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Abstract

New approaches to optimizing cancer drug development in both the laboratory and the clinic will 

be required to fully achieve the goal of individualized, precision cancer therapy. Improved 

preclinical models that more closely reflect the now recognized genomic complexity of human 

cancers are needed. Here we describe a collaborative research project integrating core resources of 

The Jackson Laboratory (JAX) Basic Science Cancer Center with genomics and clinical research 

facilities at the UC Davis Comprehensive Cancer Center (UCD) to establish a clinically and 

genomically-annotated patient-derived xenograft (PDX) platform designed to enhance new drug 

development and strategies for targeted therapies. Advanced stage non-small cell lung cancer 

(NSCLC) was selected for initial studies due to emergence of a number of “druggable” molecular 

targets, and recent recognition of substantial inter- and intra-patient tumor heterogeneity. 

Additionally, clonal evolution after targeted therapy interventions makes this tumor type ideal for 

investigation of this platform. Employing the immunodeficient NSG mouse, over 200 NSCLC 

tumor biopsies have been xenotransplanted. During the annotation process, patient tumors and 

subsequent PDXs are compared at multiple levels, including histomorphology, clinically 

applicable molecular biomarkers, global gene expression patterns, gene copy number variations 

and DNA/chromosomal alterations. NSCLC PDXs are grouped into panels of interest by oncogene 

subtype and/or histologic subtype. Multi-regimen drug testing, paired with pre- and post-therapy 

next generation sequencing (NGS) and timed tumor pharmacodynamics, enables determination of 

efficacy, signaling pathway alterations and mechanisms of sensitivity-resistance in individual 

models. This approach should facilitate derivation of new therapeutic strategies and the transition 

to individualized therapy.
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Introduction

Substantial advances have been made in understanding the molecular biology driving 

carcinogenesis as well as cancer-associated proliferative and anti-apoptotic signaling 

pathways. A wide variety of potentially “druggable” molecular targets for cancer therapy 

have emerged from these studies. While a large number of molecular-targeted agents have 

subsequently been tested, most of which showed substantial activity in available preclinical 

models, relatively few have been successful in the clinic (1, 2, 3, 4, 5). Thus, there remains 

an unmet need in drug development for new approaches toward testing patient-relevant 

treatment models in the laboratory, prior to or concurrent with initiation of clinical trials. 

The present preclinical evaluation process for new anti-cancer agents, based predominantly 

on human cancer cell lines or cell line-based xenograft models, has proven largely 

ineffective at predicting therapeutic potential in patients themselves (6, 7). Despite 

promising preclinical results, only five percent of cancer drugs under development are 

eventually approved for use. The majority fail due to lack of efficacy in Phase III clinical 

trials, as exemplified by recent trials for non-small cell lung cancer (NSCLC) (8). Chief 

among the many obstacles to development of effective anti-cancer regimens is the 

complexity of tumor signal transduction networks, with parallel pathways, crosstalk, 

compensatory feedback mechanisms and extensive interactions between tumor cells and 

their microenvironment, which cannot be replicated in conventional preclinical models taken 

in isolation. Adding to these complexities are the inter- and intra-patient tumor heterogeneity 

characteristic of human cancers and the innate adaptability of tumor mutator phenotypes, 

resulting in rapid development of resistance mechanisms. Taken together, these challenges 

necessitate new ways of thinking regarding the role of preclinical models in cancer drug 

development. (9)

Addressing an unmet need for improving drug development strategies in 

NSCLC

This need for improved preclinical platforms is particularly relevant to NSCLC, a worldwide 

health care epidemic for which most systemic therapies offer only modest benefit. For most 

patients with advanced NSCLC, the therapeutic decision-making process has remained 

largely empiric, based on factors such as historical treatment precedent, individual patient 

characteristics, and physician or patient preferences. Although the feasibility of selecting 

treatment for individual cancer patients based on tumor molecular profiles (personalized 

therapy or precision medicine) is already being explored in NSCLC, these efforts have been 

hampered considerably by tumor heterogeneity and the complexity of the underlying 

biologic pathways, as well as suboptimal preclinical models in which individualized 

therapeutic strategies can be tested [1, 3, 7]. Further, improved strategies to identify and 

overcome mechanisms of de novo and acquired resistance to treatment are essential to 

increasing survival and cure rates (10, 11, 12, 13).

Already, transgenic or knock-in preclinical systems such as genetically engineered mouse 

models (GEMMs) have proven to be invaluable tools for understanding carcinogenesis, 

tumor biology and target validation for therapeutics in ways not addressable with other 

modeling approaches, (14, 15, 16, 17, 18) Nevertheless, GEMMs represent non-human 
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cancers lacking the range of tumor heterogeneity and complexity of biologic pathways 

inherent to human cancers and present within PDXs. While preliminary studies have already 

demonstrated that both chemotherapeutic agents and biologic therapies can be administered 

and assessed in a systematic fashion using in vivo xenotransplantation PDX models, 

systematic development, clinical-genomic annotation and drug testing paradigms have yet to 

be comprehensively evaluated. (19, 20, 21, 22, 23)

Development of the integrated UCD-JAX PDX Resource in NSCLC

Here we describe development of a clinically and genomically-annotated PDX resource in 

NSCLC and initial pilot projects focusing on epidermal growth factor receptor (EGFR) 

pathways and EGFR-directed therapies, to directly address and overcome these limitations. 

This NSCLC PDX research platform integrates core components of The Jackson Laboratory 

(JAX) NCI-designated Basic Science Cancer Center and the JAX In Vivo Pharmacology 

and Clinical Lab Services together with laboratory resources and the clinical research 

program of the NCI-designated UCD. The platform is designed to dynamically engage 

external institutions, investigators, additional organizations and pharmaceutical partners as 

appropriate on project-specific bases. Altogether, over 25 medical centers and other partners 

have participated in the Primary Human Tumor Consortium. Since the launching of the 

program in 2009, more than 1700 tumor specimens from individual cancer patients, 

including over 200 lung tumors, have been xenotransplanted into immunodeficient NOD 

scid gamma (NSG; NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice. Information and data about the 

PDX models are publicly accessible from the PDX portal at the Mouse Tumor Biology 

database (MTB; http://tumor.informatics.jax.org/mtbwi/pdxSearch.do) (24)).

JAX NSG model for Patient Derived Xenotransplantation

The JAX NSG model is of particular interest for PDX development. Lacking functional B 

and T cells and natural killer (NK) cell activity, the NSG mouse is the most 

immunodeficient yet physiologically durable murine model available for consistent 

xenoengraftment of human primary tumors [24]. These attributes of the NSG mouse model 

facilitate engraftment of a wide variety of human cancers, with excellent correlation of 

histomorphological and molecular features between PDX tumors and the original human 

cancers as described below. Ongoing studies at JAX are focusing on optimizing the 

engraftment algorithm, such as use of small biopsy samples acquired through core needle 

biopsy (minimum of 1 mm3 of tissue) and “transportability” of viable patient tumor 

specimens from other institutions. For example, engraftment rates appear similar between 

those specimens acquired locally in Sacramento versus those express-shipped overnight 

from sites across the country.

Integrated Clinical and Genomic Annotation of patient tumor and 

corresponding PDX

The algorithm for PDX creation and analysis following patient tumor biopsy is shown in 

Figure 1. In a synchronized evaluation process, both patient tumors (PTs) and subsequent 

PDXs undergo histomorphologic assessment by a single reference pathologist, biomarker 
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testing through the CLIA laboratory at Response Genetics, Inc., and genomic analysis by 

multiple platforms including gene expression arrays and next generation sequencing. Those 

PDXs of interest, based on molecular subtyping (e.g. EGFR-mutated, KRAS-mutated, 

squamous, etc) are then grouped into panels for subsequent drug testing. Figure 2 

demonstrates how a panel (e.g. EGFR-mutated) is sub-grouped by mutation type, resistance 

mechanism (if known) and clinical annotation (sensitive to EGFR tyrosine kinase inhibitor 

[TKI], de novo resistance or acquired resistance). Patient clinical annotation is tracked (case 

example as shown in Figure 3) to account for all pertinent patient demographics, including 

smoking status, treatment records and timing of PDX creation. Mutational fidelity is 

demonstrated in Table 1 for a representative group of PTs and PDXs characterized for 

EGFR and KRAS mutations and ALK gene rearrangements in a CLIA laboratory 

environment (Response Genetics, INC). (25, 26)

Drug Testing Paradigm

A variety of projects are ongoing testing PDX panels of interest for new drug treatment 

strategies, and to determine mechanisms of resistance and how to overcome them. A 

combination of tumor growth inhibition studies and real-time tumor pharmacodynamics are 

incorporated into each drug testing project. (Figure 4) An advantage of this testing 

paradigm in these is that degrees of responsiveness can be quantitatively measured 

providing a more nuanced assessment of pharmacologic effect of any drug or drug 

combination. Moreover, the availability of an annotated panel of xenografts for a particular 

genetic mutation or histology should increase the likelihood of l discovery of new genomic 

signatures of drug sensitivity and resistance. The use of these models in co-clinical trials is 

of particular interest.

An ongoing pilot study investigating mechanisms of acquired drug resistance in EGFR-

mutated lung cancer, for example, is utilizing a panel of EGFR-mutated PDXs to investigate 

a drug regimen of afatinib with or without cetuximab, using erlotinib and vehicle as 

controls. Results in two PDX models, one in which the host patient proved to subsequently 

be responsive to the afatinib-cetuximab combination while the other patient was 

unresponsive, mimicked the clinical outcomes, as shown in Figure 5. Associated tumor 

pharmacodynamics (Figure 6) illustrates abrogation of multiple signal transduction 

pathways globally mediated by maximal EGFR inhibition in the sensitive model (LG0703), 

in contrast to incomplete EGFR inhibition coupled with compensatory upregulation of 

survival pathways in the resistant model (LG1049). These data suggest that PDX models can 

recapitulate drug treatment outcomes seen in patients from whom the PDXs were derived, 

and that investigations can be designed to increase understanding of underlying biologic 

pathways and to devise strategies to improve effectiveness of therapy. This hypothesis will 

be tested in a future SWOG Phase II/III clinical trial (S1403) comparing afatinib with or 

without cetuximab in the 1st line therapy of patients with EGFR-mutated lung cancer, in 

which selected patients will undergo repeat tumor biopsy at the time of progressive disease, 

for genomic assessment and for PDX creation and drug testing.
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Summary

The integrated preclinical-clinical modeling strategy described here, utilizing a large 

annotated NSG mouse resource of PDX models, provides a novel research tool for drug 

development and for understanding the genomic complexity of of lung cancer. Prospective 

development of PDXs from mutation-specific cohorts of patients treated in a homogeneous 

fashion, such as the planned PDX project associated with the S1403 clinical trial, should 

provide a unique resource for future study. It is anticipated that availability of such an 

annotated resource will assist in optimizing therapeutic strategies and lead to improved 

patient outcomes.
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Figure 1. 
Algorithm of Patient-Derived Xenograft (PDX) Creation. Candidate Patients (PTs) Were 

Identified and Provided Consent for Tumor Collection. After Biopsy, Pleural Effusion Fluid 

Collection, or Surgical Resection, Viable Portions of the Fresh Specimens Were Rapidly 

Transported to the Jackson Laboratories-West Facilities for Implantation Into the NSG 

Mouse Model. Concurrently, Remaining Portions of the PT Specimen Were Fixed and 

Subsequently Characterized and Molecularly Profiled. A PDX Model Was Considered 

“Established” After Demonstrating Growth in Passage 1, After Successful Implantation, 

Development and Transplantation From Passage 0. Histomorphologic Evaluation and 

Molecular Profiling of the PDX Model Was Conducted and Results Compared With the 

Contributing Human Specimen. When PDX Models Reach Passage 2, Cohorts Can Be 

Prepared for Growth Inhibition and Tumor Pharmacodynamic Studies. Abbreviations: CNV 

= copy number variation; FFPE = Formalin-fixed, paraffin-embedded; IHC = 

immunohistochemistry; NGS = next-generation sequencing; NSCLC = non–small-cell lung 

cancer; SNP = single-nucleotide polymorphism.
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Figure 2. 
Panel of Non–Small-Cell Lung Cancer (NSCLC) Patient-Derived Xenograft (PDX) Models 

That Harbor Epidermal Growth Factor Receptor (EGFR)-Activating Mutations. Models Are 

Organized According to Patient Clinical Status at the Time of the Originating Biopsy. 

“Erlotinib Sensitive-Naive” Models Were Acquired Before Treatment With Any EGFR 

Inhibitor; “Primary Resistance” Models Were Derived From Tumors That Showed No 

Clinical Benefit From Erlotinib; “Acquired Resistance” Models Were Derived From Tumors 

That Initially Responded to Erlotinib But Had Progressed at the Time of Biopsy. Models 

Were Also Subdivided According To Those With EGFR Gene Amplification (Upper 

Circle). Additional Information Is Provided in Each Box, Indicating Oncogenic 

Abnormalities of Interest. Abbreviations: AMP = amplification; mut = mutation
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Figure 3. 
Case Example of Clinical Annotation of Patient-Derived Xenograft (PDX) Models. A Large 

Amount of Anonymized, Annotated Patient Information Is Collected From Each Consenting 

Donor on PDX Implantation. This Information Includes Age, Sex, Race, Diagnosis, Course 

of Disease, and Previous Treatment, Known Mutation Status, Confounding Medical Issues, 

Family History of Cancer, Timing of the Establishment of PDX Relative to Treatment, and 

Therapeutic Outcomes. The Figure Shows Estimated Disease Burden of the Patient Who 

Contributed the LG0703 model. As Indicated, the PDX Was Established From a Biopsy at 

the Time of Disease Progression After a Successful Course of Erlotinib. The Patient 

Subsequently Went on to Receive the Combination of Afatinib With Cetuximab, With a 

Durable Response. Abbreviations: Chemo = chemotherapy; P0-3 = Passage 0-3.

Gandara et al. Page 9

Clin Lung Cancer. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Diagram of Experimental Approach to Testing Drug Efficacy in Patient-Derived Xenograft 

(PDX) Models. Tumor Fragments From a Single Passage 2 (P2) Mouse Were Implanted 

Simultaneously Into a Treatment Cohort of NSG Mice. As Tumors Reach 300 mm3, They 

Are Randomized Into Arms and Receive Treatment for the Indicated Number of Cycles. All 

Treated Mice Are Further Observed for an Extended Period of Time or Until the Tumor 

Reached a Terminal Size and Mice Were Euthanized. In Parallel, Pharmacodynamic Studies 

Were Conducted, With Mice Treated for Short Periods (For Instance, 6 or 24 Hours) to 

Examine the Immediate Molecular Effects of Treatment Such as Degree of Target Inhibition 

and Effects on Signal Transduction. Tumors Were Harvested Using a Rapid Resection 

Protocol Designed to Minimize Tumor Ischemia. Abbreviation: PK = protein kinase.
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Figure 5. 
Activity of Epidermal Growth Factor Receptor (EGFR) Inhibitors in EGFR-Mutant Patient-

Derived Xenograft (PDX) Models. The Relative Tumor Growth Inhibition Induced By 

Erlotinib, Afatinib, Cetuximab or the Combination of Afatinib With Cetuximab Was Tested 

in 2 PDX Models Derived From Erlotinib-Refractory Patients Who Subsequently (After 

PDX Biopsy) Were Treated With the Combination of Afatinib With Cetuximab. (A) The 

Patient From Whom the PDX LG0703 Was Derived (See Figure 3) Was Responsive to 

Subsequent Therapy With Afatinib With Cetuximab. This Combination Proved to Be 
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Effective in The PDX Model, Recapitulating the Clinical Results. (B) In Contrast, PDX 

LG1049, Derived From a T790M-Positive Cancer Patient Who Did Not Respond to 

Subsequent Cetuximab With Afatinib Therapy, Exhibited No Significant Response to 

Afatinib With Cetuximab. Again, Clinical Results Were Recapitulated in the Related PDX 

Models. Abbreviations: ANOVA = Analysis of Variance; p.o. = orally; q.d. = once per day.
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Figure 6. 
Comparison of Tumor Pharmacodynamic Effects After Afatinib/Cetuximab in Two 

Erlotinib-Resistant Patient-Derived Xenograft (PDX) Models LG0703 (T790M-Negative) 

and LG1049 (T790M-Positive). (A) LG0703 Untreated, Revealing Intense Signaling 

Through ERK and p38. (B) LG0703 After Treatment With Afatinib/Cetuximab for 24 

Hours, Showing Substantially Diminished MAPK and PI3K-AKT Signaling Concurrent 

With Loss of Epidermal Growth Factor Receptor (EGFR) Phosphorylation. (C) LG1049 

Untreated, Showing Enhanced AKT Activity With Moderate ERK Activity at Baseline. (D) 

LG1049 After Treatment With Afatinib/Cetuximab Showing Minimal Diminishment of 

EGFR Phosphorylation and Signal Transduction, With Compensatory Upregulation of p38. 

Phosphorylation States of Receptors and Signaling Intermediaries Were Measured Using A 

Combination of immunoblot and Kinase Arrays (Data Not Shown, Publication In 

Preparation). Abbreviations: ERK = extracellular signal-regulated kinase; MAPK = 

Mitogen-activated protein kinase; mTor = mammalian target of rapamycin; Mut = mutant; 

PI3K = phosphatidylinositol-3-kinase.
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Table 1

Fidelity between PT and PDX. Abbreviations: PDX=patient-derived xenograft; PT=patient tumor.

Mutational Status

EML4-ALK Fusion
Transcript K-RAS Mutation EGFR Mutation

LG-0476

 PT No translocation Wild type Wild type

 PDX No translocation Wild type Wild type

LG-0481

 PT No translocation Gly12Cys Wild type

 PDX No translocation Gly12Cys Wild type

LG-0703

 PT No translocation Wild type EGFR L858R

 PDX No translocation Wild type EGFR L858R

LG-1193

 PT No translocation Wild type EGFR E19del

 PDX No translocation Wild type EGFR E19del

LG-0812

 PT Fusion-positive Wild type Wild type

 PDX Fusion-positive Wild type Wild type

LG-0552

 PT No translocation Gly12Ala Wild type

 PDX No translocation Gly12Ala Wild type

LG-0567

 PT No translocation Gly12Cys Wild type

 PDX No translocation Gly12Cys Wild type
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