
RESEARCH STRATEGY 
 
SIGNIFICANCE  
Structural variations (SVs), such as deletions, duplications, insertions, inversions and translocations, are 
among the most significant determinants of human genetic diversity to have been discovered. SVs affect far 
more bases than single-nucleotide polymorphisms (SNPs) combined. SVs can markedly affect phenotype in 
many ways, including modification of open reading frames, production of alternatively spliced mRNAs, 
alterations of transcription factor (TF) binding sites and structural gains or losses within the regulatory regions. 
Consortium efforts such as the 1000 Genomes Project (1000GP) estimate that a typical genome contains 2.1–
2.5 thousand SVs, affecting ~20 million bases, or ~5–6 times that of SNPs. Beyond “simple” SVs, there is a 
growing appreciation for “complex” SVs in human genomes, which vary considerably in their architecture and 
show complex patterns of rearrangements between distinct loci and/or even different chromosomes1. Through 
the 1000GP, we found that a large fraction of SV events have much higher breakpoint complexity than 
previously estimated—suggesting that complex SVs, like simple SVs, are also widespread in human genomes. 
 

SVs are common, larger in size and more structurally diverse than single nucleotide variants (SNVs), so they 
are likely to profoundly shape the regulation of many human phenotypes and disease states. Investigating 
SVs, and particularly complex SVs, could therefore hold the key to a deeper, more mechanistic understanding 
of rare and common diseases. At present, most studies do not capture the spectrum of complex SVs present in 
genomes, so this complexity is not adequately accounted for in disease association studies. Furthermore, the 
functional impact of SVs, especially in noncoding regions, has not been investigated systematically. 
Surmounting these issues will depend on novel computational methodologies for 1) mining whole genome 
sequencing datasets for SV discovery at high resolution and large scale, 2) functionally interpreting their 
origins and phenotypic effects, and 3) establishing associations between specific SVs and disease. 

Here, we propose to develop and apply novel methodologies to advance the overarching goals of the TOPMed 
program through computationally driven discovery, functional validation and characterization of disease-
associated SVs. We will integrate novel and powerful tools for high-resolution SV discovery and use these to 
comprehensively profile all types of SVs, including complex SVs, from a large subset of the genomes being 
sequenced (Aim 1). To examine the functional impact of the identified SVs, we will integrate RNA-seq data and 
develop novel methodologies for functional annotation of variants and characterization of associated biological 
processes (Aim 2). Finally, we will scale up SV detection and analysis and genotype all SVs detected in Aim 1 
across the ~100,000 samples of TOPMed, which will provide the necessary statistical power for meaningful 
genotype-phenotype associations for disease-based SV association studies (Aim 3). Our deliverables will be 
the largest library of validated SVs discovered in humans, together with an unprecedented platform of cloud-
based pipelines for comprehensive, high-resolution and large-scale SV analysis. These will greatly enhance 
the ability of the TOPMed program to connect genetic variation to phenotypes of heart, lung, blood and sleep 
disorders. 

Scientists participating in the proposed project are leaders in SV discovery and analysis. The three PIs, 
Charles Lee, Ph.D., Mark Gerstein, Ph.D. and Li Ding, Ph.D., have a history of productive scientific 
collaboration and bring complementary experience in SV detection (Lee), functional interpretation (Gerstein) 
and large-scale data analysis (all), particularly association analysis (all). Each also brings significant 
experience in leading (1000GP SV group, Lee; modENCODE AWG, Gerstein; ENCODE networks group, 
Gerstein; PsychENCODE AWG, Gerstein; exRNA AWG, Gerstein) and participating in (1000GP, 
Lee/Gerstein/Ding; ENCODE, Gerstein; ICGC, Gerstein/Ding; KBase, Gerstein; GSP (Genome Sequencing 
Program), Gerstein) large-scale sequencing consortia. Under Dr. Lee’s leadership, the 1000GP SV project 
identified SV events in ~2,500 healthy genomes and helped define the methodologies for identifying and 
characterizing SVs from “lower depth” (~4X) whole genome sequencing (WGS) datasets.  

INNOVATION  
The originality of this proposal lies in the integration of cutting-edge computational methodologies—pioneered 
by the group—into a comprehensive, cloud-ready platform for novel SV discovery, characterization and 
association with common human diseases. The TOPMed Program will require high-resolution SV analyses that 
can be implemented at the immense scale required for adequately powered association analyses. Our 
proposed detection and genotyping strategy will meet the need for power and resolution for investigating 
association between SVs (that span a large size spectrum) and various phenotypes, surpassing previous 
standard approaches employed in current SV association studies. The key innovations of our approach lie in 
its characteristics of: 1) Scalability: Our cutting-edge SV detection and integration tools will provide the 



TOPMed Program with the capability to perform high-resolution classification of complex SVs, and identify 
well-powered genotype-phenotype associations in a disease context, across 100K genomes. 2) Integration: 
Our approach will integrate identified SVs with RNA-seq data and other functional data from coding and non-
coding (nc) regions of the genome to provide scores for functional impact. 3) Extended functionality: Tools for 
mechanistic interpretation of SVs across different classes will allow us to make inferences about population 
structure and human adaptation and evolution. 4) Sensitivity: Association tests that integrate weighting 
methods for various biological considerations, such as allele frequency and impact score, will enable a 
generalized linear model to capture subtle association signals often missed by conventional approaches. This 
systematic survey of complex SVs will yield the largest reference database of validated SVs to date, 
together with an unparalleled system for high-dimensional, high-resolution studies of SV architecture 
and function in health and disease. 

RESEARCH STRATEGY Specific Aim 1. Build an 
integrative pipeline for large-scale discovery of complex 
structural variation.  
Rationale. To drive the discovery phase of the program, we 
are currently working on fusorSV (manuscript in preparation, 
Figure 1), a framework developed by our group to discover 
SVs in hundreds of sequenced whole genomes. fusorSV 
takes a data mining approach to SV calling by incorporating 
knowledge of the strengths of various existing SV callers 
(discovered using a truth set), and uses this knowledge to 
perform discovery on a novel cohort of genomes using an 
ensemble approach. We will apply the fusorSV framework to 
a discovery cohort of individuals being sequenced by the 
Phase I/II TOPMed program projects. Using breakpoint 
assembly methods, we will perform in silico validation 
(Figure 2) of the SV events and use the assembled contigs 
to investigate the inherent complexity prevalent at breakpoints. Ultimately, these studies will deliver the 
most comprehensive library of validated SVs discovered in humans and empower us to make novel 
biological inferences at the population level and in disease-specific contexts. 
 

Preliminary data. A toolbox of methods for structural variation discovery. As part of the 1000GP SV project, 
we have provided the research community 
with an unprecedented set of germline SVs 
from more than 2,500 normal human 
genomes that have been sequenced at low 
depth and have developed a large toolbox of 
complementary tools and methods, including: 
(i) Read depth–based tools. We developed 
CNVnator2 for copy number variant (CNV) 
discovery and genotyping from individual and 
trio-sequencing datasets. It utilizes a mean-
shift approach, GC correction and bandwidth 
partitioning to identify a wide range of CNV 
events. CNVnator can detect CNVs and 
provide genotype information on a population 
level, and also detects atypical CNVs 
including de novo and multi-allelic events. (ii) 
Paired end–based tools. Meerkat3, Hydra-
Multi4, PEMer5 and BreakDancer6 cluster 
abnormally mapped paired-end reads to 
identify loci with a signature for an SV event. 
Meerkat remaps soft clipped and unmapped 
reads to generate clusters to identify 
breakpoints. Pindel7 utilizes a pattern-growth 
approach to detect large deletions and 

Figure 1. Structural Variation Engine that drives the 
various components of the fusorSV framework. 
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Figure 2. Breakpoint assembly for in silico validation. The top half of the 
figure shows a deletion SV event predicted by the readpairs spanning the 
event. All read pairs in the breakpoint locus are used for targeted de novo 
assembly and the resulting contig is aligned back to the genome. 



insertions from WGS data. These methods have each already been successfully applied to hundreds of cancer 
genomes3,8. (iii) Split read alignment–based tools. We have also developed SRM9 and SRIC10 for the high-
resolution identification of SV events from WGS datasets. These tools specifically aim to provide base-pair 
resolution of breakpoints—an invaluable feature that enables functional interpretation of the biology of these 
SV events.  
 

Breakpoint assembly tools for in silico validation. We also developed algorithms for identifying breakpoints at 
nucleotide resolution, thereby allowing us to validate SV breakpoints “in silico”. As previously described8, we 
used assembly-based methods like SGA11 or TIGRA-SV12 for generating sequence contigs at breakpoints. 
Aligning these contigs back to the genome in the expected location and orientation validates the SV call 
(Figure 2). Using this method, we validated 64.8% of somatic breakpoints and 58.5% of germline control 
breakpoints8. We also developed AGE13, which performs sequence alignment at regions flanking SVs while 
considering large deletion and insertion blocks, which cannot be handled by conventional sequence alignment 
algorithms.  
 

Tools for complex event identification and assembly. It is now 
recognized that a large fraction (10–20%) of SV events are 
complex in nature8,14. We were one of the first groups to define 
the rules to identify complex rearrangements8 from WGS 
datasets. Using these rules we comprehensively characterized 
complex SVs from a large cohort of TGCA WGS datasets8 and 
validated them in silico.  
 

 Extensive complexity at structural variation breakpoints. As part 
of the 1000GP SV analysis team, we assessed the complexity of 
deletions where breakpoints had been sequenced and 
assembled. Consistent with the clustering analysis and the 
observed repeated rearrangement of duplication sites, 7.1% 
(1822) of these deletions intersected another deletion with 
different breakpoints. A larger fraction (16%) of assembled 
deletion sites had additional inserted sequence at deletion 
breakpoints. To further examine variant complexity, we grouped 
1,651 deletions with at least 10 bp of additional DNA sequence 
between the original SV site boundaries into four classes 
(Figure 3a). The most common, Ins with Dup and Del, (N=501, 
30%), exhibited a recognizable duplicated sequence interval 
within the inserted sequence. Not all SVs fit neatly into the 
classes depicted in Figure 3a, with 214 sites forming distinct 
patterns exhibiting increased breakpoint complexity. Within the 
1000GP sample cohort, we also found that an appreciable 
fraction (80%) of inversions are complex (Figure 3b), likely 
involving DNA replication errors15,16. These results reveal the extensive complexity of SV breakpoints and 
highlight the importance of mining this complexity at fine resolution for interpreting SV biology.  
 

Ensemble approach to SV discovery. fusorSV (Figure 1, manuscript in preparation) is a framework that 
employs a data mining approach to integrating many complementary SV callers for analyzing very large 
cohorts of genomes. fusorSV allows for germline, somatic, and de novo SV analysis in the cloud or on 
traditional high-performance compute clusters. We took deep-coverage, PCR-Free WGS data from 27 samples 
sequenced by the 1000Genomes Project. Using the annotated SVs from the 1000GP Phase 3, we then 
performed k=3 cross fold validation on this cohort, wherein we built a model using 18 samples and applied the 
model to the other 9 samples for SV discovery ab initio. This step was repeated 1000 times with random 
selection for the learning samples and the test samples. Figure 4 shows the performance of fusorSV as 
compared to some of the popular SV callers (BreakDancer6, BreakSeq17, cnMOPS18, CNVnator2, Delly19, 
GenomeStrip20, Hydra-Multi4, Lumpy21) that were integrated using fusorSV. As can be seen, fusorSV 
outperforms all the SV callers by optimizing both precision and recall on the 1000GP Phase 3 callset. Even 
with a strict metric such as the Jaccard Similarity score22, fusorSV outperforms all other SV callers for SV 
discovery in the test set. This Specific Aim will build on this framework and incorporate many other novel 
computer algorithms and improve performance. 
 

Figure 3. Structural variant complexity. a) We 
analyzed complexity of ~30K deletions from the 
1000 GP phase 3 dataset, and characterized the 
events into several categories based on amount of 
complexity observed at the locus. b) A similar 
study of breakpoint complexity was performed for 
inversion events and revealed much higher levels 
of complexity than expected. 



Research Plan. We plan to develop new tools and extend the fusorSV framework to identify and classify SVs 
across WGS datasets from the various projects of the TOPMed program. The new and improved fusorSV, will 
deliver 1) integrated and comprehensive identification of a broad spectrum of SV types created by different 
molecular mechanisms; 2) 
compatibility with second- and 
third-generation-sequencing 
technologies and 3) breakpoint 
resolution identification based on 
TIGRA-SV (and other tools) and 
local assembly for in silico 
validation of the SV event.  
 

Sample selection. Data storage 
and compute requirements 
preclude SV discovery on the 
whole TOPMed program. Based 
on our power calculations (Aim 
3), we will select a discovery 
cohort of 10K individuals across 
Phase I/II projects for de novo 
SV calling. This will be important 
to assess the applicability and 
efficiency of our pipeline using 
datasets generated from 
different sites. We will prioritize 
sample selection based on 
availability of orthogonal 
datasets (e.g., RNA-Seq, 
Methyl-Seq etc) and phenotypic information (e.g., blood pressure, glucose levels, BMI, etc). Clearly, having 
additional genomic/phenotypic data would allow us to mine better biological inferences from the SV calls. 
 

Pipeline for population-level structural variant discovery. During phase 3 of the 1000 GP SV project, we used 
an ensemble of nine algorithms for SV discovery. Individual call-sets were merged into a single release 
through a procedure that involved re-genotyping SV genomic loci using GenomeStrip20 with an emphasis on 
genotype concordance for overlapping sites. The proposed fusorSV framework (Figure 1) for SV discovery will 
extend this work with the following salient features: 1) MySQL database–based sample tracking of data files 
through the pipeline; 2) Standard steps for quality control, duplicate removal and alignment for all selected 
samples; 3) An ensemble of SV-calling methods including CNVNator2, cnMops18, BreakDancer6, Pindel7, 
Hydra-Multi4, Delly19, BreakSeq217, Lumpy21 and GenomeStrip20. This ensures that a particular algorithm does 
not bias the discovered SV set and increases our power to detect true SV events by asking for evidence by 
multiple methods; 4) Unified methods for SV genotyping and phasing using the lessons learnt from Phase 3 of 
the 1000GP23; 5) Validation for discovered set of SV sites using a library of known common variants and a 
targeted de novo assembly–based approach; 6) Complex SV identification using tools for assessing 
breakpoints at nucleotide resolution.  
 

The SV calling will be 
performed in three 
phases: 

Phase 1—Calibration 
(Tasks 1,2 in Figure 
5): The pipeline will be 
developed using a 
machine-learning 
approach to calibrate 
and test the 
parameters of the 
different SV-calling methods. We will initially focus on 50 deep coverage “known truth” (KT) samples from the 

Figure 5. Project timeline. Arrows show flow of data between Aims. Aim 1 feeds both Aims 2 and 3 
(blue arrows), and Aim 2 feeds Aim 3 (orange arrows).  

Figure 4. k=3 fusorSV cross fold validation using 1000 Genomes Phase 3 samples. The top 
3 panels plot precision (y-axis) VS recall (x-axis). The bottom three panels plot the jaccard 
similarity score (y-axis) VS the F1 harmonic mean (x-axis) 



1000GP SV Project23, 100 “simulated truth” (ST) samples generated using WGSim 
(https://github.com/lh3/wgsim), and 200 test cohort (TC) samples (from the TCGA consortium). These datasets 
all contain some true-positive SVs and will be weighted in eventual determination of pipeline parameters 
depending on the level of confidence in the associated SV set (KT>ST>TC). 
Phase 2—Optimization (Task 3): After calibrating our methods on the ST, KT and TC cohorts, we will expand 
the analysis to ~1% (~1,000) of individuals being sequenced within the TOPMed program. This cohort will be 
used to test for efficiency and eventual scale up in the next discovery phase. Based on the data access and 
compute strategies defined in TOPMed, we will explore parallelization where the tools already support this 
capability. The compute-intensive steps in the discovery pipeline that would be primary candidates for 
optimization are 1) genome alignment of raw reads, 2) clustering of aberrant reads, 3) SV validation using 
assembly and most importantly 4) SV integration.  
Phase 3—Discovery (Task 4): The optimized system will be run on 10K of the proposed 100K individuals 
sequenced by the various projects. For sample selection we will prioritize projects that have RNA seq data 
available as well as well annotated phenotypic data for their cohort. 

Calibration of method using known sites. Hundreds of sites across the human genome are polymorphic in a 
large fraction of the population24,25. Phase 3 of 1000 GP SV project23 showed that a significant fraction of SVs 
(35%) occur at a high frequency in the population (VAF ≥ 0.2%). We will create a catalog of common copy 
number polymorphic sites across the genome and use them as validation sites for our SV-calling methods. 

Validation of SV sites using in silico assembly–based methods. We demonstrated above that SVs can be 
validated in silico using targeted de novo assembly–based methods (TIGRA-SV and SGA). The same 
methodology will be integrated into the fusorSV framework and will be used to process every discovered SV 
site for validation. 

Complex SV identification. We will use two methods for complex SV identification. The first8 identifies SV 
clusters present in the same genomic region that have similar allele frequencies and copy number ratios. This 
will help select SVs that are part of the same complex SV event. The second method23 involves inspecting the 
mapping patterns of various parts of the assembled contig at the SV site. This would allow us to identify 
mislabeled SVs and SVs with more complexity than annotated by the individual SV-calling methods.  

Data access strategies: The JAX SV Cloud. Total storage of the discovery cohort is expected to require ~4 PB 
based on TCGA WGS statistics. To deal with the data footprint and computing requirements, we propose to 
develop the JAX SV Cloud, which will be available to all members of our teams. Our two-stage local and cloud 
approach is as follows: 

i) The JAX local data center. In a traditional center, data are downloaded for analysis to local high-
performance compute resources. JAX has extensive infrastructure, including an HPC cluster with 1856 cores 
and 2 PB of storage that will further expand over time (see Facilities and Resources). We can analyze the full 
discovery cohort by transient download and analysis of raw data with retention of only necessary results. 

ii) Cloud-based data access model. However, it is expected that the TOPMed program will provide access 
to the data using a public cloud service provider. After initial method development and analysis, we plan to 
disseminate methods to the broader research community using the cloud paradigm decided by the TOPMed 
program. JAX is currently expanding capabilities in cloud-based data analysis to address issues including 
access to increased compute power, co-localization of novel and reference datasets and reproducibility of 
analysis pipelines. JAX staff have adapted multiple pipelines for the Amazon cloud and evaluated the suitability 
of Amazon archival storage for genomics datasets. Dr. Ding’s group has been developing GenomeVIP, a 
secure, HIPAA-compliant, web-driven variant discovery and annotation platform through which multiple 
independent analysis tools can be applied to a given dataset. As it can call upon both local HPC and Amazon 
cloud resources, GenomeVIP is a tool that we may initially use to assist with variant discovery and to download 
results to local disks for subsequent analyses. 

JAX is partnering and collaborating with commercial genomics cloud service providers (CSPs, Seven Bridges 
Genomics) to on several impactful projects and has recently recruited cloud computing experts as part of the 
Research IT department. These activities are independent of this U01 proposal. These efforts parallels that of 
the U01, namely to ensure methods developed at the data center will be stable and easily usable by the 
general research community.  



Expected results. These studies will yield a comprehensive catalog of validated complex SVs from healthy 
and diseased individuals that lay the foundation for subsequent functional interpretation and association 
studies (Aims 2,3). They will also help answer questions about complex SV formation and population-level 
associations of SVs across multiple studies, thereby adding value to the TOPMed datasets. By making the 
fusorSV pipeline available as a community resource, and demonstrating the correctness and 
comprehensiveness of the SV results, we expect this work to propel future genome-level SV analyses for the 
entirety of the TOPMed program. 

Pitfalls and alternative approaches. A major challenge for this study is the diversity of phenotype data that is 
being collected and of the variable availability of orthogonal data (genomic, transcriptomic, proteomic, etc.) 
across the various project cohorts being studied. In response, we will leverage the extensive experience of the 
team to handle complex datasets (see Prelim data section) and design fusorSV to robustly handle diverse and 
complex datasets of the type that might be generated by the TOPMed Program. Another potential pitfall comes 
from the current lack of defined cloud-based strategy by which the TOPMed Program will provide access to 
primary data. As a fallback plan, we can process samples by transient downloads / shipment of hard disks 
directly from the DCC and analyse the samples on our extensive local resources. 

Specific Aim 2. Develop tools to analyze the functional impact of structural variants.  
Rationale. There is still little known about the functional impact of SVs at a genome-wide level. SVs are 
disproportionately observed in the non-coding part of the genome; hence, a comprehensive assessment of the 
functional impact of SVs will likely require the integration of large-scale data resources such as ENCODE, 
1000GP and GTEx. To functionally prioritize SVs in preparation for disease association studies, we propose to 
create SV Impact (SVIM), a new analysis tool that integrates myriad datasets- including existing annotations, 
allelic activity from RNA-seq, and eQTLs from RNA-seq. 

Preliminary data. Tools for assessing functional impact of genomic variation in genes and pseudogenes. We 
developed Variant Annotation Tool (VAT) to annotate the impact of protein sequence mutations. VAT provides 
transcript-specific annotations of point mutations and indels according to synonymous, missense, nonsense or 
splice-site-disrupting changes26. We observed that genes tolerant of loss-of-function (LoF) mutations are under 
the weakest selection. In 1000GP Phase 3, we found that a typical genome contains ~150 LoF variants and 
discovered significant depletion of SVs (including deletions, duplications, inversions and multiallelic CNVs) in 
the coding sequences, untranslated regions and introns of genes compared to a random background model, 
implying strong purifying selection. 

Tools for evaluating functional impact of variation in non-coding (nc) RNAs and regulatory regions. We 
developed tools to specifically analyze ncRNAs. Our incRNA pipeline combines sequence, structural and 
expression features to classify newly discovered transcriptionally active regions into RNA biotypes such as 
miRNA, snRNA, tRNA and rRNA27. Our ncVar pipeline further analyzes genetic variants across biotypes and 
subregions of ncRNAs, e.g., showing that miRNAs with more predicted targets show higher sensitivity to 
mutation in the human population28. 

To better understand nc regulatory regions, we developed tools to analyze ChIP-Seq data to identify genomic 
elements and interpret their regulatory potential. PeakSeq identifies regions bound by TFs and chemically 
modified histones29,30; it has been widely used in consortium projects such as ENCODE29,31. The second 
generation of PeakSeq is a newly developed tool that uses multiscale decomposition to help identify enriched 
regions in cases where strict peaks are not apparent and robustly calls both broad and punctate peaks30. Peak 
calls and ChIP-Seq signal data can also be used to model gene expression and annotate target genes. We 
have developed methods that use both supervised and unsupervised machine-learning techniques to identify 
these regulatory regions (such as enhancers) and predict gene expression from ChIP-Seq data32-35. To 
investigate the evolutionary importance of these regions, we have analyzed patterns of single nucleotide 
variation within functional nc regions, along with their coding targets28 35,36. We used metrics such as diversity 
and fraction of rare variants to characterize selection pressure on various classes and subclasses of functional 
annotations28. We have also defined variants that are disruptive to a TF-binding motif in a regulatory region31. 

Tools for helping annotate functional impact based on network. We found that functionally significant and 
highly conserved genes tend to be more central in various biological networks37 and are positioned at the top 
of regulatory networks36. Further studies showed relationships between selection and protein network topology 
(e.g., quantifying selection in hubs relative to proteins on the network periphery37,38). Incorporating multiple 
network and evolutionary properties, we developed NetSNP37 to quantify the indispensability of genes. This 
method shows strong potential for interpreting the impact of variants involved in Mendelian diseases and in 



complex disorders probed by GWAS. We constructed regulatory networks for data from the ENCODE and 
modENCODE projects, identifying functional modules and network hierarchy36. To quantify the degree of 
hierarchy for a given hierarchical network, we defined a metric called hierarchical score maximization (HSM39). 	

FunSeq: Tools for integrated functional prioritization. We recently developed a prioritization pipeline called 
FunSeq40,41 that identifies annotations under strong selective pressure as determined using genomes from 
many individuals from diverse populations. FunSeq links each nc mutations to target genes and prioritizes 
based on scaled network connectivity. FunSeq identifies deleterious variants in many nc functional elements, 
including TF binding sites, enhancer elements and regions of open chromatin corresponding to DNase I 
hypersensitive sites, and detects their disruptiveness in TF-binding sites (both LoF and gain-of-function 
events).  

Mutational mechanisms of structural variants. The sequence content of SVs, especially around breakpoints, 
carries important information about origin and functional impact. Using datasets from 1000GP, we studied the 
distinct features of SVs originating from different mechanisms40,42. We performed SV mechanism annotations 
for the 1000GP Phase 3 deletions using BreakSeq17, categorizing 29,774 deletions by their creation 
mechanisms. Among these, NHR proved to be the most prevalent mechanism (~73% of all categorized 
deletions)23. These results inform us on the molecular mechanisms underlying SV formation and also indicate 
differences in functional impacts of different SV types. 

Tools for uniform processing of RNA-seq data. We have considerable expertise in analyzing RNA-Seq data, 
including experience in developing and setting up pipelines for the processing of RNA-seq data; specially for 
long RNA-seq data for ENCODE, long and short RNA-seq data for the PsychENCODE43 and Brainspan project 
as well as a custom pipeline developed for the analysis of small exRNA-seq data for the Extracellular RNA 
Communication Consortium (ERCC). We have already developed an efficient in-house data processing 
workflow for RNA-seq data that includes data organization, format conversion, and quality assessment. 

RSeqTools44 is a modular tool developed for the 
processing of RNA-seq data and generating either 
transcript, gene or exon level quantifications. We also 
developed IQSeq45 which calculates the relative and 
absolute abundance of contributing transcript isoforms to 
a gene from RNA-seq data using a fast algorithm based 
on the Fisher information matrix. Another tool we 
developed called FusionSeq46 was to detect fusion 
transcript in RNA-seq data, which can be important 
biomarker for diseases such as various types of cancer 
and neurological diseases. 

Tools for allele activity and eQTL detection. We have also 
developed tools specifically for linking gene expression 
variation to genotype, including our Allele-Seq pipeline, 
which quantifies allele-specific gene expression by 
mapping reads onto a diploid personal genome built from 
called genetic variants, including SNPs, short indels, and 
structural variants 47. We recently applied this pipeline on 
a population scale to RNA-Seq data from the 1000 
Genomes Project, and used this analysis to create 

AlleleDB, a database of genomic regions with high allelic activity48. 
Our expertise in eQTLs is demonstrated in our novel study on 

successfully utilizing expression-variant correlations to 
construct predicted genotypes. These predicted 
genotypes were then matched with known genotypes 
from a given dataset in order to demonstrate how the 

information security of the given dataset may be compromised49. 

Research plan. To enable identification of SVs with high functional impact, we will extend FunSeq/FunSeq2 
within a new pipeline called SVIM (Structural Variation IMpact)(Figure 6). We will evaluate the impact score for 
each SV, taking into account the functional annotation of the affected genomic region and the fraction of 
functional elements (i.e., genes, ncRNAs, nc regulatory elements). We will also upweight SVs based on 

Figure 6. Overview of the functional prioritization and 
annotation pipeline 

	



ubiquitous activity, allelic activity and eQTLs. The impact score will also depend upon SV type (i.e., deletion, 
duplication, inversion or translocation). 

For a given SV belonging to a particular SV type, we will use break point resolution coordinates to estimate the 
fraction of bases overlapping functional elements. Based on this fraction, we will categorize SVs into three 
classes (touch, cut, and engulf). Each overlapping class will have a different weight (Fsvtype, class). We will divide 
genomic elements into three categories (coding region, nc region, TF binding site) and assign relative scores 
to them (Scoding, Snon-coding, STFBS), which will vary for different SV types. Relative scores F and S will be defined 
for class and functional elements analogous to the FunSeq2 tool40.  
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, where 𝑖  is a functional element 

∈  𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑐𝑜𝑑𝑖𝑛𝑔, 𝑛𝑜𝑛𝑐𝑜𝑑𝑖𝑛𝑔 𝑅𝑁𝐴, 𝑛𝑜𝑛𝑐𝑜𝑛𝑑𝑖𝑛𝑔 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑦, 𝑎𝑙𝑙𝑒𝑙𝑖𝑐 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝑒𝑄𝑇𝐿 ; 𝑘  is a overlapping 
classification ∈  𝑐𝑢𝑡  0.1 ≤ 𝑓 < 0.8 , 𝑡𝑜𝑢𝑐ℎ 𝑓 < 0.1 , 𝑒𝑛𝑔𝑢𝑙𝑓  𝑓 ≥ 0.8 , and 𝑓  is the fraction of functional 
element overlapping the SV; 𝑗  is the type of SV ; 𝛿 ∈  0,1 ; and 𝑙  is a feature 
∈  𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝑢𝑏𝑖𝑞𝑢𝑖𝑡𝑜𝑢𝑠 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝑎𝑙𝑙𝑒𝑙𝑖𝑐 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝑒𝑄𝑇𝐿𝑠 ; 

SVs will be assigned an impact score by taking the sum over the product between weights of overlapping 
classes and scores of overlapping functional elements. The score (ISorig) will also be upweighted based on 
activity of the affected region. The upweight factor is comprised of the product of four factors: i.e., allelic 
activity, eQTLs, network connectivity and ubiquitous activity. Significance level of an Impact score (ISorig) will be 
estimated by running 1,000 Monte Carlo simulations generated by randomly shuffling the location of SVs. 
 

Evaluating effect of structural variants on protein-coding genes. We will further develop a protein-coding 
module for SVIM to substantially expand the analysis of loss of function (LoF) variants with mis-mapping, 
functional, evolutionary and network features. We will first identify LoFs due to whole gene deletion, as well as 
putative LoF-causing mutations as those that induce premature stop codons, frameshifted open reading 
frames, or that we predict to produce truncated proteins due to deletion of RNA splice sites or either predicted 
or verified changes in splicing pattern from RNA-Seq data (see above). We will quantify the confidence of 
these LoFs using features such as whether they are in highly duplicated regions and the number of paralogs. 
For functional features, we will incorporate protein structures. For evolutionary properties, we will quantify the 
conservation of LoF variants, as well as truncated sequences. For network features, we will quantify the 
distance between genes with LoF variants and known disease-causing genes.  

Prioritizing non-coding transcripts from structural variant data. To prioritize the effects of SVs in ncRNAs, we 
will focus on overlaps with regulatory elements and other functional regions. To perform this analysis, we will 
define categories of RNA regions that display human population-level conservation, and combine these 
features to generate RNA element scores. We will mine RNA interactions between proteins (e.g., CLIP-Seq) 
and miRNAs (e.g., TargetScan) to create a compendium of biochemical interactions with RNA50-54. We will 
further investigate RNA secondary structure, looking for structured regions that are highly sensitive to mutation. 
For these regions, we will assess deleteriousness of mutations by differences in predicted free energy or 
structure ensembles55 relative to wild type. We have found annotations of all of the above types—biochemical 
interactions, regulatory motifs, and structured regions—that are enriched for rare variants in the human 
population and will use these sensitive RNA regions to score and prioritize potential deleterious SVs in ncRNA. 
Large SVs will ultimately be scored based on the highest scoring subregion disrupted (or created) by the SV. 

Prioritizing non-coding regulatory elements from structural variant data. Unlike protein-coding genes and 
ncRNAs, TF binding motifs are relatively small in size. Thus, we are going to analyze duplications that occur 
close to these motifs and analyze where these duplications lead to the breakage of existing or creation of new 
motifs. In the prioritization scheme, we will also penalize changes in distance between motifs and newly 
created motifs if they occur close to an existing TF motif. We will use TF binding nc elements by leveraging 
better enhancer definitions provided by the Epigenome Roadmap56-58 and ENCODE and also include new 
datasets. 

Further variant prioritization based on networks, tissue specificity, eQTLs and allelic activity. After performing 
annotation-based assessment of identified SVs, the following functional features will be used for prioritization. 
i) Network connectivity. We will examine the network topological properties of the genomic elements affected 
by identified SVs. Variants disrupting regulatory elements with high connectivity—network hubs and 
bottlenecks—will be upweighted based on their scaled centrality scores. 



ii) Ubiquitous activity. We will evaluate the impact of SVs in an epigenetic context to identify tissue-specific 
phenotypic effects that are strongly influenced by SVs. We will prioritize SVs impacting genes, ncRNAs, and 
TF binding sites active in multiple tissues. 
iii) Allelic activity. We will use our existing AlleleSeq pipeline to annotate the transcripts produced at SV regions 
47. We will use this tool to create personal diploid genomes for each TopMed individual, and then will adapt our 
pipeline to perform RNA-Seq quantification specifically at SV regions. We will prioritize SVs that lead to 
strongly allelic expression. We will also prioritize SVs that overlap our database of strongly allelic regions 
throughout the genome, based on AlleleDB, our resource of such regions identified through allele-specific 
RNA-Seq analysis from over 300 individuals generated by the GEUVADIS consortium48. 

iv) eQTL association. We will link SVs to the genes that they affect by performing genome-wide searches for 
eQTLs. Relative to SNVs, large SVs may be more manageable candidates in the search for distal eQTLs. We 
will use a framework similar to published earlier49 in the search for SV-induced eQTLs. SV-induced eQTLs will 
be identified by performing genome-wide searches for patterns in which the presence or absence of the SVs 
(from Aim 1) strongly correlate with the expression levels of a battery of genes throughout the genome. 
Specifically, we will use Matrix eQTL for eQTL identification 59. We will perform multiple testing correction and 
will filter the list of putative eQTLs in order to achieve a false discovery rate of less than 5%. The SV-gene 
expression correlations reported by Matrix eQTL will be used as the strength-of-association measures between 
expression levels and genotypes. Of particular interest will be those genes previously implicated in disease-
associated pathways and network modules. SV-induced eQTLs with strong expression correlations that are 
associated with central network elements and known disease-associated genes will be upweighted. 

Expected results. We expect that SVIM, a new software solution to estimate the impact scores of the SVs 
produced in Aim 1, will yield a prioritized set of SVs in Aim 2 that we can forward to Aim 3 (genotype and 
association) for further classification of their association to disease or a specific phenotype. We plan to make 
the prioritization results broadly available; therefore, SVIM will incorporate the impact score into a standard 
Variant Call Format (VCF). SVIM will be cloud-ready and will be available to the TopMed consortium through a 
Docker image and a Common Workflow Language (CWL) file.    

Pitfalls and alternative approaches. We anticipate that the greatest pitfalls are (i) possibly an overwhelming 
number of SV discovered in Aim 1 and (ii) the lack of standard format and increasing number and updates of 
annotation datasets. In order to overcome (i), we plan to gradually process the results into specific type of SVs. 
SVIM will also be based on the data context to optimally prioritize from WGS datasets. The overall 
modularization offers a flexible framework for users to incorporate the ever-increasing amounts of genomic 
data to both rebuild the underlying data context and prioritize case-specific variants. In order to overcome pitfall 
(ii) we will make great efforts to make SVIM computationally efficient and able to support the large-scale 
computing proposed for this aim. To build the data context, we will standardize large-scale publicly available 
data resources, such as SVs from the 1000 GP60, conservation data from Bejerano et al.61 and Cooper et al.62, 
functional genomics data from ENCODE31 and Roadmap Epigenomics Mapping Consortium63.   
Specific Aim 3. Scaling up to 100K samples and associating SVs with common and rare diseases.  
Rationale. Since many high-impact SVs are expected to be relatively rare, such that conventional association 
tools cannot readily and robustly handle them. Therefore to discover important SVs, we must develop a new 
association pipeline suitable for finding important SV-phenotype associations. We anticipate that building a 
reference database of complex structural variants in healthy individuals (Aim 1) will be essential for this goal.   

Preliminary Results. Power analysis for sample selection and association. An important aspect will be 
selecting a subset of the 100K samples projected to be sequenced for full SV analysis. This discovery cohort 
will furnish the prototype events that will subsequently be studied in the full population by genotyping the entire 
sample set. Total analysis cost (e.g. downloading, storage, compute time, manual review) must be balanced 
against the discovery probability for events having the lowest population minor allele frequency (MAF) we wish 
to include. There is no general theory of discovery power currently used in SV algorithms, so we extended an 
existing statistical model of coverage64 to estimate the discovery sample size. Bernoulli probabilities for two 
standard SV discovery methods, split reads and discordant read pairs, can be derived using probability theory 
considering read length, average and variance of insert length, SV length, etc. and subsequent incorporation of 
a detection rule, e.g. “≥3 split or discordant reads”. Detection in each sample is binomial in the number of 
observations and discovery within sample set is likewise binomial in the detection and MAF probabilities.  
 



Anticipated parameters for the 
WGS data to be generated for this 
project are 30X coverage per 
genome, average insert size of 
400bp-600bp (20% coefficient of 
variation), 150bp reads, event 
detection based on ≥3 split reads or 
≥5 discordant read pairs, and 
observation in at least 3 samples to 
constitute “discovery”. The model 
predicts that split-read detection will 
predominate for simple SVs, as well 
as for complex events in which one 
sequence is replaced by another. 
Because split-reads depend only 
upon local alignment, power is 
essentially independent of the size 
of events (unlike for discordant read 
pairs), meaning it is primarily a 
function of sample size and MAF. 
Figure 7a shows power at MAF ≥ 
0.1% is essentially 100% for 10K 
samples. It drops rapidly for lower 
MAFs, whose events are unlikely to 
be discovered in this study. 
Mosaicism is a potentially 
confounding factor, for example in 
blood samples where an event is 
not present in all cells. Figure 7b 
shows that power is not significantly 
impacted for 10K samples until mosaicism is quite significant.  
 

The second aspect of “power” is variant-disease association. The issues are well-known65, enabling the 
following “baseline” estimates of association power. General consensus65 recommends “collapsing” variants for 
low MAF in order to aggregate effects for increasing power. Analysis of the widely-used Li & Leal method for 
10 collapsed variants at 4:1 risk ratio (Figure 7c) shows that groupings of 1% MAF variants having high 
(~50%) penetrance will require 20K-30K samples for 80% power when Bonferroni-corrected. Power drops 
rapidly for lower MAF, penetrance, risk ratio, and sample size. Although it is not yet known how the 100K 
samples will be divided over various studies, it is instructive to examine the scenario of 10K cases/10K controls 
(Figure 7d). Variants around 2% MAF should have ≥90% association power for penetrances ≥50%, while 
variants regardless of MAF having penetrances <25% will likely remain ambiguous, as will variants from 
phenotypes having substantially smaller sample allotments. It is likely we will discover more variants than 
those for which solid associations can be established.  
 

Association pipeline implementation and experience in discovering significant associations. We have 
developed a prototype pipeline incorporating extensive sample and variant level quality control (e.g, coverage, 
variant frequency and distribution), population stratification, pedigree segregation, etc. for population/family-
based association analysis. It supports popular aggregation tests, including burden tests such as the 
Combined Multivariate Collapsing (CMC)65, Exclusive Frequency Test (EFT)66, Total Frequency Test (TFT)66, 
and Cohort Allele Sum Test (CAST)67, and variant component tests such as the Sequence Kernel Association 
Test (SKAT)68. We have already used it to discover associations by tailoring it to hypothesized genetic 
architectures of individual diseases. For example, assuming tumor suppressors are enriched for rare 
deleterious truncations, we grouped events by gene and used TFT to associate 13 genes with germline 
susceptibility in a >4,000 case cancer cohort69.  
 

Research Plan. SVs are characterized by size, type, penetrance, and multiple alleles. We plan to genotype 
the top half of high-impact SVs detected in 10K discovery samples (Aim 1) across all ~100K samples to be 
sequenced by TOPMed centers to obtain sufficient statistical power for genotype-phenotype association. A 

Figure 7. Power analysis for sample selection and association. a) Power vs sample size 
for selected MAFs from 0.01% to 1%. Events are assumed heterozygous and completely 
represented in the sample (no mosaicism). Curves are universal in that simple insertions 
and deletions, as well as complex indels, collapse and power is independent of indel 
size, since the “split reads” discovery mode dominates. b) Power vs “mosaic factor” (unity 
meaning event present in all cells; 0.5 meaning event present in half the cells, etc.) for 
selected samples sizes from 1K to 10K. All data plotted at 1% MAF. Split-read discovery 
again dominates and curves are universal. c) Association power for 10 collapsed variants 
(even numbers of cases and controls), each of 1% MAF and penetrance from 1% to 
50%, at both single gene (α = 5%) and Bonferroni-corrected for 20K genes, as well as a 
4:1 risk ratio for the Li and Leal (2008) collapsing strategy. d) Curves of constant power 
for 10K cases/10K controls, with other parameters the same as in c). 



critical step for association analysis of SVs is meaningful classification/annotation. By building on infrastructure 
and tools mentioned above, we will develop a new pipeline called “SV2Pheno” to infer SV-phenotype 
associations (Fig. 8). It will use the impact scores for each SV (Aim 2) for integrated analysis of SNVs, indels, 
and SV.  
  

Genotyping of SVs detected in the discovery set across the entire sample set. Genotyping and annotation of 
discovered SVs in the whole population will allow accurate determination of prevalence and allele frequencies 
and, importantly, increase association analysis power. This process will use BreakSeq17 to build a library of 
validated and assembled SV breakpoints for genotyping individual genomes. For imprecise SVs, a combined 
read-pair/read-depth approach using GenomeStrip70 will do population level genotyping. Conventional 
genotyping involves assembly of both reference and alternate sequence contigs, which are used as targets for 
mapping all reads present in the sample. However, given the large expected data footprint for the full sample 
set, the traditional “bring data to the computing tools” approach will be upended to “bring compute tools to the 
data”. We shall build on tools such as Sambamba (bam slicer function)71, TIGRA-SV assembler and Pindel. 
This will reduce the footprint to a fraction of the original and enable the methods to work in the cloud and 
access data over a secure network.  
 

Develop SV2Pheno pipeline including improved burden tests considering impact score and annotation 
classification of various complex structure variants. We envision substantial extension of this pipeline in two 
major ways to address the ambitious goals of this proposal: 1) We plan to hybridize the pipeline with more 
recent methods that better account for non-contributing variants72. Likewise, annotation and functional 
prediction can help identify irrelevant variants, which can subsequently be removed from analysis. The pipeline 
will also process the information from the ENCODE & Epigenetics Roadmap analysis mentioned in Aim 2. 2) 
Variants are known to be associated with various diseases73-75, but almost certainly contribute non-uniformly; 
assigning appropriate weights will be necessary to wring-out maximum power. Aggregation tests can be 
expressed in general by the linear regression equation 𝑌 = 𝛼 + 𝛽 ⋅ Σ𝑤!𝑔!  + 𝜀, where (left-to-right) is observed 
trait, intercept, collective effect coefficient, weight of variant i, tally of variant i (0, 1, or 2), and normally 
distributed error residual. Assignment of weights will be based on a novel combination of four considerations: 
the Madsen-Browning equation76 to account for allele frequency, consideration of “direction” (negative 
association) using e.g. aspects of the Pan-Shen approach77, incorporation of our impact score (Aim 2) to 
account for biological strength, and RNA-seq data. The last aspect will weight expression impact, but must be 
implemented carefully because of variations in sample quality. Here, we will apply the method of Liu et al78, 
which essentially adds an extra calculational 
adjustment to modulate contribution of higher-
variability samples. In principle, this more 
sophisticated approach should capture signals 
that have been too subtle for earlier-generation 
tests79. 
 

We are mindful that controls for each 
association analysis should be carefully 
matched with cases; paying close attention to 
population structure, sample coverage, etc. 
When sample size is fixed, an even case-
control split offers maximal power. However, it 
is likely that the TOPMed program will furnish 
potentially many more controls and this 
increases power. For such diseases, we will 
check the available literature for any known 
underlying genetic commonalities and choose 
extra controls in light of relevant covariates (e.g. 
age or smoking status). Since we anticipate that 
a high fraction of SVs will reside in non-coding 
regions, we will aggregate variants using a 
hierarchical approach based on three levels: 
Level 1. Prototypical Event level association 
analysis. As the precise genomic region for a 
given SV may vary across samples, we will 

Figure 8. SV2Pheno Association Analysis Pipeline. The overall work flow 
includes QC, population stratification from Aim 1, functional classification 
and impact score generation from Aim 2 and single event test and burden 
analysis from Aim 3. 



represent each set of similar SV events as a single prototypical SV event. The criterion constituting such 
events is given by the “80% reciprocal overlap” rule12. For large insertions and inter-chromosomal translations, 
we will require the breakpoints to be within 1kb of one another. We will then assess the significance of the 
associations using impact scores generated in Aim 2. 
Level 2. Functional Unit (Gene CDS/promoter/enhancer) level association analysis. We annotate the 
prototypical SV events from Level 1 to identify any specific transcriptional regions (e.g., exons/CDS and cis-
regulatory elements such as insulators, enhancers, and promoters) and gene(s). SVs in a given gene will be 
grouped as a single, effective functional unit based on annotation from Aim 2 (Figure 8). We will then perform 
an association analysis on these functional units. In cases where multiple SV events may be affiliated with a 
given functional unit, we will develop a weighting scheme to combine the impact scores of the contributing 
SVs. This approach may reveal novel connections between non-coding functional regions and phenotypes.  
Level 3. Combined Functional Unit level analysis. We will annotate the functional units in the previous step to 
identify known affiliated higher-order units (e.g., protein complexes and gene pathways) by recruiting various 
resources, including databases relating to gene-phenotype relationships (e.g., OMIM), gene pathways (e.g., 
KEGG, Reactome), gene ontology (e.g., GO database). The SVs affecting a given higher-order unit will be 
grouped as a single super-unit. We will again perform association analysis, considering the SV impact scores 
(Aim 2). This approach has the potential to discover novel combinations of SV-containing functional units.  
  

We will apply this tiered approach and association analysis (Figure 8) to analyze all genotyped samples 
passing our extensive coverage and variant calling QC from various cohorts to identify promising candidate 
SVs associated with specific phenotype.  
 

Integrate various types of variants for association analysis. The most powerful analysis will come by combining 
information from SNVs, indels, and SVs for association analysis. Traditionally, weights in burden tests account 
for variants with different MAFs, but favoring those having lower MAFs68,76. Bioinformatic information, such as 
PolyPhen scores for SNVs, and SV impact scores from Aim 2 will inform these weights. To the best of our 
knowledge, no previous approaches have aggregated variants of different types. Here, we propose two 
methods for such integration: 1) We hypothesize that SVs would have stronger functional impacts than 
missense SNVs, on average, and we will develop a weighing scheme based on the size and genetic 
architecture of various variant types using the framework of previous weighting schemes. SNV/indel/SV will be 
jointly calculated in a single burden analysis; 2) We hypothesize that alterations from functional regions, 
regardless of size, contribute to phenotype. Therefore, alternatively, we plan use SNV/indel and SV for 
independent burden analyses and combine the P-values from these independent tests. 
 

Association between SNVs/indels and # of SVs. Under the null hypothesis that variation occurs randomly, it 
should be possible to correlate the numbers of SNVs/indels versus number of SVs, the slope being indicative 
of differences in rates of occurrence, and also to check such correlation against established rates. We will 
perform association analysis for individual outlier cases in which SV census is significantly lower or higher than 
expected. It is possible that such outliers might harbor common germline alterations leading to genomic 
instability by affecting DNA repair pathways. 
 

Expected results. This aim will culminate in the SV2Pheno association pipeline and its tools for systematically 
discovering SVs associated with specific phenotype/disease. We expect to have increased statistical power to 
discover rare, novel SVs associated with phenotypes previously missed due to smaller sample size. We further 
anticipate revealing genetic changes associated with increased frequency of SVs genome-wide. The initial 
version of SV2Pheno will be distributed for broader community use and cloud distribution. 
 

Pitfalls and alternative approaches. Our preliminary analysis indicates that we are well powered to detect 
SVs with MAFs around 0.5% to 1% using 10,000 cases. Although it is very likely that we will discover more 
SVs than we can establish associations for (discussed above), there are still some issues of selection. There 
are several strategies for selecting datasets for initial discovery: 1) from one homogenous cohort; 2) from one 
CCDG center across multiple cohorts; 3) from multiple cohorts generated by multiple TOPMed centers. 
Regardless of choice, we will maintain high standards regarding coverage, read length, insert size, mapping 
rate, % mismatch etc. to ensure accurate, representative detection of SVs across populations. To reduce the 
number of hypotheses to be tested, we can alternatively focus on SVs from regions indicated to have 
association with phenotype from the study of SNV/indel. The weighting methods discussed above for may 
require tuning and we will use known disease associated SVs as positive controls for the calibration. 
  


