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Figure 1:

A. The structure of upstream open reading frames. The stop codon for 
a uORF may be located before the CDS start codon. It may also be located 
within the CDS, if the uORF is frame-shifted relative to the CDS (upper and 
middle, respectively). An open reading frame may also utilize the same stop 
codon as the CDS, such that the ORF acts as a 5’ extension of the CDS.



B. The effect of mutation or variation on upstream open reading 
frames. The creation or destruction of an upstream open-reading, may 
result in downstream effect on the rate of translation of the coding sequence.
Change in degree of translation of the coding sequence, may in turn, result 
in change in phenotype, and disease risk.

C. The global space of upstream open reading frames, and within 
that space, the subset of ribosome profiling identified uORFs. 
Ribosome studies by Fritsch et al., Lee et al., and Gao et al., are interpreted 
as a Venn diagram. Pair-wise and three-way intersections between these 
experiments are highlighted, as these uORFs consititute our gold standard 
positive set. The universe of all possible uORFs, is derived from the 
GENCODE annotation, and numbers 1.3 million. Ribosome profiling positive 
uORFs, are used to identify a population of predicted positive uORFs, among 
the set of 1.3 million computationally derived uORFs.

D. The sensitivity and specificity of ribosome profiling, for 
identifying upstream open reading frames. Ribosome profiling studies 
identify a known number of translated upstream open reading frames. 
However, it is unknown how this number compares, to the total number of 
translated upstream open reading frames. It is possible that ribosome 
profiling studies have a high false positive rate (top), or a high false negative
rate (bottom). We make the assumption that ribosome profiling studies have 
a high false negative rate for identifying translated upstream open reading 
frames (high specificity).

E. The frequence of uORF ATG start codons, and near-cognate start 
codons, from ribosome profiling experiments. Frequency is given both 
for the overall frequency of start codons (union), and uORFs that are 
translated in more than one experiment (intersection).







Figure 2:

A. Methodology for distinguishing positive from unlabeled uORFs. 
Computationally derived uORFs and ribosome profiling identified uORFs, 
represent unlabeled and positive examples respectively. Attributes of these 
positive and unlabeled uORFs are extracted. The positive and unlabeled 
examples are used to train a machine learning algorithm. The machine 
learning algorithm assigns a score all computationally derived uORFs. A 
threshold on this score, yields positive and negative uORFs.
B. Distributions of attributes for positive and unlabeled uORFs. The 
attributes of uORF, are used to distinguish positive from unlabeled uORFs. 
Attributes like the sequence conservation (GERP score), and tissue mRNA 
expression (GTEX Expression - Liver), have different continuous distributions 
for the unlabeled uORFs, compared to the positive uORFs. These continuous 
distributions, can be discretized and optimized for machine learning, using 
the minimum description length principle (MDLP) binning algorithm. 
Horizontal lines on the plot correspond to these binning intervals. The 10 
attributes with the greatest difference in distribution (largest kolmogorov 
smirnov statistic) between positive and unlabeled uORFs are shown.
C. Upstream open reading frame attributes as classifiers, ranked. 
The Kolmogorov Smirnov (KS) test provides an index for distinction between 
positive and unlabeled attributes. Attributes are ranked, according to the 
difference in distribution between positive and unlabeled attributes, using 
the KS statistic. The KS statistic thus provides an index for the utility of 
attributes in distinguishing between positive and unlabeled uORFs.



Figure 3:

A. Score distributions for upstream open reading frames, according 
to category determined via ribosome profiling. Score distributions for 
[a] and unlabeled uORFs, that are identified computationally, through a 
comprehensive scan of the GENCODE annotation, but are not found 
translated in any ribosome profiling experiment (top), [b] positive ribosome 
profiling uORFs, that are positively identified in two or more ribosome 
profiling experiments (middle), and [c] neutral ribosome profiling uORFs, that
are identified in only a single ribosome profiling experiment, and are so 
witheld from both the positive and the unlabeled sets (bottom).



B. ROC curves gauge performance of the machine learning 
algorithm. The machine learning algorithm was trained on two of the three 
ribosome profiling data set, and then used to extract the third data set from 
the unlabeled data set. The ROC curve is shown for each of the three 
combinations 1. Train Lee et al. and Fritsch et al. – extract Gao et al. (AUC = 
0.79), 2. Train Lee et al. and Gao et al. – extract Fritsch et al. (AUC = 0.77). 3.
Train Fristch et al. and Gao et al. - extract Lee et al. (AUC = 0.82).
C. Positively identifed uORFs from the computational set, and 
ribosome profiling experiments. Of the computationally derived uORFs 
extracted from the GENCODE annotation, approximately 180 000 are 
predicted as active upstream open reading frames. These are the upstream 
open reading frames that are predicted to undergo translation. This large set,
includes 72% of the uORFs identified in the ribosome profiling experiment of 
Gao et al., 71% of the uORFs identified in the experiment of Lee et al., and 
70% of the uORFs identified in the experiment of Fritsch et al.
D. The frequence of uORF ATG start codons, and near-cognate start 
codons, for predicted positive upstream open reading frames. 
Frequency is given both for the overall frequency of computationally derived 
uORFs from GENCODE (computational), and for the subset of 
computationally derived uORFs that are predicted to be translated (predicted
positive).





Figure 4:

A: Density matrix, showing the distribution of 1000 genomes 
variants, interrupting postively scored uORF start codons. The 
vertical axis displays the reference start codon, the horizontal axis shows the
interrupting variant (position – 1,2,3 – and codon – A,T,G,C).
B: Density matrix, showing the distribution somatic mutations found
in tumor samples (Alexandrov et al.), interrupting positively scored 
uORF start codons. The vertical axis displays the reference start codon, 
the horizontal axis shows the interrupting variant (position – 1,2,3 – and 
codon – A,T,G,C).
C: Ratio of all uORFs interrupted by start-codon destroying mutants 
(Alexandrov et al.), to positively scored uORFs interrupted by start 
codon destroying mutants, according to cancer type.
D: GO/PANTHER terms, for statistically overrepresented genes with 
uORF start codons interrupted by somatic variants in tumor samples
(Alexandrov et al.). The size of each node, corresponds to the number of 
uORFs associated that GO term. Thresholds were established to eliminate 
relatively common GO terms (>1250 associated uORFs), and relatively 
uncommon GO terms (<250 associated uORFs). This was done, in order to 
produce a network structure that is neither too general, nor too specific. 3 
principle networks emerge a) tissue morphogenesis b) immune function c) 
apoptosis. Networks were developed using the statistical package BiNGO, 
and include adjustment for multiple testing.
E: The standardized change in protein level for a given gene, 
between wild type individuals, and individuals with uORF start 
codon interrupting variants. This difference in protein level is shown for 
different ratios of variant possessing individuals (+/-, -/-) to wild-type 
individuals (+/+). Larger numbers of individuals with the variant allele, allow 
for larger statistical power, in calculating the effect of the variant on protein 
level.
F: rQTLs (Battle et al. 2015) interrupting uORF start codons, 
according to the score of the corresponding uORF. rQTLs are more 
likely to be associated with a positive scoring uORF.
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Abstract

Upstream open reading frames (uORFs), are associated with translational 
regulation of downstream coding sequences. The translation of a uORF latent
in an mRNA transcript, is thought to modify the translation of coding 
sequences in that same transcript, by modifying ribosome localization. Not 
all uORFs are thought to be active in such a process. It represents a 
challenge to estimate the impact and scope of the role uORFs play in 
regulation of translation.

We use the GENCODE annotation of the human genome, to circumscribe the 
universe of all possible translated uORFs. This universe includes over one 
million unique uORFs. We compare patterns of structure in these uORFs, to 
the structure of uORFs labeled as translated in experiment. This comparison 
allows us to catalog a population of uORFs that likely undergo translation. It 
is a substantially larger catalog of uORFs, than has previously been 
associated with active translation. It suggests the translation of uORFs, is a 
widespread phenomenon, with considerable impact on the translational 
landscape.

Our catalog of uORFs, allows researchers to test their hypotheses regarding 
the role of upstream open reading frames, in health and disease.

Intro

Upstream open reading frames (uORFs) consist of a start codon in the 5' 
untranslated region of a gene (UTR), and an associated stop codon appearing
before the stop codon of the main coding sequence (CDS). The uORF may 
begin and end before the main gene coding sequence. Alternatively, if the 
upstream reading frame is out of frame with the CDS, it may overlap with the
CDS [Figure 1.A]. uORFs are latent in mRNA transcripts, and may undergo 
partial or complete translation.

Initial survey of the human genome, identified uORFs contained in 
approximately 10% of mRNA transcripts (1). More recent analyses broaden 
estimates of prevalence, with identification of uORFs in association with 
nearly half of all mRNA transcripts (2). The discovery that many uORFs utilize
near-cognate start codons, rather than the canonical ATG start codon, has 
broadened estimates of uORF prevalence still further (3–6).

Study of uORF translation and function, was historically limited to the 
experimental evaluation of individual uORFs (7,8), with no genome-scale 
approach to identifying translated uORFs. The advent of ribosome profiling 
studies, has allowed for the identification of a large population of uORFs 
known to undergo translation (4,9,10). Ribosome profiling studies that arrest 
the ribosome at translation initiation, allow for the identification of 



translation initiation sites to within a few nucleotides. This mapping of 
translation initiation is sufficient for association between ribosomes and 
particular start codons and reading frames (11–13).

At the same time as ribosome profiling studies have allowed for large-scale 
identification of upstream open reading frames, there has been expansion in 
knowledge of the functional role of uORFs. Upstream open reading frames, 
have generally been thought to suppress translation of downstream genes
(8,14–18). The molecular mechanisms for modification of translation are 
varied, and include leaky-scanning of uORFs by ribosomes, translation 
reinitiation subsequent to uORF translation, and ribosome-stalling on uORFs. 
These mechanisms have been uncovered in some detail (3,19,20). Apart 
from increases and decreases in a single protein product, differential 
translation of multiple protein products may occur in consequence to a uORF
(21). There may even be additional direct effect of translated products 
between uORF and CDS, as has been observed in dual-coding genes (22)

From these studies, it is important to note, that a uORF may increase 
translation of the downstream CDS or decrease translation of the 
downstream CDS, according to genomic and epigenomic context. Related to 
a differential effect of uORFs on CDS translation, depending on context, the 
study of translation in stress conditions, has revealed a differential function 
for uORFs in stressed cells, compared with non-stressed controls (23–28).

Interest in the study of the function of upstream open reading frames has 
also increased related the discovery of short open reading frames, encoding 
short functional peptides. These functional peptides from short open reading 
frames, may be differentiated from upstream open reading frames: uORFs 
are thought to have primarily regulatory control (29–31). However, it is a 
strong possibility that many upstream open reading frames, once thought to 
only have regulatory impact, will be re-evaluated for the possibility that they 
encode functional protein products.

Discovery of the function of uORFs, is predicated on identification of
uORFs that are translated. For this reason, we took interest in the 
identification of translated uORFs in humans. Ribosome profiling 
experiments are the current standard for genome-wide 
identification of translated upstream open reading frames. However,
the performance of these experiments at this identification task, is 
not well characterized.

A comparison of the ribosome profiling experiments, of three 
independent groups of researchers – Lee et al. 2012, Fritsch et al. 
2012, and Gao et al. 2014 – reveals that the number of uORFs co-
identified between these experiments is relatively low. Pairwise 
intersections are 12.2% (Gao ∩ Fritsch), 9.2% (Gao ∩ Lee), and 9.8% 
(Lee ∩ Fritsch). The number of uORFs co-identified between all three



sets, represents only 3.3% of uORFs identified in these studies 
[Figure 1.C.].

This result highlights an important ambiguity. The sensitivity and 
specificity of ribosome profiling for identifying translated upstream 
open reading frames, is uncertain.

It is possible that ribosome profiling experiments are sensitive at 
identifying translated uORFs. Under this assumption, there are 
relatively few translated uORFs. Those uORFs identified in multiple 
studies, most likely represent true positive examples. Many uORFs 
labeled in ribosome profiling experiments are false positives, and 
there is a low false negative rate.

Alternatively, it is possible that ribosome profiling experiments have
high specificity in identifying translated uORFs. From this 
perspective, the large majority of the uORFs identified through 
ribosome profiling experiments are truly translated. It follows that 
there exist a large number of translated uORFs, that are not 
identified by ribosome profiling experiments – a high false-negative 
rate.

We proceed on the assumption that the total universe of translated 
upstream open reading frames, is much larger than that identified 
through ribosome profiling experiments. In other words, we assume 
ribosome profiling experiments are sensitive in identifying 
translated uORFs, with a high false-negative rate [Figure 1.D.].

Researchers have recently explored this assumption in the model organisms 
Arabidopsis thaliana and Saccharomyces cervisiae. In these studies, 
ribosome profiling data is used to predict translated uORFs that are not 
identified experimentally (32,33). In humans, patterns of ribosome profiling 
occupancy have been used to maximize the number of inferred translation 
products identified in ribosome profiling experiments (34,35). These areas of 
study have proven productive. In these non-human and human studies, likely
translated CDSs and uORFs are identified, numbering in the thousands.

For our investigation of the prevalence of translated upstream open reading 
frames in humans, we began by performing a computational scan of the 
GENCODE genome annotation (36). We searched for uORFs associated with 
protein coding genes. All the possible uORFs beginning either with ATG, or a 
near-cognate start codon, were identified (all single nucleotide variants of 
the canonical ATG). This scan yields a universe of all possible uORFs, 
numbering nearly 1.3 million.

We do not expect that all uORFs identified in a genome-wide scan are 
functional. For this reason, we sought means to separate translated uORFs, 
from uORFs with a low chance of translation. In order to effect this 



identification of functional uORFs, we studied the human ribosome profiling 
experiments of three research groups – Lee et al. 2012, Fritsch et al. 2012, 
and Gao et al. 2014 (11–13). Each of these three experiments uses 
translational inhibitors that arrest the translating ribosome at the first 
peptide bond. This arrest of translation at initiation, allows for the 
identification of translated upstream open reading frames to high precision.

uORFs in our computational set, that displayed considerable similarity to 
known translated uORFs, we predicted to be translated and functional. We 
validate our predicted uORFs, using statistical analyses, and by examining 
the effect of individual genotype, on parameters related to uORF translation: 
protein level, and ribosome occupancy at the uORF.

Following examination efficacy of our method, we demonstrate biological 
applications of our large set of predicted uORFs. Specifically, we use the 
predictions we generate, to measure the functional impact of somatic 
mutations affecting uORFs, in tissue-matched tumor samples (37). We also 
provide a baseline for the functional consequence of uORFs, using the 1000 
Genomes project's database of human variation (38) and the NHGRI-EBI GWAS 
catalog (39).

The set of uORFs that we predict are likely translated and functional, extends
scope far beyond those identified in ribosome profiling experiments. Through
our study, we predict that there exist many thousands of translated, 
functional uORFs, that have not yet been annotated accordingly. We provide 
a resource of predicted translated uORFs, for other scientists to use in their 
effort to understand uORF function in health and disease.

Methods:

Extracting uORFs from GENCODE:

uORFs were extracted from the v19 of the GENCODE annotation of the 
human genome(36). uORFs were defined as a start codon within the 5’UTR, 
and a downstream stop codon before the end of the CDS. All three possible 
reading frames were examined. ATG, and near cognate start codons were 
included in this search [ATG, TTG, GTG, CTG, AAG, AGG, ACG, ATA, ATT, ATC].

Ribosome profiling experiments as a reference set:

The ribosome profiling experiments of Lee et al. (2012), Fritsch et al. (2012) 
and Gao et al. (2014), were used to obtain an experimentally validated set of
translated upstream open reading frames [Figure 1.C]. These studies identify 
translation initiation sites (TIS), through treatment of human cell lines with 
antibiotic translation inhibitors. These treatments reliably halt translation, in 
predictable proximity to the start codon (12-13 nucleotides downstream). As 
such, these experiments provide us with high resolution information about 
translation initiation sites in the human genome.



We employed the read alignments and identification of the translation 
initiation sites, as provided by these three groups of researchers.  Each group
ultimately expressed their results as positional coordinates for uORF start 
codons, with corresponding transcripts identified by RefSeqID. We mapped 
the RefSeqIDs provided in these papers, to corresponding GENCODE Ensembl
IDs. This mapping provides position information in the global positioning 
coordinates of the GENCODE annotation.

The cell lines, treatment protocols, and TIS identification mechanism 
employed by each of these three research groups is summarized in Methods 
Supplement.

Literature review of translated human uORFs:

In addition to ribosome profiling studies, confirmed translated uORFs were 
obtained from the biomedical literature (8,40,41). uORFs studied in humans 
that displayed functionality (demonstrated regulation of the CDS product) 
were added to the set of positive uORFs. In total, 33 uORFs, associated with 
33 separate genes, were included from this literature review.

Cleansing the data set, by removal of N-terminal extensions and aTISs, and 
isolation of unique transcript IDs:

Reading frames labeled as uORFs in experiment, but without a stop codon 
before the stop codon of the CDS, contain the complete CDS sequence. 
These N-terminal extensions of the CDS sequence, may have some of the 
functional activity of the primary gene protein product, and were removed 
from the data set. In addition, any uORF start codon that is annotated as an 
alternative translation initiation sites (aTISs) for the CDS, was also removed 
from the data set.

Multiple transcript IDs, may share identical chromosomal coordinates. In 
order to avoid over-counting, only one transcript ID was included for a given 
set of chromosomal coordinates. This selection was made randomly, from 
among transcripts with identical chromosomal coordinates.

Positive, neutral, and unlabeled data sets:

uORFs were divided into three separate sets, according to their experimental
translation status:

Positive: uORFs identified as translated in two or more ribosome profiling 
experiments, or through literature review.
Neutral: uORFs identified as translated in not more than one ribosome 
profiling experiment.
Unlabeled: uORFs that were not identified as translated in any ribosome 
profiling experiment, or through literature review.



Extraction of attributes associated with uORFs:

In order to determine what features make a uORF more likely to be 
translated (classified as positive), feature data was extracted for each uORF. 
The features chosen cover a broad range of categories of data, 
including features associated with uORF structure (e.g. uORF 
length, % A/T/G/C base content, start codon), uORF evolutionary 
conservation (e.g. GERP score, SNP content / length), and the 
genomic context of uORFs (e.g. mRNA expression level, Kozak start 
codon context, distance between CDS and uORF). 89 features were 
used. A complete listing of these features, including details relating 
to the extraction and calculation of each feature, is included in 
Methods Supplement.

Feature discretization:

The minimum description length principle (MDLP) algorithm was used to 
discretize each of our chosen attributes (42). The MDLP algorithm discretizes 
data, while optimizing bin size according to an information theoretic 
principle. In choosing between two locations for a possible cut point in the 
data, the MDLP process selects the location that minimizes disruption of 
pattern in the continuous data. Maintaining pattern corresponds to 
maximizing information content retained in the discretization. The result is 
optimal number and spacing of bins. MDLP discretization was implemented 
using the ‘discretization’ package available for R (http://cran.r-
project.org/web/packages/discretization/index.html).

Prioritization of feature data:

For each included feature, the distribution for that feature was compared 
between positive and unlabeled uORFs. This comparison was completed 
using the kolmogorov-smirnov (KS) statistic. A greater KS statistic, indicates 
a greater difference between the distributions for that feature. The KS 
statistic was thus used as a proxy for the ability of that attribute, to 
distinguish between positive and unlabeled features.

Classifying uORFs, according to attributes:

Using discretized feature data, the probability distribution for each attribute 
was used to distinguish between positive uORFs and unlabeled uORFs. For a 
given uORF, we determined if the attributes of that uORF were consistent 
with a translated uORF, according to the following algorithm:

Ppos∏i={1...89}p(Ai|pos) == ppos

Pneg∏i={1...89}p(Ai|unl) == pneg

http://cran.r-project.org/web/packages/discretization/index.html
http://cran.r-project.org/web/packages/discretization/index.html


With

Ppos = 0.61
Pneg = 1 = Ppos

Ppos is the prior probability associated with positive uORFs. Ppos is chosen as 
the f-statistic maximizing value seen in cross-validation (0.61). Pneg is the 
prior probability associated with negative uORFs. Ai is the value of a given 
attribute, such that p(Ai|pos), and p(Ai|unl) represent the frequency of that 
attribute value among the positive, and unlabeled sets respectively. ppos 
represents the probability the uORF is positive. ppos represents the probability
the uORF is negative. This formulation corresponds to a Naive-Bayes 
machine learning algorithm applied to positive and unlabeled examples (43).
We note likely violation of the feature independence requirement of 
Naive-Bayes. However, empirical and theoretical study has 
demonstrated optimal classification performance, even where 
feature independence does not hold (44,45).

Model validation:

To validate our model, we serially trained our model on two of three ribosome
profiling data sets. Following this training, we used the model to extract 
uORFs only identified in the witheld third ribosome profiling data set, from 
among the unlabeled examples. The accurate classification of ribosome 
profiling data using this method, would suggest that ribosome profiling 
experiments have a high false-negative rate, and a low false-positive rate. 
The success of these differentially trained models, is expressed as ROC 
curves, with area under the curve (AUC) calculated for each curve.

As a measure of the biological significance of the uORFs we identify, we 
examined how natural variation affecting our predicted translated uORFs, 
alters protein level and ribosome localization in humans. Protein levels and 
local ribosome quantitative trait loci (cis-rQTL), were obtained from the 
ribosome profiling and proteomic experiments of Battle et al. 2015 (46). 
Individual genotype information is available from the 1000 Genomes project, 
for 47 individuals in the Battle et al. study. Changes in protein level and 
ribosome localization, as a function of natural variation affecting uORFs, 
suggests the biologic validity of our predictions.

Natural variation affecting predicted positive uORFs:

The impact of variation on uORF start codons was of interest, as the impact 
of variation altering a start codon is relatively predictable. Uncertain 
significance of uORFs as protein products, makes other structure-function 
relationships less straightforward. Natural variant SNPs affecting the start 
codons of predicted positive uORfs, were obtained from the 1000 Genomes 



project. The subset of these SNPs, that are associated with differential 
disease susceptibility, are identified through search of the NHGRI-EBI GWAS 
database. Also, measurement of comparative frequency of mutation among 
uORF start codons, is used to examine differential evolutionary conservation 
and functional significance.

Cancer mutation affecting predicted positive uORFs:

The study of Alexandrov et al. 2012 (37) provides a set of exomic somatic 
mutations according to patient sample, and cancer type. We employed the 
start codons of our predicted positive uORFs, to uncover possible cancer 
mutation, altering uORF function. This allowed for estimation of the 
frequency with which uORFs are impacted in cancer, according to cancer 
type and according to uORF start codon. Patterns of function in genes 
affected by mutation of uORFs in cancer, was assessed via the GO genome 
annotation database (47). Overrepresented GO terms were identified, with 
overrepresentation assessed via the hypergeometric statistical test, with 
multiple testing correction via Benjamini & Hochberg's FDR correction (48). 
Networks between GO terms, were constructed using the Cytoscape package
BiNGO (49).

Results:

The search of the GENCODE genome annotation, for the universe of all 
possible uORFs, yielded 1 270 265 unique uORFs. Within this large set, we 
isolated the subset of uORFs found to be translated in the studies of Lee et 
al. 2012, Fritsch et al. 2012, and Gao et al. 2014 [Figure 1.C]. We further 
stratified this set of translated uORFs, according to shared representation of 
uORFs among the three studies. uORFs identified in the intersection between
two or more of these studies, were used as the reference standard for 
translated uORFs. This intersection also helps to control for possible false 
positives, and to control for differences in experimental procedure and tissue 
specificity (HEK293 vs. THP-1). Literature review, yielded 33 additional 
examples of translated uORFs, that were also included in the set of positive, 
translated uORFs.

Overlap between the three ribosome profiling experiments was found to be 
low, with pairwise intersections of 12.2% (Gao ∩ Fritsch), 9.2% (Gao ∩ Lee), 
and 9.8% (Lee ∩ Fritsch), with the number of uORFs shared between all three
sets representing only 3.3% of uORFs identified in these studies.

The relative representation of start codons identified in ribosome profiling 
experiments, is noteworthy for the prevalence of both CTG (28.2%) and ATG 
(46.1%) start codons. These start codons represent the majority (74.3%) of 
start codons found in these ribosome profiling studies. In intersection 
between ribosome profiling studies, CTG (30.5%) and ATG (34.6%) continue 



to represent the majority of start codons (65.1%) [Figure 1.E.]. 
Representation of every near-cognate start codon was found in intersections 
between studies, with the exception of AAG and AGG.

We next followed the procedure outlined in Figure 2.A, in an effort to isolate 
uORFs that are likely to be translated, from those identified via genome-wide
scan. Distributions of attributes for positive, translated uORFs, were 
compared with distributions of those same attributes as observed in the set 
of unlabeled, computationally derived uORFs [Figure 2.B.]. Differences in 
these distributions between positive and unlabeled examples, suggest that 
the attribute is of greater utility in identifying translated uORFs. The KS 
statistic and corresponding p-value, for each of the 89 attributes assessed in 
this study, is provided in Table 2. The top 10 attributes, listed according to 
magnitude of KS statistic, are given in Figure 2.C.

This relative utility among attributes for distinguishing translated 
uORFs, reveals several notable structure-function relationships. The
particular start codon employed by the uORF is important, with ATG 
suggesting the greatest functional significance. Interestingly, the 
clustering of large numbers of start codons in the uORF, appears to 
increase the likelihood that a uORF is translated, as does a shorter 
positioning between the uORF and the CDS. High GERP evolutionary 
conservation scores for the start codon and stop codon of the uORF 
are also useful predictors. mRNA expression level for the transcripts
holding the latent uORF, showed great importance. However, this 
result must be considered in the context of high expression level 
transcripts, having proportionately higher representation in 
ribosome profiling experiments.

The discretized attributes of positive and unlabeled sets of uORFs, were used
to build a statistical classifier, within a Naive-Bayes framework. This classifier
predicts translated uORFs, through examination of the totality of attributes 
associated with an individual uORF.

The result of application of the classifier is shown in figure 3.A. The 
percentage of positive examples, that are ultimately retained as likely 
translated is 76.8% [590/768], 67.1% of neutral uORFs are classified as likely
translated [2379/3543], and 14.7% of unlabeled uORFs are likely translated 
[185833/1265954]. The overall number of uORFs classified as likely 
translated, is 188 802, representing 14.9% of computationally identified 
uORFs [188802/1270265]. 75.5% of predicted positive uORFs lie entirely 
upstream of the CDS, throughout their length. 25.5% of predicted translated 
uORFs are out-of-frame with the CDS, and overlap with the CDS.

Predicted functional uORFs, are ranked according to probability of 
translation. This ranking allows for provision of a top 10% of likely translated 



uORFs. This more demanding threshold, is useful in highlighting the most 
reliable predictions. A complete list of upstream open reading frames 
identified as likely translated, is provided in Results Supplement. The 10% 
highest probability examples are also specified.

As validation of our technique for distinguishing between positive and 
unlabeled upstream open reading frames, we serially excluded one of the 
three ribosome profiling experiments from the positive training set, including
that set among unlabeled examples. Retrieval of the excluded set, then 
functions as a measure of the accuracy and generalizability of our method. 
The result of this validation procedure is shown in Figure 3.B. The ROC curve 
for the retrieval of each ribosome profiling set is given. The AUC for each of 
these ROC curves, is similar. 0.82, 0.79, and 0.77 for the retrieval of Lee, 
Gao, and Fritsch uORFs respectively. A subtle but important result related to 
this validation, is the suggestion of a high false-negative rate for ribosome 
profiling studies. Namely, predicted positive examples based on a limited set 
of studies, reflect those examples that additional experiments would 
ultimately identify to be translated.

The proportion of uORFs ultimately identified as positive from each ribosome 
profiling study, is shown in Figure 3.C. The results were similar for each of the
ribosome profiling experiments, at approximately 70% in each case (72% of 
Gao, 71% of Lee, 70% of Fritsch).

The distribution of start codons for predicted translated uORFs, in 
comparison to the computational set, is shown in Figure 3.D. There are a 
large number of CTG start codons in the computationally derived set 
(19.3%), and the greatest number of predicted positive uORFs are also 
initiated with a CTG start codon 11.8%. ATG has a lower comparative 
prevalence in both the computationally derived set and predicted set (6.7% 
and 8.2% respectively).

Figure 4.A shows the frequency with which predicted positive uORF start 
codons are altered by 1000 Genomes Project germline variants. The results 
are normalized by population start codon frequency. The ATG start codon is 
relatively conserved among start codons, suggesting functional importance. 
It is rarely interrupted by human variants (relative rate (RR) 0.03). The CTG 
start codon, although more prevalent among predicted positive uORFs, is 
altered relatively frequently by natural human variants (RR 0.52).

GWAS SNPs listed in the NHGRI-EBI GWAS database, that impact our 
predicted uORFs are listed in Table 3. These disease associated SNPs, may 
owe their functional consequence to alteration of a translated uORF.

An analysis of the alteration of predicted positive uORFs, was applied to 
somatic mutations across cancer types. This analysis is shown in figure 4.B. 



CTG is the most commonly modified start codon in these combined cancers. 
ATG is interrupted at a RR of 0.25 in comparison to CTG. The higher RR of 
interruption of both ATG and CTG in cancer as compared to germline variants
– 8 fold higher, and 2 fold higher respectively – further suggests functional 
consequence attributable to these uORFs.  Exomic cancer mutations 
breaking the highest scored uORFs, are listed in Table 4.

In order to evaluate the frequency with which uORFs are interrupted by 
mutation in cancer, the proportion of positive uORFs interrupted by mutation 
was calculated for each cancer type. This analysis is shown in Figure 4.C. 
This proportion of positively scored uORFs to negative scored uORFs, is near 
consistent across cancer types, ranging from a low of 8:1 for acute 
lymphoblastic leukemia, to a high of 20:1 for pancreatic cancer. The between
group differences for interrupted predicted translated uORFs are significant 
(chi-square = 45, p-value = <<0.001). A pilocytic astrocytoma may rely to a 
greater extent on altered uORFs for survival, than B-cell lymphoma, or breast
cancer. 

Networks of GO terms were constructed, for genes associated with the 
mutation of predicted translated uORFs in cancer [Figure 4.D.]. Three 
networks of overrepresented GO terms remain, following correction for 
statistical significance and multiple testing. These are networks associated 
with cellular functions of probable significance in cancer -- cellular death, 
immune modulation, and tissue morphogenesis. Lack of response to 
apoptotic signaling, and immune tolerance, are well known mechanisms that 
cancer cells prolong survival. The alteration of genes involved in tissue 
morphogenesis, may relate to the poor tissue differentiation exhibited by 
cancer cells that is integral to tumor grading schemas.

As further validation of the biologic significance of our predictions, we 
explored the effect of human germline variation, on measured local ribosome
occupancy, and on protein level from downstream protein coding genes. The 
results of Battle et al. 2015, and genotype information from the 1000 
Genomes project, provide the basis for this natural study. Both protein level 
and ribosome occupancy, if affected by alteration of a predicted translated 
uORF alteration, suggest the functional significance of that uORF.
 
47 individuals were assessed for the effect on protein level, of variants 
altering predicted translated uORFs. For those genes where this natural 
experiment provides close to the ideal assignment ratio of 23 individuals per 
group, we a see a definite trend to decreased protein levels [Figure 4.E.]. This
decrease is statistically significant.

Known cis-rQTLs provide an inventory of variants with statistically significant 
effect on local ribosome occupancy. There is significant enrichment for rQTLs 
interrupting positively scored start codons as compared with negatively 
scored start codons [Figure 4.F.]. While the effect we would expect due to 



random mutation is 14.9%, we observe that 48% of these rQTLs (21/44) 
interrupt positively scored start codons -- a 3x higher rate. This indicates that
many rQTLs, may measure the direct effect of disruption of translated 
uORFs.

Both our results for protein level, and for ribosome occupancy, suggest that 
our predictions have validity, and measurable functional impact.

Discussion:

In this study, we are able to identify 188 802 likely translated upstream open
reading frames, from a global set of 1 270 265 unique uORFs identified in the
human genome. We highlight the 10% of our predictions that are 
most likely to be translated, as a high reliability subset.

We began with the assumption that ribosome profiling experiments 
have a high false negative rate for identification of translated 
upstream open reading frames. The low overlap between ribosome 
profiling experiments suggests this possibility. Furthermore, the 
finding that pairs of ribosome profiling experiments, may be used to
correctly identify the uORFs translated in a third experiment, also 
suggests a high false negative rate. The number of uORFs we 
identify as likely translated is consistent with these observations, 
but remarkable in comparison to other studies on the topic. This is 
true even for our 10% highest quality predictions.

An estimate for the number of translated uORFs can be made, using 
the mathematical framework developed for mark and recapture 
experiments of population ecology. If independent ribosome 
profiling experiments -- such as those of Fritsch et al. 2012, Lee et 
al. 2012, and Gao et al. 2014 -- represent a resampling of the same 
population, we can use the repeat identification of uORFs among 
these experiments, to estimate the total number of translated 
uORFs. This procedure yields an estimate of approximately 10 000 
functional uORFs in the human genome, using the Schnabel or 
Schumacher and Eschmeyer equations (50,51).

However, these estimates rely on a fixed population, without 
distinction among members of the population. Translation of uORFs 
may vary according to cell-type and environmental condition. 
Furthermore the structure and context of a given uORF -- including 
start codon, base composition, and relative position to the CDS – 
likely contribute to varying degrees of affinity to translation, among 
translated uORFs.



Related to the differential translation of uORFs among cell-types and 
environmental conditions, our study applies the intersection of three 
ribosome profiling studies, to form a reference set of known translated 
uORFs. This intersection provides some control against tissue specific results 
(both human embryonic kidney, and human monocytic cell lines were 
examined). It also provides some control against differences experimental 
condition and protocol. However, this method may discount the functional 
significance of uORFs that are translated in cell-type specific fashion, or only 
under specific cellular conditions.

Just as protein levels vary widely across cell-type (52), it may prove that the 
translation of uORFs varies considerably across cell types, and cellular 
conditions. This has been suggested by the large number of studies that 
have demonstrated differential translation from uORF start codons, in stress 
conditions compared to control. While outside the scope of our study, the 
analysis of cell-type specific and condition specific translated uORFs, may 
expand estimates of the population of uORFs.

Related to variable compatibility of uORFs translation, ATG is the most 
common uORF start codon in the ribosome profiling studies examined in this 
study (46.1%). However, it is only the fourth most common uORF start codon
identified computationally, and 5th most common predicted positive uORF 
start codon. If ATG has high representation in ribosome profiling experiments
due to its affinity for translation, lower affinity yet still functional near-
cognate start codons, may be similarly underrepresented. Lower affinity near
cognate-start codons, due to their overall abundance, may ultimately prove 
to have the greatest functional impact on the landscape of translation.

Perhaps the most convincing validation of our predictions, is our finding that 
alteration of predicted functional uORFs, as a consequence of germline 
genetic variation, appears to impact ribosome binding and protein level in 
humans. Our ability to conduct this natural experiment, is an impressive 
testament to availability and usefulness of data spanning the information 
flow from DNA→RNA→protein in individual human subjects.

From this biological validation procedure, it is also of interest, that the overall
effect of uORF interruption, appears to be a decrease in downstream protein 
level. This is contrary to common view that uORFs act as translational 
repressors. Mechanisms have been studied, where uORFs act to up-regulate 
the presence of a downstream coding sequence (e.g. leaky-scanning). 
However, our analysis would appear to suggest that this effect is a more 
common consequence for upstream open reading frames than is credited.

Identification of human germline variants altering predicted positive uORFs, 
suggests locations where the creation or destruction of a uORF, is likely to 
alter protein levels. Some of these alterations have already been 



characterized as consequential in GWAS studies. Further study of these 
locations, could reveal further important disease associations.

The application of our results to exomic cancer somatic mutation data, 
identifies locations where mutation of uORFs, may contribute to the 
pathogenesis of cancer. GO terms, associated with the mutation of predicted 
translated uORFs in cancer, appear to correspond to essential domains of 
cancer pathogenesis: tissue differentiation, cell survival, and immune 
response. Mutation of uORFs, could conceivably both up-regulate oncogenes,
or down-regulation of tumor suppressor genes. In this way, our work could be
used to help broaden knowledge of the role of uORFs in cancer, beyond 
recently identified individual examples (53).

These applications of our results, suggest exciting avenues for future 
research. Our results offer a broad and validated catalog of uORFs. We 
provide that catalog can serve as a point of reference for other researchers, 
towards investigation of the function of uORFs, in meaningful context to 
areas of personal expertise and interest.
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Tables:

Table 1: uORF features. Features are listed according to the KS statistic for 
each attribute, measured between positive and unlabeled uORFs.

Rank Attribute KS
statistic

p
value

Rank Attribute KS
statistic

p
value

1 GTEX
Bone

Marrow

0.54 0.000 46 #AGG 0.20 0.000

2 GTEX
Liver

0.50 0.000 47 #CTG 0.20 0.000

3 GTEX
Lung

0.49 0.000 48 Kozak context 0.19 0.000

4 GTEX
Pituitary

0.49 0.000 49 % GERP elements 0.19 0.000

5 Ribosome
profiling

uORF start
codon

frequency

0.48 0.000 50 uORF start codon
to CDS start

codon distance

0.19 0.000

6 GTEX
Nerve

0.48 0.000 51 mRNA ΔG uORF
start [20-59]BP

0.18 0.000

7 GTEX
Muscle

0.47 0.000 52 #GTG 0.18 0.000

8 GTEX
Pancreas

0.47 0.000 53 mRNA ΔG uORF
start [40-79]BP

0.18 0.000

9 GTEX
Adipose
Tissue

0.47 0.000 54 %A 0.17 0.000

10 GTEX Skin 0.47 0.000 55 5' cap to uORF
start codon

distance

0.16 0.000



11 GTEX
Spleen

0.47 0.000 56 mRNA ΔG uORF
stop codon
[0,39]BP

0.16 0.000

12 GTEX
Stomach

0.46 0.000 57 mRNA ΔG uORF
stop codon [-

20,19]BP

0.16 0.000

13 GTEX
Cervix
Uteri

0.46 0.000 58 uORF stop codon
to CDS start

codon distance

0.16 0.000

14 GTEX
(combine

d)

0.46 0.000 59 mRNA ΔG CDS
start [-20,19]BP

0.14 0.000

15 GTEX
Salivary
Gland

0.46 0.000 60 Noderer context 0.13 0.000

16 GTEX
Uterus

0.46 0.000 61 %G 0.13 0.000

17 GTEX
Small

Intestine

0.46 0.000 62 mRNA ΔG uORF
start [60,99]BP

0.12 0.000

18 GTEX
Prostate

0.46 0.000 63 mRNA ΔG uORF
start [80,119]BP

0.12 0.000

19 GTEX
Esophagu

s

0.46 0.000 64 mRNA ΔG uORF
start [-20,19]BP

0.12 0.000

20 GTEX
Heart

0.46 0.000 65 mRNA ΔG uORF
end [-40,-1]

0.11 0.000

21 GTEX
Bladder

0.46 0.000 66 mRNA ΔG uORF
start [100,139]

0.11 0.000

22 GTEX
Brain

0.45 0.000 67 mRNA ΔG CDS
start [20,59]

0.11 0.000

23 GTEX
Breast

0.45 0.000 68 mRNA ΔG uORF
start [0,39]

0.10 0.000

24 GTEX
Blood
Vessel

0.45 0.000 69 %C 0.10 0.000

25 GTEX 0.45 0.000 70 mRNA ΔG uORF 0.09 0.000



Fallopian
Tube

end [20,59]

26 GTEX
Blood

0.45 0.000 71 mRNA ΔG CDS
start [40,79]

0.09 0.000

27 GTEX
Thyroid

0.44 0.000 72 mRNA ΔG uORF
end [40,79]

0.08 0.000

28 GTEX
Vagina

0.44 0.000 73 SNPs/length 0.07 0.001

29 GTEX
Colon

0.44 0.000 74 mRNA ΔG CDS
start [0,39]

0.06 0.004

30 GTEX
Kidney

0.43 0.000 75 #TCG 0.06 0.011

31 GTEX
Testis

0.43 0.000 76 mRNA ΔG CDS
start 100.139

0.05 0.027

32 GTEX
Adrenal
Gland

0.42 0.000 77 mRNA ΔG uORF
start [80,119]

0.05 0.028

33 GTEX
Ovary

0.41 0.000 78 %T 0.05 0.053

34 GTEX
Tissue

Entropy

0.40 0.000 79 #ACG 0.05 0.056

35  #Same
start

codon

0.30 0.000 80 #CGA 0.04 0.142

36 #ATG 0.28 0.000 81 #CGT 0.04 0.198

37 #ATA 0.28 0.000 82 mRNA ΔG CDS
start [60,99]

0.03 0.309

38 #ATT 0.26 0.000 83 uORF length (BP) 0.03 0.447

39 #ATG +
CTG

0.26 0.000 84-89 #ACG

40 #AAG 0.23 0.000 84-89 #CTA

41 #ATC 0.22 0.000 84-89 #GTA

42 Size 5'UTR
(%)

0.22 0.000 84-89 Heterozygosity/le
ngth



43 Start
codon
GERP
score

0.22 0.000 84-89 #1000 Genomes
SNPs

44 Stop
codon
GERP
score

0.21 0.000 84-89 Heterozygosity

45 #TTG 0.21 0.000

Table 3: Individual genes, with uORFs interrupted by germline human 
variation. Top 10, with disease assocations.

uORF ID SNP
Scor

e

VA

F
Gene

Transcri

pts

Affected

Disease

Process

(PMID)

ENST00000435422.3.uORF_

CTG.11

rs131705

73
12.3

0.4

7
SGCD 28/80

OSA 

(25474115

)

ENST00000526686.1.uORF_

TTG.4

rs146149

6
10.3

0.6

8
HSPA8 3/72

CHF/asthm

a 

(20300519

, 

22370858)

ENST00000228872.4.uORF_

CTG.8
rs34330 21.5

0.6

6

CDKN1

B
4/9

Various 

cancers 

(17908995

)

ENST00000355739.4.uORF_

ATG.13
rs751402 15.0

0.7

1
ERCC5 3/45

Gastric 

cancer 

(27228234

)

ENST00000302418.4.uORF_

ACG.1

rs122514

45
23.9

0.3

1
KIF5B 1/7

Exercise 

response 

(18984674

)
ENST00000270139.3.uORF_

GTG.2

rs285001

5

24.2 0.7

8

IFNAR1 2/16 Malaria 

susceptibili



ty 

(25445652

)
ENST00000270139.3.uORF_

GTG.4

rs285001

5
23.1

0.7

8
IFNAR1 2/16  

ENST00000406438.3.uORF_

ATT.1

rs156363

4
9.0

0.6

8
SMCR8 1/3

Cancer risk

(19432957

)

ENST00000462284.1.uORF_

ATC.1
rs937283 19.2

0.3

4
MDM2 15/20

Epithelial 

cancer 

(26261649

)

ENST00000310823.3.uORF_

CTG.2

rs126923

86
21.5

0.5

8

ADAM1

7
4/8

Vascular 

disease 

(24853957

)

Table 4: Individual genes, with uORFs interrupted by somatic cancer 
mutations. Top 10 by prediction score.

uORF ID Location
Scor

e

Cancer

Type

Gene

Name

Transcrip

ts

Affected
ENST00000371142.4.uORF

_ACG.2
98346749 28.4 Lung TM9SF3 2/3

ENST00000371142.4.uORF

_ACG.1
98346749 28.1 Lung TM9SF3 2/3

ENST00000254480.5.uORF

_ACG.2
47823347 26.9 Lung

SMARCC

1
3/8

ENST00000254480.5.uORF

_ACG.1
47823347 26.8 Lung

SMARCC

1
3/8

ENST00000000233.5.uORF

_ACG.2

12722842

1
26.7 Stad ARF5 1/3

ENST00000250894.4.uORF

_ACG.1
1756190 26.5 Lung

MAPK8IP

3
1/3

ENST00000345496.2.uORF 46221698 25.7 Breast UBE2G2 4/15



_CTG.3
ENST00000358015.3.uORF

_GTG.2

11004559

2
25.6 Stad RAD23B 2/17

ENST00000258341.4.uORF

_ACG.1

18299278

6
25.5 Lung LAMC1 1/8

ENST00000395686.3.uORF

_GTG.1
53162310 25.4 Breast ERO1L 5/20




