, including the enrichment of HOT regions near TAD boundaries, and a distinctive 
pattern exhibited by the mutational load of cancer samples across boundaries. Overall, by 
facilitating the application of a variety of graph-theoretical tools, network-based approaches like 
MrTADFinder will be powerful for understanding the spatial organization of genome.  
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1.  Introduction 
 
The packing of a linear eukaryotic genome within a cell nucleus is tight and highly organized. 
Understanding the role of 3D genome in gene regulation is a major area of research [1][2][3][4]. 
Recently, genome-wide proximity ligation based assays such as Hi-C open a window to look at 
the intricate structure, and have revealed various structural features in terms of how genome is 
organized [5][6][7]. Perhaps, one of the most important discovery is the domain of self-
interacting chromatin called topologically associating domain (TAD) [8][9]. Inside a TAD, 
genomic loci interact often but interactions between different TADs are less frequent. TAD 
emerges as a fundamental structural unit of chromatin organization; it plays an important role in 
mediating enhancer-promoter contacts and thus gene expression, and breaking or disruption of 
TADs can lead to diseases like cancers [10][11][12]. Therefore a deeper understanding of TADs 
from Hi-C data presents an important computational problem. 
 
Results of a typical Hi-C experiment are usually summarized by a so-called chromosomal contact 
map [5]. By binning the genome into equally sized bins, the contact map is essentially a matrix 
whose element (𝑖, 𝑗) reflects the population-averaged co-location frequencies of genomic loci 
originated from bins i and j. In this representation, TADs are essentially displayed as blocks along 
the diagonal of a contact map [8][9]. Despite TAD is a rather eye-catching feature in a contact 
map, computational identification is still tricky because of experimental factors such as noise and 
inadequate coverage. Moreover, it is clear from visual examination of the contact map that TADs 
appear to be overlapping and there are rich sub-structures within TADs.  
 
Mathematically speaking, it is very natural to transform a contact matrix to a weighted network in 
which nodes are the genomic loci (or bins) whereas the interaction between two loci is quantified 
by a weighted edge. In network science, a widely studied problem is the identification of network 
module, also known as community detection problem [13]. A module refers to a set of nodes that 
are densely connected. In its simplest form, community detection problems concerns with 
whether nodes of a given network can be divided into non-overlapping groups such that 
connections within groups are relatively dense while those between groups are sparse. Therefore, 
by viewing the chromatin interactions as a network, the highly spatially localized TADs 
immediately resemble densely connecting modules.  
 
Motivated by the resemblance, we formulate the identification of TADs as a global optimization 
problem based on the observational contact map and a background model. As a network-based 
approach, our method goes beyond a direct adaptation of standard community detection 
algorithm. We introduce a novel background model which takes into account the effect of 
genomic distance that are specific in the context of genome organization. The objective function 
is optimized using a heuristic and therefore efficient even the size of the input contact map is 
high. Furthermore, by introducing a tuning parameter, our network approach is able to identify 
TADs in different resolutions. In a low resolution, larger TADs are found whereas in a high 
resolution, smaller TADs are identified as the nucleome is viewed on a finer scale. We therefore 
name our method MrTADFinder for the acronym Mr stands for multiple resolutions.  
 
In this paper, we present the methodology of MrTADFinder. We apply the method to various Hi-
C datasets and validate the biological significance of the results by a few downstream analyses. 
Several methods have been developed for identifying TADs. The first method used by Dixon et 
al. is based on the so-called directionality index, a 1D statistics measuring whether the contacts 
have an upstream or downstream bias [8]. Later algorithms exploit the block diagonal nature of 
TADs in a contact map [14][15], however, the background contact frequencies are not explicitly 
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modeled. Using a novel matrix iteration procedure, MrTADFinder proposes a null model that 
preserves various properties of the empirical contact map. More recent efforts aim to investigate 
the hierarchical organization of TADs [16][17][18]. On the other hand, our method does not 
impose a hierarchical structure. A probabilistic framework and the tuning of a so-called resolution 
parameter are used to explore the rich structures stored in contact maps. 

 
2. Methods 

 
2.1. Identification of TADs as an optimization problem 
 
The identification of modules in a network is generally formulated as a global optimization 
problem on the so-called modularity function over possible divisions of the network. For a given 
division of a network 𝐴, i.e. a mapping between the set of nodes to a set of defined modules, the 
modularity for a given division of a network is defined to be the fraction of edges within modules 
minus the expected fraction of such edges in a randomized null model of the network. 
Mathematically, the modularity is equal to 
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(1) 

Here, the summation sum over all possible pairs of nodes, the value of the Kronecker data 𝛿!!!! 
equals one if nodes 𝑖 and 𝑗 have the same label 𝜎 and zero otherwise, meaning only pairs of nodes 
within the same module are summed. In particular, 𝑚 is the number of edges in the network 
whereas the expression 𝑘!𝑘!/2𝑚 represents the expected number of edges between 𝑖 and 𝑗 in a 
so-called configuration model. The configuration model is a randomized null model in which the 
degrees of nodes 𝑘! are fixed to match those of the observed network but edges are in other 
respects placed at random. High values of the modularity correspond to good partitions of a 
network into modules and similarly low values to bad partitions. Optimizing the modularity 
function leads us to the best partition over all possible partitions. 
 
Given a Hi-C contact map 𝑊, we define a similar optimization function 𝑄 as 
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(2) 

Here, 𝑖, 𝑗 refer to equally binned genomic loci. 𝑁 is the total number of pair-end reads. 𝛾 is called 
the resolution parameter that could be used to tune the size of resultant TADs. Very much similar 
to the network setting, the identification of TADs aims to partition the loci into domains such that 
𝑄 is optimized. Nevertheless, it is important to emphasize that, unlike nodes in a graph, the bins 
in a chromosome forms a linear structure. Therefore while nodes in a module could be separated 
in an arbitrary fashion, genomic loci in a TAD have to form a continuous chain. Moreover, the 
expected number of contacts between locus 𝑖 and locus 𝑗 depends on their genomic distance. Two 
loci that are close together in a 1-dimensional sense are expected to have a higher contact 
frequency as compared to two loci that are far apart. As a result, the null model 𝐸!" in (2) has to 
be modified. 
 
2.2. Expected null model of intra-chromosomal contact maps 
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Given an intra-chromosomal contact map 𝑊, the expected null model E is defined as  
 

 𝐸!" = 𝑐!∗𝑐!∗𝑓 𝑖 − 𝑗 . (3) 
 
Here, 𝑓 is the average number of contacts as a function of distance 𝑑 = 𝑖 − 𝑗 . By considering all 
possible pairs of bins in 𝑊 in terms of their distance apart and the contact frequency, we estimate 
𝑓 by a local smoothing with a window size equal to 1% of the data. For intermediate values of 𝑑, 
𝑓 follows pretty well with a power-law function 𝑑!! (see Figure 1), which is a well-known 
observation first reported in [5]. 
 
As a null model, the resultant 𝐸 matrix satisfies a set of constraints, namely  
 
 𝐸!" =

!

𝑊!"
!

= 𝑐!    ∀𝑖, 

(3) 
𝐸!" =

!"

𝑊!"
!"

= 2𝑁. 

The first equation means that the coverage 𝑐!, i.e. the total number of reads mapped to bin 𝑖, in 
the null model is the same as the coverage defined in the observed map. The second equation is a 
direct consequence of the first equation, where N is the number of reads mapped in the 
chromosome. As 𝑓 has been estimated from the observed 𝑊, we then employ an iterative matrix 
procedure to numerically solve all the unknowns 𝑐!∗. Mathematically, 𝑐!∗ can be regarded as an 
effective coverage because the correlation between 𝑐!∗ and the coverage 𝑐! is extremely high 
(r=0.99). In comparison with (1), 𝑐!∗ is conceptually analogous to the degree 𝑘!. The iterative 
procedure can be regarded as a generalization of a class of matrix balancing methods commonly 
used for normalizing Hi-C matrices [19]. As shown in Figure 1, given a particular matrix 𝑊, the 
contact frequencies of the resultant null model 𝐸 are the highest in the diagonal and decrease 
gradually away from the diagonal. 
 
2.3. Heuristic procedures for optimizing Q  
 
To optimize the objective function 𝑄, we employ a modified version of Louvain algorithm [20], 
which is widely used in identifying modules in networks. In a nutshell, the algorithm consists of 
two passes. The algorithm starts as every bin has its own label at the beginning. In the first pass, 
for each bin, the label was updated by either choosing the label of one of its neighboring bins or 
to remain unchanged based on whether or not the value of 𝑄 will be increased. When no more 
update is possible, the second pass is performed such that the adjacent bins with the same label 
were merged to form a new contact matrix. The two passes are repeated iteratively until there is 
no increase of modularity is possible.  
 
The output of the modified Louvain algorithm is essentially a particular partition of the entire 
chromosome. As the result of the Louvain algorithm in general depends on the order of updates, 
multiple runs are performed to probe the fuzziness of the assignment. As the chromosome is 
binned into 𝑛 equally sized bins, we examine, say after 10 trials, how likely the separator between 
bin 𝑖 and bin 𝑖 + 1 is indeed a domain boundary, i.e. bin 𝑖 and bin 𝑖 + 1 actually are called to 
belong to two different domains by the modified Louvain algorithm. Therefore, for each of the 
𝑛+1 separators, we define a boundary score as the fraction of trials the location is called as a 
boundary. To define a set of consensus boundaries, we choose a cut-off of 0.9. In other words, the 
separation between two adjacent bins is defined as a confident boundary only if the two bins are 
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called to belong to two different domains in at least 9 out of 10 trials. The final output of 
MrTADFinder is a set of consensus TADs defined as regions between the consensus domains 
(see Figure 1 for an overall schematic). 
 
The boundary score assigned to each bin separator is not merely an immediate, but serves as a 
proxy of the degree of insulation. A location with a high boundary score is more effective in 
forbidding the contacts between its left and right regions. 
 

 
Figure	1:	(A)	Dependence	between	contact	frequency	and	genomic	distance.		Analysis	was	performed	
using	the	contact	map	of	the	chromosome	1	of	MCF7,	binned	in	250kb	sized	bins.	The	red	line	𝒇(𝒅)	is	the	
average	contact	as	a	function	of	distance	𝒅	obtained	by	smoothing	all	contacts.	The	green	line	shows	a	
power-law	function	𝒅!𝟏.	(B)	Overview	of	MrTADFinder.	 

2.4. Alternate approach using dynamic programming 
 
Despite the similarity between equations (1) and (2), domains are continuous segments along the 
chromosome which is different from network modules that could be an arbitrary collection of 
nodes. In fact, the total number of possible partitions for a chromosome is much smaller than the 
total number of ways to divide a network into modules in community detection. As a result, while 
the optimization of (1) is a NP-hard problem, the optimization of (2) can be quite effectively 
solved using dynamic programming. 
 
The idea is to extensively enumerate all the possible partitions of the chromosome. In a nutshell, a 
binned chromosome can be considered as a sequence 1, 2,⋯ ,𝑁 − 1,𝑁 . Rather than partitioning 
the whole sequence at a first place, we look for the optimal partition for all the possible sub-
sequences starting from sub-sequences with length 1. Let us denote the optimal value of 
modularity 𝑄 for a sequence 𝑎!𝑎!… 𝑎!!!𝑎! as 𝑜𝑝𝑡𝑄(𝑎!𝑎!… 𝑎!!!𝑎!). The optimal value for the 
subsequence of length 𝑙 is the maximum of the following 𝑙 possibilities: 
 
 𝑜𝑝𝑡𝑂 𝑎! + 𝑜𝑝𝑡𝑂 𝑎!… 𝑎!!!𝑎!  

 
(4) 

A.

Choose a particular resolution γ
Optimize Q over all possible partitions

input: contact map W null model E

γ: resolution parameter

Multiple runs to define boundary scores 
for all pairs of adjacient bins

consensus boundaries based on
the boundary scores

consensus TADs

B.

output
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𝑜𝑝𝑡𝑂 𝑎!𝑎! + 𝑜𝑝𝑡𝑂 𝑎!… 𝑎!!!𝑎!  

⋮ 

𝑜𝑝𝑡𝑂 𝑎!𝑎!𝑎!…𝑎!!! + 𝑜𝑝𝑡𝑂 𝑎!  

𝑄!"
!"

 

  
Suppose the maximum correspond to the sum 𝑜𝑝𝑡𝑂 𝑎!𝑎!… 𝑎! + 𝑜𝑝𝑡𝑂 𝑎!!!… 𝑎!!!𝑎! , where 
1 ≤ 𝑟 < 𝑙. The sum corresponds to the case that the optimal decomposition is to combine the 
optimal partitions of 𝑎!𝑎!⋯ 𝑎! and 𝑎!!!… 𝑎!!!𝑎!  (see Figure 2). It is not necessary that 
𝑎!𝑎!⋯ 𝑎! forms a single domain. The key is that the expression 𝑜𝑝𝑡𝑄(𝑎!𝑎!… 𝑎!!!𝑎!) can be 
found recursively because all possibilities depend on the optimal values of sub-sequences less 
than 𝑙, and the actual partition can be traced back using dynamics programming. The last 
summation in equation (4) sums Q over all positions from 𝑎! to 𝑎!, meaning the 𝑙 bins belong to 
the same domain. The procedure is analogous to the Nussinov algorithm in finding the optimal 
secondary structure of RNA [21]. 
 
The time complexity of this 
dynamic programming 
algorithm is in order of 
Ο(𝑛!), where n is the size of 
the contact map. Nevertheless, 
given the time complexity, 
finding the optimal partition 
by binning the genome in a 
bin-size of 40kb is quite 
impractical. Therefore, though 
the connection between 
identifying TADs and 
problems like finding RNA 
secondary structure is of 
theoretical interest, 
MrTADFinder is developed 
based on the heuristic Louvain 
algorithm. 
 
 
2.5. Quantifying the consistency between two sets of TADs 
 
Given two sets of TADs, say in different cell lines, or called by different algorithms, we employ 
the so-called normalized mutual information to quantify the consistency. Suppose 𝑋 and 𝑌 are 
two random variables whose values 𝑥!  and 𝑦!  represent the corresponding domain labels of bin 𝑖. 
The normalized mutual information MInorm is defined as 
 

 𝑀𝐼!"#$ =
2𝐼(𝑋;𝑌)

𝐻 𝑋 + 𝐻(𝑌)
 , (5) 

 

	

Figure	2:	Identifying	TADs	by	dynamic	programming.	The	optimal	
value	of	Q	for	a	chromosome	segment	running	from	𝒊	to	𝒋	is	stored	in	
𝑴𝒊𝒋.	The	values	of	all	elements	in	𝑴	can	be	enumerated	using	
dynamic	programming,	starting	from	fragment	of	length	1	where	
𝑴𝒊𝒊 = 𝑸𝒊𝒊.	There	are	different	ways	to	divide	a	fragment	of	length	l	
(grey	lines).	Suppose	the	optimal	way	is	marked	by	the	red	line,	then	
𝑴𝟏𝒍 = 𝑴𝟏𝒓 +𝑴𝒓𝒍.	
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where 𝐻(𝑋),𝐻(𝑌) are the entropy of 𝑋 and 𝑌, and 𝐼(𝑋;𝑌) is the mutual information quantifying 
to what extent the domain labels in 𝑋 predict the labels in Y. To have a fair comparison, bins that 
are not assigned to any TADs in both sets of partitions are not counted. If two sets of partitions 
are identical, the value of normalized mutual information is 1.  
 
3. Results 

 
3.1. Calling TADs in multiple resolutions 
 
As a demonstration, we applied MrTADFinder to analyze Hi-C data of MCF7 cell as obtained 
from ref. [22]. The data have already been normalized by the so-called ICE algorithm in a whole-
genome level [19][23]. Figure 3A shows a particular snapshot of the contact map (for 
chromosome 10) and its alignment with the identified TADs. In general, the TADs displayed 
agree well with the contact map. Of particular interest is the choice of the resolution parameter 𝛾 
that capture the fine structures in domains organization. When 𝛾 increases, a large TAD is broken 
into a few small TADs. On the other hand, large TADs merge together to form even larger TADs 
as the value of 𝛾 is lowered. As estimated by MrTADFinder, when 𝛾=4, there are about 80 TADs 
in the chromosome 10 of MCF7 with a median size of roughly 1.4Mb. Statistically speaking, 𝛾 is 
essentially quantifying to the ratio between the expected counts as compared to the observed 
counts. As 𝛾 increases, only elements close to the diagonal contribute positively to the modularity 
function. Therefore in general, the size of TADs decreases and the number of TADs increases 
(see Figure 3B).  

 
Figure	3:	(A)	The	contact	map	and	TADs	of	the	chromosome	in	MCF7.	The	greenish	triangles	below	
represent	TADs	called	by	MrTADFinder	in	three	different	resolutions.	The	TADs	called	agree	well	

MCF7

γ=4.0

γ=4.75

γ=5.0

C.

A. B.

C.
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visually	with	the	contact	map.	(B)	The	size	of	TADs	in	different	resolutions.		The	inset	shows	the	number	
of	TADs	in	different	resolutions.	(C)	Consistency	between	MrTADFinder	and	an	existing	method.	The	
normalized	mutual	information	between	two	sets	of	TADs	peaks	at	a	resolution	𝜸 = 𝟒.𝟕𝟓.	The	inset	
shows	a	similar	result	in	which	the	empirical	mutual	information	is	normalized	with	respect	to	a	null	
model.	Panel	A	is	generated	using	the	tool	HiCPlotter	[24].	

It is instructive to compare our results with TADs identified by an alternate method. Here, we 
report a comparison with the TADs called in ref. [22]. As quantified by the normalized mutual 
information, TADs identified by MrTAD Finder best match with alternate set of TADs when the 
resolution parameter is 4.75, with the normalized mutual information more than 90% (see Figure 
3C). When the resolution is too small, there is a large discrepancy. As TADs exist in the form of 
continuous genomic segments, two sets of TADs tend to overlap to a certain extent and thus 
maintain a relatively high consistency. To provide a better estimate, we shuffled the TADs and 
generated a null distribution of mutual information. We then further calculated the z-score of the 
empirical mutual information with the null. As shown in the inset of Figure 2C, TADs called by 
MrTADFinder agrees the most of the existing method when 𝛾 = 4.75. Nevertheless, we want to 
emphasize that the introduction of the resolution parameter 𝛾 has broadened the previous work on 
domains identification that mostly focuses on a particular resolution instead.  
 
3.2. Genomic features near TAD boundary 
 
It is well known that certain chromatin features like histone marks and transcription factor 
binding sites are enriched near the boundary regions of TADs [8]. Instead of looking at individual 
factors, we further explored the location of the so-called HOT regions and XOT regions with 
respect to TADs. High-occupancy target (HOT) regions and extreme-occupancy target (XOT) 
regions are genomic regions that are bound by extensive amount of transcription factors [25]. As 
expected, we found a strong enrichment of HOT regions and an even stronger enrichment of XOT 
regions near the boundary regions (Figure 4A). The observation agrees with the idea that HOT 
regions are very accessible regions in open chromatin. Nevertheless, it is still widely unknown if 
transcription factors bind there simply because of thermodynamics, or it is driven by important 
biological functions. 

 
Figure	4	(A):	Enrichment	of	HOT	and	XOT	regions	near	TAD	boundary	in	hES	cell.	Y-axis	is	normalized	
with	respect	to	a	null	model	that	peaks	are	uniformly	distributed	in	along	the	chromosome.	(B):	
Enrichment	of	CTCF	peaks	near	TAD	boundary.		

The enrichment of chromatin features has been used as a benchmark for various TAD calling 
algorithms. Dixon et al. identified TADs based on the directionality index using Hi-C data in hES 
cell and found an enrichment of CTCF binding sites at the boundary regions [8]. We performed 
the same analysis using TADs based on MrTADFinder. As shown in Figure 4B, the enrichment 
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of CTCF binding peaks using TADs called by two methods is similar. Nevertheless, 
MrTADFinder extends the observation by exploring the effects of TADs in different resolutions. 
In a low resolution, i.e. for larger TADs, the enrichment signal is stronger, and the signal tends to 
extend over a longer distance from the boundary. In a higher resolution, the signal is weaker and 
confines near the boundary. The observation suggests that the boundary regions separating two 
large domains tend to be bound by CTCFs more often, and points to the function of such an 
important architectural protein that plays an important role in mediating chromatin loops 
[26][27]. 
 
To provide further evidence on the validity TADs identified by MrTADFinder, we investigated 
the occurrence of somatic mutations at the TAD boundary regions. More specifically, using the 
ICGC data portal, we downloaded the set of somatic mutations called from the whole-genome 
sequencing of breast cancer samples from 676 donors, and mapped the mutations to the TAD 
boundaries identified by MrTADFinder. For each boundary region, we examined how the 
mutational load changes with respect to the distance from the boundary. As shown in Figure 5A, 
the about 100 boundary regions identified in chromosome 10 can be clustered in 3 groups based 
on their positional distribution of somatic mutations. Two of them exhibit a step-function 
behavior (blue and red in Figure 5B) in which the transition is essentially at the boundary. 
Because of the close relationship between TADs and replication-timing domains [28], the 
observation resonates with the high mutational load found in regions that are replicated later 
during DNA-replication [29]. For boundary regions in the green cluster, the mutational load 
exhibits no difference across the TAD boundary; the regions may be heterochromatin or other 
quiescent components. 
 

	
Figure	5	(A)	TAD	boundary	regions	(±600kb	of	boundary)	of	MCF7	(chromosome	10)	are	clustered	
based	on	the	mutational	load	along	the	regions.	The	regions	are	clustered	into	3	groups	(blue,	red,	
green).	(B)	The	3	clusters	of	boundary	regions	exhibit	distinct	patterns	in	terms	of	mutational	load.	For	
blue	and	red	clusters,	the	area	marks	the	first	and	the	third	quartiles.	For	the	green	cluster,	only	the	
mean	values	at	different	positions	are	shown	for	simplicity.	

3.3. Robustness analysis 
 
Because of the stochastic nature of Louvain algorithm, we explored the robustness of 
MrTADFinder. By calling TADs based on 10 runs of Louvain algorithm, we found the results of 
two independent callings highly robust. In fact, the normalized mutual information is higher than 
0.99 (see Figure 6). 

BA

TAD boundary
regions
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As MrTADFinder employs a heuristic to 
arrive at sub-optimal partitions of equation 
(2), it is important to explore the difference 
between the optimal partition and the sub-
optimal partitions. Using a contact map of 
hES cell (chromosome 1) binned with a bin-
size of 500kb, we found the sub-optimal 
partitions based on our modified Louvain 
algorithm are very close to the optimal 
partition based on dynamic programming. 
The normalized mutual information between 
optimal and sub-optimal values is 
0.977±0.007. It is worthwhile to point out 
that the final partition defined by the 
confident boundaries, results at a lower 
modularity function as compared to any 
single sub-optimal solution. It is because the 
filtering of statistically significant 
boundaries removes a certain number of boundaries. Nevertheless, the importance of getting a set 
of consensus boundaries makes the choice justifiable. 
 
3.4. Implementation and benchmark 
 
MrTADFinder is implemented in Julia. The source code can be downloaded in 
https://github.com/gersteinlab/MrTADFinder. Julia users can import MrTADFinder as a library. 
It can be also be run in command line if Julia and the required packages are installed (see the 
Github page for details). 
 
We benchmarked the performance of 
MrTADFinder using Hi-C data reported 
by the Aiden lab [30]. The experimental 
data we tested on were from GM12878 
cell. The reads were binned into contact 
maps in ref. [30] with size ranging from 
500kb to 10kb. We used MrTADFinder to 
identify TADs in chromosome 10. Table 1 
shows the time required for the 
calculation, including 10 multiple runs of 
Louvain algorithm. 
 
4. Discussion 
 
In this paper, we have introduced an intuitive algorithm based on network theory to identify 
TADs from Hi-C data, and performed several analysis to confirm the biological significance of 
the TADs identified. In particular, by introducing a single continuous parameter 𝛾, we are able to 
further examine domain organization in multiple resolutions. It is important to emphasize that the 
idea of resolution we introduced in MrTADFinder is different from some other usages of the 
same term in Hi-C analysis. From an experimental standpoint, the resolution of a Hi-C 
experiment refers to the average fragment size as digested by restriction enzymes (~4kb to ~1kb) 

 
Figure	6	Robustness	of	MrTADFinder.	Histogram	for	
pairs	of	independently	called	TADs.	

	

	

	

	

Figure	7	Robustness	of	MrTADFinder 

Bin size Size of contact 
map Elapsed time (s) 

500kb 272 10 
250kb 543 60 
100kb 1356 190 
50kb 2712 410 
25kb 5422 1080 
10kb 13554 11260 

Table	1	Performance	of	MrTADFinder	as	applied	for	
the	contact	maps	of	chromosome	10.		
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[5][30] or more recently by micrococcal nuclease (~150bp) [31]. In terms of constructing contact 
maps, the term resolution has been used to refer to the bin size, where the proper choice usually 
depends on the number of reads in the stage of data processing. Both usages are essentially 
technical. What we mean by resolution, however, refers to the multiple length scale built inside 
the organization of genome. It is well known that there are structures in different length scales 
such as compartment, domains and sub-domains [32], and chromatin features like histone marks 
exhibit multiple length scales [33]. The concept of resolution introduced here points to the 
integration of these structures, and enables one to explore the rich structures hidden in contact 
maps. 
 
A novel contribution of this work is the derivation of an expected model for any intra-
chromosomal contact map using matrix iteration. The null model preserves the coverage of each 
genomic bin as well as the distance dependence of contact frequencies in the observed map. Apart 
from the identification of TADs, the expected model can be used for applications like finding 
compartments and identifying enhancer-target linkages. Recent studies employ various clustering 
methods to identify inter- chromosomal clusters using Hi-C data [35][36], similar expected 
models can also be derived to better separate signal and noise. 
 
MrTADFinder is a motivated by the community detection problem in network studies. Although 
a network perspective of chromosomal interactions has previously been proposed [37][38], a lot 
of widely studied concepts in networks have rarely been explored in the context of chromosomal 
organization. A network representation is arguably more flexible, for instance, transcription 
factors binding and histone modifications can be easily incorporated into the network, forming a 
decorated network. Moreover, one could extend the framework by concatenating multiple Hi-C 
contact maps to form a multi-layer network. The same idea has been used for cross-species 
analysis [39]. By facilitating the application of a variety of graph-theoretical tools, we believe that 
network algorithms will be useful for future studies on the spatial organization of genome.  
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