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Abstract 

The advance of next-generation sequencing experiments like Hi-C has revealed that eukaryotic 

genomes are organized into structural units called topological associating domains (TADs). 

Nevertheless, it is clear from visual examination of the so-called chromosomal contact map that 

there are rich sub-structures within TADs. The fine structures may correspond to a multiple scale 

organization.  Here, by deriving a background model that takes into account the effect of the 

differences in coverage as well as the bias introduced by genomic distance, we present a novel 

algorithm, MrTAD Finder, to identify TADs in multiple resolutions. MrTAD Finder is based on the 

concept network modularity, and the resolution is tuned by a single parameter. In a low 

resolution, larger TADs are found whereas in a high resolution, smaller TADs are identified as the 

nucleome is viewed on a finer scale. We further investigated various chromatin features such as 

histone modifications and transcription factors binding within TADs and near TAD boundaries. We 

found that TADs in different resolutions have different chromatin signatures, and their boundaries 

are established by different transcription factors. The observations suggest chromatin structures 

overall have multiple scales. 

 

 

 

  



	

	

3	

3	

Keywords 

3D genome organization, Hi-C, Topological associating domains (TADs), network modularity  

 

  



	

	

4	

4	

Background 

The packing of a linear eukaryotic genome within a cell nucleus is tight and highly organized 

[1][2][3]. The spatial organization of the genome determines the accessibility of certain genomic 

regions and thus regulates effective gene expression. In such an intricate 3D structure, one of the 

most important features is the so-called topologically associating domain (TAD) [4][5]. TADs refer 

to genomic regions that are highly self-interacting, meaning loci within a region interact often but 

interactions between different regions are less frequent. Although TAD emerges as a 

fundamental structural unit of a genome, there are a lot of un-resolved issues [6][7][8]. In 

particular, it has been suggested the existence of alternative domains [9]. More recently, it has 

been reported that TADs exhibit a certain hierarchical organization, meaning a TAD can be 

decomposed into sub-TADs or several TADs can form a bigger domain [10][11]. These studies 

resonates with the observation that chromatin features like histone modifications have multiple 

length scales [12][13], and suggests that the 3D structure of a genome could be viewed in 

multiple resolutions. 

By mapping chromatin proximity in a genome-wide level, the Hi-C technology has 

emerged as a powerful technique to understand the 3D genome organization [14][15]. Results of 

a typical Hi-C experiment are usually summarized by a so-called chromosomal contact map [15]. 

By binning the genome into equally sized bins, the contact map is essentially a matrix whose 

element (𝑖, 𝑗) reflects the population-averaged co-location frequencies of loci originated from bins 

i and j. Mathematically speaking, it is very natural to transform a contact matrix to a weighted 

network in which nodes are the genomic loci (or bins) whereas the interaction between two loci 

(or bins) is quantified by a weighted edge. In this paper, we use the concept of network 

modularity to identify TADs, which are essentially blocks along the diagonal of a contact map. 

The identification of modules, also known as community detection, is an important problem in 

network studies [16]. In its simplest form, it concerns with whether nodes of a given network can 

be divided into non-overlapping groups such that connections within groups are relatively dense 

while those between groups are sparse. By viewing a Hi-C contact map as a network, the highly 

spatially localized TADs immediately resemble densely connecting modules. Motivated by the 
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resemblance, we developed a method to identify TADs in multiple resolutions called MrTAD 

Finder (Mr stands for multiple resolutions). MrTAD Finder goes beyond a direct adaptation of 

community detection by taking into account the effect of genomic distance that are specific in the 

context of genome organization. We applied MrTAD Finder to various Hi-C datasets, arriving at 

TADs in different resolutions. Interestingly, TADs in different resolutions exhibit different 

chromatin signatures. 

 

Results 

Network modularity and the identification of TADs 

The decomposition of modules refers to the problem of partitioning nodes of a given network into 

non-overlapping groups such that connections within groups are relatively dense while those 

between groups are sparse. The identification of modules pretty much follows the same rationale. 

A chromosome of interest is divided into different domains, such that the frequency of contacts 

between loci within domains are dense while interactions between domains are sparse. MrTAD 

Finder approaches the problem using the method of modularity maximization [16]. The essence is 

the so-called modularity function Q which is proportional to the sum 𝑊!" − 𝛾𝐸!"!,! 𝛿!!!! . Here, W 

is an intra-chromosomal binned contact map whereas E is a null model. The function is 

maximized over all possible partitions of bins into a set of domains 𝜎, with a particular choice of 

the so-called resolution parameter 𝛾 (see Figure 1A for a workflow). At the heart of the algorithm 

is the null model E. In the context of network modularity, the most common one is the so-called 

configuration model, in which 𝐸!" ∝ 𝑘!𝑘! , meaning the degrees of nodes (its number of 

connections) are fixed to match those of the observed network but edges are randomly rewired 

[16]. Nevertheless, this simple model cannot be directly applied in the context of domain 

identification. It is because unlike conventional graphs in which the spatial location of nodes is not 

important, bins in the chromosome form a continuous structure. Two loci that are close together 

in a 1-dimensional sense are expected to have a higher contact frequency as compared to two 

loci that are far apart. Taking all into account, given a binned contact map W, say in 40kb, we 

define a new modularity function for TADs identification, with 𝐸!" = 𝑐!∗𝑐!∗𝑓 𝑖 − 𝑗 . Here  𝑐!∗ is an 
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unknown associated with bin i, f represents the average number of contacts as a function of 

distance (in the unit of bin size), which can be estimated by aggregating separately the matrix 

elements corresponding to bins differed by each possible separation 𝑑 = 𝑖 − 𝑗  (see methods). 

Given W, the elements in matrix E can be numerically calculated. For instance, in hES 

cell, in a size of 40kb, we found that in a whole genome level, f can be well fitted by a power-law 

function 𝑓~𝑑!! (see Figure 1B). The decay of contact frequency with respect to the genomic 

distance we observed is consistent with previous estimations done with slightly different binning 

strategies [15]. By estimating f from W, 𝑐!∗ and thus all the elements of the matrix E could further 

be found by solving a set of non-linear equations via a matrix iteration scheme (see methods). 

Figure 1A shows a particular example of contact map W in the hES cell and the corresponding 

null model E. As expected, the null model E exhibits a gradual decrease of contact frequency 

away from the diagonal. Figure 1C shows the enrichment of observed contacts W with respect to 

the null E under a Poisson model. The significantly interacting loci are mostly located near the 

diagonal. They are potentially reflecting regulatory interactions such as promoter-enhancer 

contacts. In general, 𝑐!∗ can be interpreted as an effective coverage of bin i, which is analogous to 

the degree of a node in a network setting (Figure S1).  

 

Identifying TADs in multiple resolutions 

We then applied MrTAD Finder to analyze Hi-C data of hES cell from ref. [4]. Figure 2A shows a 

particular snapshot of the contact map (for chromosome 10) and its alignment with the identified 

TADs. In general, the TADs displayed agree well with the contact map. Of particular interest is 

the choice of 𝛾. As shown in Figure 2A, when 𝛾 increases, a large TAD is broken into a few small 

TADs. On the other hand, large TADs merge together to form even larger TADs as the value of 𝛾 

is lowered. Therefore 𝛾 is referred as the resolution parameter that capture the fine structures in 

domains organization. Statistically speaking, 𝛾 is essentially quantifying to the proportion of the 

expected counts as compared to the observed counts. As 𝛾 increases, only elements close to the 

diagonal contribute positively to the modularity function. Therefore in general, the size of TADs 

decreases (see Figure 2B) and the number of TADs increases (see Figure 2C). For example, 
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when 𝛾=2.25, there are about 2600 TADs in hES cells with a median size of roughly 1Mb. We 

then further compared the TADs identified at different resolutions by MrTAD Finder with TADs 

previously identified in ref. [4]. As quantified by the normalized mutual information (see methods 

for details), TADs identified by MrTAD Finder best match with TADs identified in ref. [4] when the 

resolution parameter is 2.9. In general, unless the resolution is sufficiently small (𝛾 < 1.5), TADs 

called by MrTADFinder are quite consistent with the TADs called in in ref. [4] (see Figure 2D). 

Nevertheless, the introduction of the resolution parameter 𝛾 has broadened previous work on 

domains identification in the sense the algorithm used in ref. [4] focuses on a particular resolution 

instead. Furthermore, it is worthwhile to mention that a higher fraction of the genome is assigned 

to various TADs as compared to the case in ref. [4] (93% average over different resolutions as 

compared to 86%, see Figure S2). 

 

Boundary signatures of TADs identified in different resolutions 

We further investigated the TAD boundaries identified in different resolutions. First of all, we 

found the boundary signatures are generally consistent with the observations previously reported 

[4], for instance, the enrichment of active promoter mark H3K4me3 or active enhancer mark 

H3K27ac, as well as the depletion of transcriptional repression mark like H3K9me3 (Figure 3A). 

Nevertheless, by identifying TADs in a variety of resolutions, we found the previously observed 

signatures change with respect to resolutions (Figure 3B, S3). In general, the enrichment of peak 

density at boundary decreases as resolution increases, indicating that various chromatin features 

appear in the boundaries of low-resolution TADs do not appear in high-resolution TADs (Figure 

3C). Enrichment of histone marks like H3K36me3, H3K4me3 exhibits a monotonic drop whereas 

certain marks exhibit characteristic resolutions. For instance, the enrichment of mark H3K27me3 

remains high up to a resolution of 𝛾 = 2.5 (Figure 3C).  

Apart from histone modifications, it is well known that certain transcription factors like 

CTCF plays an important role in the formation of TAD boundaries [17]. Though factors like CTCF 

have a tendency to bind close to the boundaries (Figure S4), it is not clear whether the 

enrichment is a reflection of direct involvement in boundary formation. In fact, we found that many 
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of the so-called HOT regions [18], genomic regions that are bound by extensive amount of 

transcription factors, are located very close to TAD boundaries (Figure 3D). To examine which 

factors are responsible for establishing the domain border in different resolutions, we employed a 

logistic regression model recently proposed by [19]. The model quantifies explicitly the influence 

of about 60 factors in classifying a set of borders identified by MrTAD Finder versus a set of 

random boundaries (see methods). In general, factors that are responsible for border formation 

are quite consistent across different resolutions (Figure 3E and S5). For instance, factors like 

CTCF, Rad21 and CHD7 are direct driver of border establishment and maintenance, whereas 

factors like MYC have a consistent negative effect. Overall, genomic features like the binding 

signals of a variety of transcription factors are quite successful in predicting the structural 

organization of chromatin (AUC=0.81, Figure S6) [20]. 

 

Chromatin signatures within TADs in different resolutions  

Apart from the boundaries, we investigated various chromatin features along TADs in various 

resolutions (Figure 4A and S7). TADs identified in different resolutions are essentially different 

ways to segment a chromosome. By examining the location of peaks along TADs, we found 

histone marks like H3K4me3, H3K36me3, H3K27me3, H3K27ac, H3K9ac, H3K79me2 etc have 

peaks clustered near the two ends. The observation is generally true for TADs in all resolutions. 

Nevertheless, for low resolution like 𝛾 = 0.5, many histone marks are enriched at the middle, 

suggesting that adjacent TADs are merged. We further examined the peak density of different 

histone marks with respect to 𝛾 (Figure 4B). At the boundary regions, H3K4me3 has the highest 

peak density in low resolution, whereas marks like H3K36me3 and H3K27ac have the highest 

peak density in medium resolutions. Different characteristic marks are observed in the middle 

regions. We then looked at how annotated genomic regions are located along TADs. Figure 4C 

shows the fold enrichment of various Segway annotations [21] along TADs at different 

resolutions. Labels like Dnase3, Gen3 are in general less enriched at high resolutions, meaning 

such features are likely to be absent in the boundaries of high-resolution TADs. Nevertheless, 

there are labels like TSS, PromP that are more consistent with respect to different resolutions. 
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Based on the respective annotation genomic regions, we further divided TADs into different 

classes (Figure 4D), characterized by different expression levels (Figure 4E). The classes further 

echoed with annotation, for instance, the lowly expressed TADs are enriched with 

heterochromatin labels like QUI and CON (Figure 4F) [22]. We repeated the analysis using TADs 

in a higher resolution, but found that the clustering is quite stable (Figure S8).  

 What is the meaning of the multiple levels of segmentation? As TADs are basic units of 

chromosome organization, it is believed that long-range regulatory interactions are likely to be 

within TADs instead of between TADs. We identified the statistical significant contacts based on 

the Hi-C data [23] and examined how many of them appear within TADs. Of course, as the 

resolution increases, the absolute number of links within TADs decreases.  Nevertheless, with 

respect to a null model in which TADs are shuffled, the enrichment of links within TADs actually 

increases for most chromosomes. In particular, in a few chromosomes, a characteristic resolution 

that maximizes the enrichment of within-TAD interactions exists (Figure S9). Besides its 

regulatory role, it has been demonstrated that TADs are stable units in the process of DNA 

replication [24]. Overlaying data from Hi-C and Repli-Seq experiment in IMR90 suggests that 

domains in different resolutions could correspond to sub-units that are replicated in a shorter 

time-scale (Figure S10). 

 

Discussion  

Here, we have introduced an intuitive algorithm to identify TADs based on Hi-C data. By 

introducing a single continuous parameter 𝛾, we are able to further examine the rich structures or 

sub-structures stored in contact maps, and explore the organization of genome in multiple 

resolutions. The concept of resolution could further integrate the observed structures in different 

length scales such as compartment, domains, sub-domains etc.   

A few methods have already been proposed to identify TADs from Hi-C data [25]. One of 

the earliest methods is based on a 1D “directionality index” that captures whether contacts have 

an upstream/downstream bias [4], and later bias is exploited by the so-called arrowhead 

algorithm [26]. However, as intra-chromosomal interactions depend heavily on the distance 
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between interacting loci, it is important to have a proper normalization [25]. MrTAD Finder 

provides such a background model via matrix iteration. Furthermore, in terms of a more detailed 

picture of domains organization, the idea of continuous resolution used in MrTAD Finder is 

distinct in comparison with algorithms based on a bottom-up approach. Such a approach results 

in higher order domains that are organized in a tree structure [10][11].  

 MrTAD Finder is based on the idea of network modularity. Recent studies suggested a 

similar weighted network framework for Hi-C data and identified modules via spectral or other 

clustering methods [27][28]. Although a network perspective of chromosomal interactions has 

previously been proposed [29][30], a lot of widely studied concepts in networks have rarely been 

explored in the context of chromosomal organization. By facilitating the application of a variety of 

graph-theoretical tools, we believe that network algorithms will be useful for future analysis on the 

spatial organization of genome. 

 

Materials and methods 

Hi-C data and their pre-processing 

The Hi-C data of human ES cells and IMR90 cells were generated by ref. [4], which was 

downloaded from GEO with accession number GSE35156. Raw reads were processed using Hi-

C Pro [31], arriving at contact matrices in various bin sizes. In all analysis, the whole-genome 

contact map were iteratively corrected for uniform coverage [32]. Intra-chromosomal contact 

maps were then extracted from the whole-genome contact map of bin size 40kb for downstream 

analysis. Contact maps were all generated by the tool HiCPlotter [33]. 

 

Chromatin Data 

All chromatin data, including histone modifications, transcription factors binding, expression, 

Segway annotation, replication timing, were downloaded from the ENCODE data portal.  

 

Expected null model for an observed intra-chromosomal contact map  

Given an intra-chromosomal contact map W, the expected null model E is defined as 𝐸!" =
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𝑐!∗𝑐!∗𝑓 𝑖 − 𝑗 . f, the average number of contacts as a function of distance d, is assumed to be a 

power-law function 𝑑!!. For each possible value of d, the corresponding matrix elements were 

aggregated. The power-law exponent 𝛾 was estimated using a maximum likelihood approach. As 

a null model, the resultant E matrix satisfies a set of constraints, namely  

𝐸!" =
!

𝑊!"
!

= 𝑐!    ∀𝑖, 

𝐸!" =
!"

𝑊!"
!"

= 2𝑁. 

The first equation means that for each bin i, the coverage 𝑐! defined in the null model is the same 

as the coverage defined in the observed map. The second equation is a direct consequence of 

the first equation, where N is the number of reads mapped in the chromosome. As f can be 

estimated from the observed W, the only unknowns 𝑐!∗ can be solved numerically by an iterative 

matrix procedure. The procedure can be regarded as a generalization of a class of matrix 

balancing methods commonly used for normalizing Hi-C matrices [32][25].  

 

The partition of domains  

MrTAD Finder divides a chromosome into domains using the method of modularity maximization. 

The essence is the so-called modularity function Q, defined as 

1
2𝑁

𝑊!" − 𝛾𝐸!"
!,!

𝛿!!!! . 

Here, W is an intra-chromosomal binned contact map, E is a null model, N is normalization 

constant and 𝛾 is the so-called resolution parameter. The value of the Kronecker data 𝛿!!!! 

equals one if nodes i and j have the same label and zero otherwise, meaning only pairs of bins 

within the same domain are summed. To maximize Q, MrTAD Finder employs a modified version 

of the widely used Louvain algorithm [34].  In a nutshell, the algorithm consists of two passes. 

The algorithm starts as every bin has its own label at the beginning. In the first pass, for each bin, 

the label was updated by either choosing the label of one of its neighboring bins or to remain 

unchanged based on whether or not the value of Q will be increased. When no more update is 

possible, the second pass is performed such that the adjacent bins with the same label were 
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merged to form a new contact matrix. The two passes are repeated iteratively until there is no 

increase of modularity is possible. The result is essentially a particular way to partition the 

chromosome, i.e. to identify a particular set of boundaries. As the result of the Louvain algorithm 

in general depends on the order of updates, multiple runs were performed to ensure robustness 

of the domains identified. A set of consistent boundaries was defined based on the so-called 

boundary score (the fraction of runs a location is identified as a boundary). By default, a cut-off of 

0.9 was used (i.e. a boundary between two adjacent bins is defined as confident only if the two 

bins are called to belong to two different TADs in at least 9 out of 10 trials). TADs were defined as 

the regions partitioned by the set of consistent boundaries. Practically, if 10 trials are used to 

define the boundary score and thus the consensus domains, the results are highly robust (see 

Figure S11).  

 

Quantifying the consistency between two sets of TADs 

Given two sets of TADs, say in different cell lines, or called by different algorithm s, or called at 

two different resolutions, the consistency is quantified by the so-called normalized mutual 

information. Suppose X and Y are two random variables whose values xi and yi represent the 

TAD labels of bin i. The normalized mutual information MInorm is defined as 

𝑀𝐼!"#$ = !!(!;!)
! ! !!(!)

, where H(X), H(Y) are the entropy of X and Y, and I(X;Y) is the mutual 

information quantifying to what extent the partition of TADs in X give the information on the 

partition of TADs in Y. To have a fair comparison, bins that are not assigned to any TADs in both 

sets of partitions are not counted. If two sets of partitions are identical, the value of normalized 

mutual information is 1.  

 

Boundary signatures of chromatin features 

Given the location of binding peaks of a transcription factors or a histone mark, the peak density 

near TAD boundaries was estimated by considering for all boundaries the region from upstream 

600kb to downstream 600kb. The regions were aligned and the number of peaks was summed 

accordingly. To calculate the enrichment, the number of peaks was normalized by the expected 
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number of peaks in a particular region under a null model that peaks are uniformly distributed in 

the genome. 

 The influence of individual transcription factors on the formation of domain borders was 

formulated as a classification problem. For a particular resolution, the set of boundaries called by 

MrTAD Finder was used as a positive set whereas a set of random boundaries obtained by 

swapping the TADs along the genome was chosen as the negative set. The signal values of 60 

transcription factors are used as features for classification. The combined effect of all features 

was modeled the logistic function 

𝑓(𝑋, 𝛽!,𝜷 ) =
𝟏

𝟏 + 𝒆𝒙𝒑 −𝛽! + 𝜷𝑿
, 

here X represents all features, 𝜷 is vector determining the coefficients of influence of all features 

and 𝛽! is a bias parameter. Using the training set, a likelihood function was defined. An optimal 𝜷 

was inferred by optimizing the likelihood function using gradient descent with L1-regularization. 

To have a more accurate estimate, 10-fold cross-validation was performed, and the calculation 

was done with multiple negative training sets.  

 

Chromatin features within TADs 

The number of peaks for each histone mark was counted in every 40kb bin along a TAD, and 

normalized by the average number of peaks in a bin as if peaks are uniformly distributed. For 

analysis in Figure 4A, because TADs are different in length, the peak density profiles are rescaled 

using the MATLAB function imresize. For the analysis based on Segway, we calculated the 

proportion of each class of annotation in each TAD, and performed normalization with respect to 

the corresponding proportion in the whole genome. Significant contacts are estimated using the 

tool Fit-Hi-C [23], in which FDR is set to be 0.01.  

 

Software availability 

Source code of MrTADFinder written in Julia can be downloaded from 

https://github.com/quantum-man/MrTADFinder. 
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Figure Legends 

Figure 1. Workflow of MrTAD Finder 

A) The input of MrTADFinder is an intra-chromosomal contact map W. A null model is obtained 

from W. Given a particular resolution γ; the chromosome is partitioned probabilistically in a way 

such that the objective function Q is maximized. A boundary score is defined after multiple trials 
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for all adjacent bins. Adjacent bins that are robustly assigned to two different TADs form a 

consensus boundary. The output of MrTADFinder is a set of consensus domains bound by the 

consensus domains. 

B) For a contact map W, given a particular distance d, interacting frequencies between loci that 

are separated by the distance d are aggregated. Loci that are close together on average have 

more contacts compared to loci that are far apart. 

C) Enrichment of empirical contacts W with respect to the null model E under a Poisson model. 

For matrix element (i,j), a P-value is estimated by assuming Wij is drawn from a Poisson 

distribution with mean Eij. The significant interactions are located near the diagonal. The 

collection of significant interactions resembles the TAD structures. 

 

Figure 2. Identification of TADs in multiple resolutions 

A) A part of the contact map of the chromosome 10 in hES cell. The greenish triangles below 

represent TADs called by MrTADFinder in three different resolutions. The TADs called agree well 

visually with the contact map. The blue triangles and red triangles represent TADs called in 

human ES cells and human IMR90 cells respectively by ref. [4].  

B) The size of TADs called in different resolutions. The median TADs size decreases from 3 Mbp 

to 300 kbp as the resolution increases from 0.75 to 3.5.  

C) The number of TADs increases as the resolution increases. When 𝛾=2.25, there are about 

2600 TADs in hES cells with a median size of roughly 1Mb. The median size goes down to 300kb 

when the resolution increases to 3.5. The number of TADs called in ref. [4] is marked by the 

arrow.  

D) Comparing TADs called by MrTADFinder with TADs called in ref. [4]. Two algorithms agree 

the most in a particular resolution (γ ≈ 2.875 ). 

 

Figure 3. Boundary signatures in different resolutions 

A) Histone modifications near the TAD boundary regions. The peak density is normalized by a 

null model in which peaks are uniformly distributed.  
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B) Histone modifications near the TAD boundary regions obtained in different resolutions.  

C) Different histone marks show different level of enrichment near TAD boundaries at different 

resolutions. Despite a general decreasing trend, the signal of certain marks likes H3K27me3 

remains flat until a very high resolution.  

D) Enrichment of HOT (high-occupancy target ) and XOT (extreme-occupancy target )regions 

near TAD boundary regions. 

E) The most influential factors responsible for TAD boundary formation at different resolutions. 

Factors with a positive coefficient have a direct effect on border establishment or maintenance, 

whereas factors like MYC has a negative effect.  

 

Figure 4. Chromatin signatures with TADs in different resolutions 

A) Distribution of histone marks across TADs in different resolutions.  

B) Peak density of various histone marks, near the TAD boundaries and near the middle regions, 

at different resolutions.  

C) Distribution of various genome annotation labels along TADs at different resolutions. For each 

resolution, the resultant TADs are divided and scaled into 10 equal bins. Labels like Dnase are 

enriched near the boundary, but the enrichment decreases in high resolutions. Certain labels like 

TSS are more consistent in different resolutions. 

D) Clustering of TADs (γ ≈1.0 ) based on genome annotation, There are three classes of TADs 

(red, blue and green). 	

E) Average expression of the three classes of TADs. 

F) Classes of TADs are signified by different labels: QUI (quiescent domains), CON (“constitutive 

heterochromatin), FAC (“facultative heterochromatin”), BRD (broad expression), SPC (specific 

expression).  

 

Additional Files	

Figure S1. Effective coverage c* the null model of MrTAD Finder. c* is highly correlated with the 

original coverage defined in raw Hi-C data. 
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Figure S2. Fraction of genome assigned to TADs with respect to resolution. In bin size of 40kb, 

over 92% of bins have TADs assigned. The red line shows the respective fraction in TADs called 

in Ref. [4] which does not incorporate the idea of resolution. 

 

Figure S3. B) Histone modifications near the TAD boundary regions obtained in different 

resolutions (an expanded version of Figure 3B).  

 

Figure S4. B) Peak density of CTCF near TAD boundaries obtained in different resolutions. The 

red line shows the same analysis using TADs called in Ref. [4].  

 

Figure S5. The most influential factors responsible for TAD boundary formation at different 

resolutions (an expanded version of Figure 3E).  

 

Figure S6. Using transcription factors binding signals for predicting TAD boundaries. For each 

resolution, a logistic regression model based on transcription factors binding signals was trained 

to classify the TAD boundaries versus a set of random boundaries. The error bars were estimated 

by repeating the analysis using an ensemble of random boundaries. The performance, AUC and 

ACC, decreases as the resolution increases. 

 

Figure S7. Distribution of histone marks across TADs in different resolutions (an expanded 

version of Figure 4A).  

 

Figure S8. Clustering of TADs with γ ≈ 2.875  based on genome annotation. Similar to Figure 

4D, E, F, there are three classes of TADs (red, blue and green), characterized by different 

expression level and annotation labels: QUI (quiescent domains), CON (constitutive 

heterochromatin), FAC (facultative heterochromatin), BRD (broad expression), SPC (specific 
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expression). The order of labels in the heatmap is arranged so as to be the same as the one in 

Figure 4D.  

 

Figure S9. Significant chromosomal links within TADs. 

A) Fraction of significant chromosomal links within TADs in all chromosomes. The fraction 

decreases as resolution increases (the number of TADs increases). The analysis was repeated 

by shuffling TADs along the respective chromosomes (red).  

B) Enrichment of significant links. The enrichment is the ratio between the fraction of significant 

links within real TADs versus the fraction of significant links within randomized TADs. 

 

Figure S10. Relationship between TADs and DNA replication timing. TADs are called for IMR90 

using different resolutions. Signals of Repli-Seq data in various stages of cell cycle and a part of 

the contact map of the chromosome 10 are displayed. The TADs match visually well with the 

replication timing signals. 

 

Figure S11. Robustness of domains. Using the default parameters (10 trials of the modified 

Louvain algorithm and a cut-off of 0.9), the normalized mutual information between two sets of 

called domains agrees extremely well (nMI=0.99).  
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