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Abstract	

Upstream	open	reading	frames	(uORFs),	are	associated	with	translational	regulation	of	
downstream	coding	sequences.	The	translation	of	a	uORF	latent	in	an	mRNA	transcript,	is	
thought	to	modify	the	translation	of	coding	sequences	in	that	same	transcript,	by	modifying	
ribosome	localization.	Not	all	uORFs	are	thought	to	be	active	in	such	a	process.	It	represents	a	
challenge	to	estimate	the	impact	and	scope	of	the	role	uORFs	play	in	regulation	of	translation.	

We	use	the	GENCODE	annotation	of	the	human	genome,	to	circumscribe	the	universe	of	all	
possible	translated	uORFs.	This	universe	includes	over	one	million	unique	uORFs.	We	compare	
patterns	of	structure	in	these	uORFs,	to	the	structure	of	uORFs	labeled	as	translated	in	
experiment.	This	comparison	allows	us	to	catalog	a	population	of	uORFs	that	likely	undergo	
translation.	This	population	numbers	188	802.	Eleven	thousand	protein	coding	genes	include	at	
least	one	likely	translated	uORF.	

This	is	a	substantially	larger	population	uORFs,	than	has	previously	been	associated	with	active	
translation.	It	suggests	the	translation	of	uORFs,	is	a	widespread	phenomenon,	with	
considerable	impact	on	the	translational	landscape.	

Our	catalog	of	uORFs,	allows	researchers	to	test	their	hypotheses	regarding	the	role	of	upstream	
open	reading	frames,	in	health	and	disease.	

Intro	

Upstream	open	reading	frames	(uORFs)	consist	of	a	start	codon	in	the	5'	untranslated	region	of	
a	gene	(UTR),	and	an	associated	stop	codon	appearing	before	the	stop	codon	of	the	main	coding	
sequence	(CDS).	The	uORF	may	begin	and	end	before	the	main	gene	coding	sequence.	
Alternatively,	if	the	upstream	reading	frame	is	out	of	frame	with	the	CDS,	it	may	overlap	with	
the	CDS	[Figure	1.A].	uORFs	are	latent	in	mRNA	transcripts,	and	may	undergo	partial	or	
complete	translation.	

Initial	survey	of	the	human	genome,	identified	uORFs	contained	in	approximately	10%	of	mRNA	
transcripts(1).	More	recent	analyses	broaden	estimates	of	prevalence,	with	identification	of	
uORFs	in	association	with	nearly	half	of	all	mRNA	transcripts(2).	The	discovery	that	many	uORFs	
utilize	near-cognate	start	codons,	rather	than	the	canonical	ATG	start	codon,	has	broadened	
estimates	of	uORF	prevalence	still	further(3–6).	

Study	of	uORF	translation	and	function,	was	historically	limited	to	the	experimental	evaluation	
of	individual	uORFs(7,8),	with	no	genome-scale	approach	to	identifying	translated	uORFs.	The	
advent	of	ribosome	profiling	studies,	has	allowed	for	the	identification	of	a	large	population	of	



	

uORFs	known	to	undergo	translation(4,9,10).	Ribosome	profiling	studies	that	arrest	the	
ribosome	at	translation	initiation,	allow	for	the	identification	of	translation	initiation	sites	to	
within	a	few	nucleotides.	This	mapping	of	translation	initiation	is	sufficient	for	association	
between	ribosomes	and	particular	start	codons	and	reading	frames	(11–13).	

At	the	same	time	as	ribosome	profiling	studies	have	allowed	for	large-scale	identification	of	
upstream	open	reading	frames,	there	has	been	expansion	in	knowledge	of	the	functional	role	of	
uORFs.	Upstream	open	reading	frames,	have	generally	been	thought	to	suppress	translation	of	
downstream	genes(8,14–18).	The	molecular	mechanisms	for	modification	of	translation	are	
varied,	and	include	leaky-scanning	of	uORFs	by	ribosomes,	translation	reinitiation	subsequent	to	
uORF	translation,	and	ribosome-stalling	on	uORFs.	These	mechanisms	have	been	uncovered	in	
some	detail	(3,19,20).	Apart	from	increases	and	decreases	in	a	single	protein	product,	
differential	translation	of	multiple	protein	products	may	occur	in	consequence	to	a	uORF(21).	
There	may	even	be	additional	direct	effect	of	translated	products	between	uORF	and	CDS,	as	
has	been	observed	in	dual-coding	genes(22).	

From	these	studies,	it	is	important	to	note,	that	a	uORF	may	increase	translation	of	the	
downstream	CDS	or	decrease	translation	of	the	downstream	CDS,	according	to	genomic	and	
epigenomic	context.	Related	to	a	differential	effect	of	uORFs	on	CDS	translation,	depending	on	
context,	the	study	of	translation	in	stress	conditions,	has	revealed	a	differential	function	for	
uORFs	in	stressed	cells,	compared	with	non-stressed	controls(23–28).	

Interest	in	the	study	of	the	function	of	upstream	open	reading	frames	has	also	increased	related	
the	discovery	of	short	open	reading	frames,	encoding	short	functional	peptides.	These	
functional	peptides	from	short	open	reading	frames,	may	be	differentiated	from	upstream	open	
reading	frames:	uORFs	are	thought	to	have	primarily	regulatory	control.	(29–31)	However,	it	is	a	
strong	possibility	that	many	upstream	open	reading	frames,	once	thought	to	only	have	
regulatory	impact,	will	be	re-evaluated	for	the	possibility	that	they	encode	functional	protein	
products.	

Discovery	of	the	function	of	uORFs,	is	predicated	on	identification	of	uORFs	that	are	translated.	
For	this	reason,	we	took	interest	in	the	identification	of	translated	uORFs	in	humans.	We	
hypothesized	that	the	total	universe	of	translated	upstream	open	reading	frames,	is	much	larger	
than	that	identified	through	ribosome	profiling	experiments.	In	other	words,	perhaps	ribosome	
profiling	experiments	are	sensitive	in	identifying	translated	uORFs,	but	not	specific.	

Researchers	have	recently	explored	this	hypothesis	in	other	species	(32,33),	and	ribosome	
profiling	read	attributes,	such	as	ribosome	profiling	reading	frame,	have	been	used	in	humans	
to	identify	novel	translation	products(34,35)	These	areas	of	study	have	proven	productive.	In	
these	non-human	and	human	studies,	novel	translated	CDSs	and	uORFs	were	identified,	
numbering	in	the	thousands.	

For	our	investigation	of	the	prevalence	of	translated	upstream	open	reading	frames	in	humans,	
we	began	by	performing	a	computational	scan	of	the	GENCODE	genome	annotation(36).	We	
searched	for	uORFs	associated	with	protein	coding	genes.	All	the	possible	uORFs	beginning	



	

either	with	ATG,	or	a	near-cognate	start	codon,	were	identified	(all	single	nucleotide	variants	of	
the	canonical	ATG).	This	scan	yields	a	universe	of	all	possible	uORFs,	numbering	nearly	1.3	
million.	

We	do	not	expect	that	all	uORFs	identified	in	a	genome-wide	scan	are	functional.	For	this	
reason,	we	sought	means	to	separate	translated	uORFs,	from	uORFs	with	a	low	chance	
translation.	In	order	to	effect	this	identifcication	of	functional	uORFs,	we	studied	the	human	
ribosome	profiling	experiments	of	three	research	groups	–	Lee	et	al.	2012,	Fritsch	et	al.	2012,	
and	Gao	et	al.	2014	(11–13).	Each	of	these	three	experiments	uses	translational	inhibitors	that	
arrest	the	translating	ribosome	at	the	first	peptide	bond.	This	arrest	of	translation	at	initiation,	
allows	for	the	identification	of	translated	upstream	open	reading	frames	to	high	precision.	

uORFs	in	our	computational	set,	that	displayed	considerable	similarity	to	known	translated	
uORFs,	we	predicted	to	be	translated	and	functional.	We	validate	our	predicted	uORFs,	using	
statistical	analyses,	by	examining	the	of	individual	genotype	on	parameters	related	to	uORF	
translation.	

Following	examination	efficacy	of	our	method,	we	demonstrate	applications	of	our	large	set	of	
predicted	uORFs.	Specifically,	we	intersect	the	predictions	we	generate,	with	known	variants	
from	tissue-matched	tumor	samples(37),	and	the	1000	Genomes	project's	database	of	human	
variation(38).	In	this	way,	we	identify	circumstances	where	human	genomic	variation	and	
mutation,	are	likely	to	have	functional	impact	mediated	by	uORFs.	

The	set	of	uORFs	that	we	predict	are	likely	translated	and	functional,	extends	scope	far	beyond	
those	identified	in	ribosome	profiling	experiments.	Through	our	study,	we	predicted	that	there	
exist	hundreds	of	thousands	of	translated,	functional	uORFs	–	two	orders	of	magnitude	higher,	
than	in	other	studies.	We	hope	that	our	procedure	for	identifying	translated	uORFs,	will	be	of	
use	to	other	scientists	in	their	effort	to	understand	uORF	function	in	health	and	disease.	

Methods:	

Extracting	uORFs	from	GENCODE:	

uORFs	were	extracted	from	the	v19	of	the	GENCODE	annotation	of	the	human	genome(36).	
uORFs	were	defined	as	a	start	codon	within	the	5’UTR,	and	a	downstream	stop	codon	before	
the	end	of	the	CDS.	All	three	possible	reading	frames	were	examined.	ATG,	and	near	cognate	
start	codons	were	included	in	this	search	[ATG,	TTG,	GTG,	CTG,	AAG,	AGG,	ACG,	ATA,	ATT,	ATC].	

Ribosome	profiling	experiments	as	a	reference	set:	

The	ribosome	profiling	experiments	of	Lee	et	al.	(2012),	Fritsch	et	al.	(2012)	and	Gao	et	al.	
(2015),	were	used	to	obtain	an	experimentally	validated	set	of	translated	upstream	open	
reading	frames	[Figure	1.B].	These	studies	identify	translation	initiation	sites	(TIS),	through	
treatment	of	human	cell	lines	with	antibiotic	translation	inhibitors.	These	treatments	reliably	
halt	translation,	in	predictable	proximity	to	the	start	codon	(12-13	nucleotides	downstream).	As	
such,	these	experiments	provide	us	with	high	resolution	information	about	translation	initiation	
sites	in	the	human	genome.	



	

We	employed	the	read	alignments	and	identification	of	the	translation	initiation	sites,	as	
provided	by	these	three	groups	of	researchers.		Each	group	ultimately	expressed	their	results	as	
positional	coordinates	for	uORF	start	codons,	with	corresponding	transcripts	identified	by	
RefSeqID.	We	mapped	the	RefSeqIDs	provided	in	these	papers,	to	corresponding	GENCODE	
Ensembl	IDs.	This	mapping	provides	position	information	in	the	global	positioning	coordinates	
of	the	GENCODE	annotation.	

The	cell	lines,	treatment	protocols,	and	TIS	identification	mechanism	employed	by	each	of	these	
three	research	groups	is	summarized	in	Table	1.	

Study	 Cell	line	 Treatment	protocol	 TIS	identification	

Fritsch	et	
al.	

THP1	 cyclohexamide	+	
puromycin	

Novalign	+	neural	network	

Lee	et	al.	 HEK293	 lactidomycin	 Bowtie		+	threshold	on	nucleotide	
resolution	read	counts	

Gao	et	al.	 HEK293	 cyclohexamide	+	
lactimidomycin	+	
puromycin	

TopHat	+	ZTNB	model	

	

Literature	review	of	translated	human	uORFs:	
	
In	addition	to	ribosome	profiling	studies,	confirmed	translated	uORFs	were	obtained	from	the	
biomedical	literature(8,39,40).	uORFs	studied	in	humans	that	displayed	functionality	
(demonstrated	regulation	of	the	CDS	product)	were	added	to	the	set	of	positive	uORFs.	In	total,	
33	uORFs,	associated	with	33	separate	genes,	were	included	from	this	literature	review.	
	
Cleansing	the	data	set,	by	removal	of	N-terminal	extensions	and	aTISs,	and	isolation	of	unique	
transcript	IDs:	
	
Reading	frames	labeled	as	uORFs	in	experiment,	but	without	a	stop	codon	before	the	stop	
codon	of	the	CDS,	contain	the	complete	CDS	sequence.	These	N-terminal	extensions	of	the	CDS	
sequence,	may	have	some	of	the	functional	activity	of	the	primary	gene	protein	product,	and	
were	removed	from	the	data	set.	In	addition,	any	uORF	start	codon	that	is	annotated	as	an	
alternative	translation	initiation	sites	(aTISs)	for	the	CDS,	was	also	removed	from	the	data	set.	
	
Multiple	transcript	IDs,	may	share	identical	chromosomal	coordinates.	In	order	to	avoid	over-
counting,	only	one	transcript	ID	was	included	for	a	given	set	of	chromosomal	coordinates.	This	
selection	was	made	randomly,	from	among	transcripts	with	identical	chromosomal	coordinates.	
	
Positive,	neutral,	and	unlabeled	data	sets:	



	

	
uORFs	were	divided	into	three	separate	sets,	according	to	their	experimental	translation	status:	
	
Positive:	uORFs	identified	as	translated	in	two	or	more	ribosome	profiling	experiments,	or	
through	literature	review.	
Neutral:	uORFs	identified	as	translated	in	not	more	than	one	ribosome	profiling	experiment.	
Unlabeled:	uORFs	that	were	not	identified	as	translated	in	any	ribosome	profiling	experiment,	
or	through	literature	review.	
	
Extraction	of	attributes	associated	with	uORFs:	

In	order	to	determine	what	features	make	a	uORF	more	likely	to	be	transcribed	(classified	as	
positive),	feature	data	was	extracted	for	each	uORF.	89	features	were	used.	Details	relating	to	
the	extraction	and	calculation	of	each	of	these	features,	is	included	in	Methods	Supplement.	
	
Feature	discretization:	
	
The	minimum	description	length	principle	(MDLP)	algorithm	was	used	to	discretize	each	uORF	
attribute(41).	The	MDLP	algorithm	discretizes	data,	while	optimizing	bin	size	according	to	a	
information	theoretic	principle.	MDLP	discretization	was	implemented	using	the	‘discretization’	
package	available	for	R	(http://cran.r-project.org/web/packages/discretization/index.html).	
	
Some	included	features	showed	little	variability	among	uORFs.	Accordingly,	these	features	
became	uniform	upon	discretization.	For	this	reason,	these	features	were	be	rejected	from	the	
analysis.	
	
Prioritization	of	feature	data:	
	
For	each	included	feature,	the	distribution	for	that	feature	was	compared	between	positive	and	
unlabeled	uORFs.	This	comparison	was	completed	using	the	kolmogorov-smirnov	(KS)	statistic.	
A	greater	KS	statistic,	indicates	a	greater	difference	between	the	distributions	for	that	feature.	
The	KS	statistic	was	thus	used	as	a	proxy	for	the	ability	of	that	attribute,	to	distinguish	between	
positive	and	unlabeled	features.	
	
Classifying	uORFs,	according	to	attributes:	
	
Using	discretized	feature	data,	the	probability	distribution	for	each	attribute	was	used	to	
distinguish	between	positive	uORFs	and	unlabeled	uORFs.	For	a	given	uORF,	we	determined	if	
the	attributes	of	that	uORF	were	consitent	with	a	translated	uORF,	according	to	the	following	
algorithm:	
	

Ppos∏i={1...89}p(Ai|pos)	==	ppos	
Pneg∏i={1...89}p(Ai|unl)	==	pneg	

	
With	



	

	
Ppos	=	0.61	

Pneg	=	1	=	Ppos	
	

This	formulation	corresponds	to	a	Naive-Bayes	machine	learning	algorithm	applied	to	positive	
and	unlabeled	examples(42).	Ppos	is	the	prior	probability	associated	with	positive	uORFs,	Pneg	is	
the	prior	probability	associated	with	negative	uORFs.	Ai	is	the	value	of	a	given	attribute,	such	
that	p(Ai|pos),	and	p(Ai|unl)	represent	the	frequency	of	that	attribute	value	among	the	positive,	
and	unlabeled	sets	respectively.	ppos	represents	the	probability	the	uORF	is	positive.	pneg	
represents	the	probability	the	uORF	is	positive.	
	
Model	validation:	
	
To	validate	our	model,	we	serially	trained	our	model	on	two	of	three	ribosome	profiling	data	
sets,	using	the	model	to	extract	the	third	ribosome	profiling	data	set	from	among	the	unlabeled	
examples.	The	success	of	these	differentially	trained	models,	is	expressed	as	ROC	curves,	with	
area	under	the	curve	(AUC)	calculated	for	each	curve.	
	
In	order	to	estimate	the	effect	on	protein	level,	attributable	to	natural	variation	affecting	
predicted	translated	uORFs,	we	intersected	our	set	of	predicted	translated	uORFs,	with	
ribosome	quantatative	trait	loci	(rQTL),	and	protein	level	according	to	gene.	This	protein	level	
and	rQTL	data,	was	obtained	from	the	supplemental	information	of	Battle	et	al.	2015(43).	
Genotype	information	per	individual,	was	obtained	from	the	1000	Genomes	project.	
	
Natural	variation	interrupting	predicted	positive	uORFs:	
	
SNPs	obtained	from	the	1000	Genomes	project,	were	intersected	with	start	codons	for	our	set	
of	positive	uORFs.	This	allows	for	measurement	of	the	comparative	frequency	of	mutation	of	
uORF	start	codons,	suggestive	of	evolutionary	conservation.	It	also	allows	for	identification	of	
SNPs	interrupting	uORF	start	codons	that	are	also	associated	with	differential	disease	
susceptibility.	Associations	of	disease	susceptibility	for	specific	SNPs,	was	evaluated	via	PubMed	
database	search	via	RefSNP	(rs)	ID.	
	
Cancer	mutation	interrupting	predicted	positive	uORFs:	
	
The	study	of	Alexandrov	et	al.	2012(37)	provides	a	set	of	exomic	somatic	mutations	according	to	
patient	sample,	and	cancer	type.	We	intersected	this	database	of	cancer	mutation,	with	the	
start	codons	of	our	predicted	positive	uORFs.	This	allowed	for	estimation	of	the	frequency	with	
which	start	codons	are	interrupted	in	cancer,	according	to	cancer	type	and	according	to	uORF	
start	codon.	Patterns	of	function	in	genes	affected	by	mutation	of	uORFs	in	cancer,	was	assessed	
via	the	GO	genome	annotation	database(44).	Overrepresented	GO	terms	were	identified,	with	
overrepresentation	assessed	via	the	hypergeometric	statistical	test,	with	multiple	testing	
correction	via	Benjamini	&	Hochberg's	FDR	correction(45).	Networks	between	GO	terms,	were	
constructed	using	the	Cytoscape	package	BiNGO(46).	



	

	
Results:	
	
The	search	of	the	GENCODE	genome	annotation,	for	the	universe	of	all	possible	uORFs,	yielded	
1	270	265	unique	uORFs.	Within	this	large	set,	we	isolated	the	subset	of	uORFs	found	to	be	
translated	in	the	studies	of	Lee	et	al.	2012,	Fritsch	et	al.	2012,	and	Gao	et	al.	2015	[Figure	1.C].	
We	further	stratified	this	set	of	translated	uORFs,	according	to	shared	representation	of	uORFs	
among	the	three	studies.	uORFs	identified	in	the	intersection	between	two	or	more	of	these	
studies,	were	used	as	the	reference	standard	for	translated	uORFs.	This	intersection	also	helps	
to	control	for	false	positives,	and	to	control	for	differences	in	experimental	procedure	and	tissue	
specificity	(HEK293	vs.	THP-1).	Literature	review,	yielded	33	additional	examples	of	translated	
uORFs,	that	were	also	included	in	the	set	of	positive,	translated	uORFs.	
	
Overlap	between	the	three	ribosome	profiling	experiments	was	found	to	be	low,	with	pairwise	
intersections	of	12.2%	(Gao	∩	Fritsch),	9.2%	(Gao	∩	Lee),	and	9.8%	(Lee	∩	Fritsch),	with	the	
number	of	uORFs	shared	between	all	three	sets	representing	only	3.3%	of	uORFs	identified	in	
these	studies.	
	
The	relative	representation	of	start	codons	identified	in	ribosome	profiling	experiments,	is	
noteworthy	for	the	prevalence	of	both	CTG	(28.2%)	and	ATG	(46.1%)	start	codons.	These	start	
codons	represent	the	majority	(74.3%)	of	start	codons	found	in	these	ribosome	profiling	studies.	
In	intersection	between	ribosome	profiling	studies,	CTG	(30.5%)	and	ATG	(34.6%)	continue	to	
represent	the	majority	of	start	codons	(65.1%)	[Figure	1.C.].	Representation	of	every	near-
cognate	start	codon	was	found	in	intersections	between	studies,	with	the	exception	of	AAG	and	
AGG.	
	
We	next	followed	the	procedure	outlined	in	figure	2.A,	in	an	effort	to	distill	uORFs	that	are	likely	
to	be	translated,	from	those	identified	via	genome-wide	scan.	To	begin	this	process,	three	
categories	of	uORF	were	delineated,	based	on	observed	translation	in	experimental	study:	
	
1.	positive	uORFs	–	translated	in	at	least	two	ribosome	profiling	experiments	or	via	literature	
review.	
2.	neutral	uORFs	–	translated	in	only	one	ribosome	profiling	study.	
3.	unlabeled	uORFs	–	not	translated	in	ribosome	profiling	studies,	or	literature	review.	
	
Distributions	of	attributes	for	positive,	translated	uORFs,	were	compared	with	distributions	of	
those	same	attributes	as	observed	in	the	set	of	unlabeled,	computationally	derived	uORFs	
[Figure	2.B.].	The	usefulness	of	individual	attributes	in	making	this	comparison,	was	measured	
using	the	kolmogorov	smirnov	(KS)	statistical	test.	A	higher	KS	statistic,	indicates	greater	
difference	between	the	attribute	distributions,	suggesting	that	the	attribute	is	of	greater	utility	
in	identifying	translated	uORFs.	The	KS	statistic	and	corresponding	p-value,	for	each	of	the	89	
attributes	assessed	in	this	study,	is	provided	in	Table	2.	The	top	10	attributes,	listed	according	to	
magnitude	of	KS	statistic,	are	given	in	Figure	2.C.	
	



	

The	discretized	attributes	of	positive	and	unlabeled	sets	of	uORFs,	were	used	to	build	a	
statistical	classifier,	within	a	Naive-Bayes	framework.	This	classifier	predicts	translated	uORFs,	
through	examination	of	the	totality	of	attributes	associated	with	an	individual	uORF.	
	
The	result	of	application	of	the	classifier	is	shown	in	figure	3.A.	The	percentage	of	positive	
examples,	that	are	ultimately	retained	as	likely	translated	is	76.8%	[590/768],	67.1%	of	neutral	
uORFs	are	classified	as	likely	translated	[2379/3543],	and	14.7%	of	unlabeled	uORFs	are	likely	
translated	[185833/1265954].	
	
The	overall	number	of	uORFs	classified	as	likely	translated,	is	188	802,	representing	14.9%	of	
computationally	identified	uORFs	[188802/1270265].	140	668	(75.5%)	of	these	uORFs	lie	
entirely	upstream	of	the	CDS,	throughout	their	length.	48	134	(25.5%)	of	these	uORFs	are	out-
of-frame	with	the	CDS,	and	overlap	with	the	CDS.	A	complete	list	of	upstream	open	reading	
frames	identified	as	likely	translated	is	provided	in	Results	Supplement.	
	
As	validation	of	our	technique	for	distinguishing	between	positive	and	unlabeled	upstream	open	
reading	frames,	we	serially	excluded	one	of	the	three	ribosome	profiling	experiments	from	the	
positive	training	set,	including	that	set	among	the	unlabeled	examples.	Retrieval	of	the	excluded	
set,	then	functions	as	a	measure	of	the	accuracy	and	generalizability	of	our	method.	The	result	
of	this	validation	procedure	is	shown	in	Figure	3.B.	The	ROC	curve	for	the	retrieval	of	each	
ribosome	profiling	set	is	given.	The	AUC	for	each	of	these	ROC	curves,	is	similar.	0.82,	0.79,	and	
0.77	for	the	retrieval	of	Lee,	Gao,	and	Fritsch	uORFs	respectively.	
	
The	proportion	of	uORFs	ultimately	identified	as	positive,	from	each	ribosome	profiling	study,	is	
shown	in	Figure	3.C.	The	results	were	similar	for	each	of	the	ribosome	profiling	experiments,	at	
approximately	70%	in	each	case	(72%	of	Gao,	71%	of	Lee,	70%	of	Fritsch).	
	
The	distribution	of	start	codons	for	predicted	translated	uORFs,	in	comparison	to	the	
computational	set,	is	shown	in	Figure	3.D.	There	are	a	large	number	of	CTG	start	codons	in	the	
computationally	derived	set	(19.3%),	and	the	greatest	number	of	predicted	positive	uORFs	are	
also	initiated	with	a	CTG	start	codon	11.8%.	Similarly,	TTG	(9.9%)	and	GTG	(12.4%)	have	high	
prevalence	in	the	computationally	derived	set,	and	this	is	reflected	in	the	predicted	translated	
set	(13.2%	and	19.3%	respectively).	ATG	has	a	lower	comparative	prevalence	in	both	the	
computationally	derived	set,	and	predicted	set	(6.7%	and	8.2%	respectively).	
	
As	an	application	of	our	list	of	predicted	positive	uORFs,	we	intersected	our	predicted	positive	
uORFs,	with	germline	variants	from	the	1000	Genomes	project.	Figure	4.A	shows	the	frequency	
with	which	predicted	positive	start	codons	are	broken	by	germline	variants,	normalized	for	
population	start	codon	frequency.	The	ATG	start	codon	is	relatively	conserved,	among	start	
codons.	It	is	rarely	interrupted	by	human	variants	(relative	rate	(RR)	0.03,	compared	to	the	most	
frequently	interrupted	start	codon).	The	CTG	start	codon,	although	more	prevalent	among	
predicted	positive	uORFs,	is	broken	relatively	frequently	by	natural	human	variants	(RR	0.52).	
Human	germline	variants	that	intersect	with	high	scoring	uORFs,	and	disease	associations	
identified	via	literature	review,	are	listed	in	Table	3.	



	

	
An	analysis	of	the	interruption	of	predicted	positive	uORFs,	was	applied	to	somatic	mutations	
across	cancer	types.	This	analysis	is	shown	in	figure	4.B.	CTG	is	the	most	commonly	interrupted	
start	codon	in	these	combined	cancers.	ATG	is	interrupted	at	a	RR	of	0.25	in	comparison	to	CTG.	
Exomic	cancer	mutations	breaking	the	highest	scored	uORFs,	are	listed	in	Table	4.	
	
In	order	to	evaluate	the	frequency	with	which	uORFs	are	interrupted	by	mutation	in	cancer,	the	
proportion	of	positive	uORFs	interrupted	by	mutation	was	calculated	for	each	cancer	type.	This	
analysis	is	shown	in	Figure	4.C.	This	proportion	of	positively	scored	uORFs	to	negative	scored	
uORFs,	is	near	consistent	across	cancer	types,	ranging	from	a	low	of	8:1	for	acute	lymphoblastic	
leukemia,	to	a	high	of	20:1	for	pancreatic	cancer.	The	between	group	differences	for	interrupted	
predicted	translated	uORFs	are	significant	(chi-square	=	45,	p-value	=	<<0.001).	Networks	of	GO	
terms	were	constructed,	for	those	genes	associated	with	the	mutation	of	predicted	translated	
uORFs	in	cancer	[Figure	4.D.].	Three	networks	of	overrepresented	GO	terms	remain,	following	
correction	for	statistical	significance,	and	multiple	testing.	These	networks	are	associated	with	
cellular	death,	immune	modulation,	and	tissue	morphogenesis.	
	
Using	our	inventory	of	likely	translated	uORFs,	we	further	explored	the	possible	relationship	
between	uORFs,	and	the	regulation	of	downstream	protein	coding	genes.	We	examined	the	
effect	of	uORF	interruption	on	ribosome	occupancy	and	protein	level.	
	
Protein	level	was	assessed	through	comparison	of	gene	resolution	protein	levels	in	individuals	
with	start	codon	interrupting	SNPs,	compared	to	individuals	without	these	variants	[Figure	4.E.].	
In	cases	where	few	of	the	47	individuals	assessed,	are	in	possession	of	the	start	codon	
interrupting	variant,	this	method	is	underpowered	to	assess	the	effect	on	protein	level.	
However,	for	those	genes	where	this	natural	experiment	provides	close	to	the	ideal	assignment	
ratio	of	23	individuals	per	group,	we	a	see	a	definite	trend	to	decreased	protein	levels.	This	
decrease	is	statistically	significant	at	the	limit	of	>22	individuals	per	group.	
	
To	examine	the	effect	of	uORFs	on	ribosome	occupancy,	we	answered	the	question	–	how	many	
rQTLs	that	interrupt	a	uORF	start	codon,	interrupt	a	positively	scored	start	codon?	Figure	4.F.	
displays	the	results	of	such	an	analysis,	showing	significant	enrichment	among	this	set	of	rQTLs,	
for	rQTLs	interrupting	positively	scored	start	codons.	While	the	effect	we	would	expect	due	to	
random	mutation	is	14.9%,	we	observed	that	48%	of	these	rQTLs	(21/44)	interrupt	positively	
scored	start	codons.	
	
Discussion:	
	
In	this	study,	we	were	able	to	identify	188	802	likely	translated	upstream	open	reading	frames,	
from	a	global	set	of	1	270	265	unique	uORFs	identified	in	the	human	genome.	
	
The	number	of	uORFs	identified	as	likely	translated	is	remarkable,	in	comparison	to	other	
studies	of	this	topic.	No	other	study	examining	the	global	translation	of	uORFs,	suggests	that	the	



	

number	of	translated	uORFs	numbers	more	than	a	few	thousand.	Indeed,	our	large	number	of	
predicted	sites	of	translation	alone,	may	cause	other	investigators	to	doubt	our	result.	
	
In	relation	to	this	result	–	it	is	with	interesting	to	note	low	levels	of	overlap,	between	ribosome	
profiling	studies.	3.3%	shared	overlap,	suggests	that	these	ribosome	profiling	studies	include	
either	a	significant	proportion	of	false	positives	–-	low	specificity	--	or	a	significant	proportion	of	
false	negatives	--	low	sensitivity.	Our	result	suggests	that	ribosome	profiling	studies	provide	a	
low	sensitivity	to	detect	the	translation	initiation	sites	of	uORFs.	
	
The	frequency	of	alternative	uORF	start	codons,	suggests	an	additional	explanation	for	the	
abundance	of	likely	translated	uORFs.	ATG	is	the	most	common	uORF	start	codon	in	the	
ribosome	profiling	studies	examined	in	this	study	(46.1%).	However,	it	is	only	the	fourth	most	
common	uORF	start	codon	identified	computationally,	and	5th	most	common	predicted	positive	
uORF	start	codon.	The	high	affinity	of	ATG	as	a	translation	initiation	site,	likely	leads	to	its	over-
representation	in	ribosome	profiling	studies.	Conversely,	near-cognate	start	codons	with	lower	
affinity,	may	not	meet	thresholds	for	identification	in	ribosome	profiling	studies.	However,	near-
cognate	start	codons,	due	to	their	overall	abundance,	may	ultimately	have	the	greatest	
functional	impact	on	the	landscape	of	translation.	
	
Finally,	we	used	the	intersection	of	three	ribosome	profiling	studies,	to	form	a	gold-standard	
known	translated	set	of	translated	uORFs.	This	suggests	a	further	explanation	for	low	overlap	
between	ribosome	profiling	studies,	and	the	remarkably	high	number	of	translated	uORFs	we	
predict.	Our	use	of	an	intersection	between	ribosome	profiling	studies,	provides	some	control	
against	tissue	specific	results	(both	human	embryonic	kidney,	and	human	monocytic	cell	lines	
were	examined).	It	also	provides	some	control	against	differences	experimental	protocol.	Just	as	
protein	levels	vary	widely	across	cell-type(47),	it	is	not	unreasonable	to	imagine	that	the	
translation	of	uORFs	varies	greatly	in	different	cell	types,	and	different	cellular	conditions.	This	is	
also	suggested	by	the	large	number	of	studies	that	have	demonstrated	the	differential	
translation	from	uORF	start	codons,	in	stress	conditions	compared	to	control.	

Confidence	in	our	result	is	gained,	through	use	of	a	robust	cross-validation	mechanism.	This	
mechanism	is	based	on	false-negative	retrieval	from	independent	datasets	--	not	just	fractions	
of	datasets.	This	validation	shows	that	the	procedure	we	follow	is	sufficiently	generalized.	
Training	on	two	of	three	data	sets,	with	retrieval	of	the	third	data	set,	shows	near	equivalent	
high	accuracy	retrieval	in	each	case	(ROC	AUC	~0.7)	[Figure	3.B.].	
	
Further	confidence	in	the	validity	of	our	result	is	gained	through	its	application.	The	use	of	our	
catalog	of	likely	translated	upstream	open	reading	frames,	in	intersection	with	human	germline	
variants,	suggests	a	number	of	sites	where	the	creation	or	destruction	of	uORFs,	is	likely	to	alter	
protein	levels.	This	may	in	turn	lead	to	disease	susceptibility.	These	sites	should	be	of	interest	to	
other	research	groups,	particularly	as	the	number	of	sequencing	experiments	that	include	non-
coding	regions	increases.	
	



	

The	application	of	our	results	to	exomic	cancer	mutation	data,	identifies	locations	where	the	
mutation	of	uORFs,	may	contribute	to	the	pathogenesis	of	cancer.	GO	terms,	associated	with	
the	mutation	of	predicted	translated	uORFs	in	cancer,	appear	to	correspond	to	essential	
domains	of	cancer	pathogenesis:	tissue	morphogenesis,	cellular	survival,	and	immunologic	
response.	Mutation	sites	that	we	identify,	may	result	in	carcinogenesis,	via	defect	in	regulation	
of	translation.	Mutation	of	uORFs,	may	either	up-regulation	of	oncogenes,	or	down-regulation	
of	tumor	suppressor	genes.	In	this	way,	our	work	could	help	broaden	knowledge	of	the	role	of	
uORFs	in	cancer,	beyond	recently	identified	individual	examples(48).	
	
The	combination	of	our	results,	with	the	study	of	ribosome	occupancy	(rQTLs),	and	gene-
resolution	proteomics,	yields	a	further	validation	of	the	method.	It	is	seen	that	a	large	majority	
of	rQTLs	that	intersect	uORF	start	codons,	may	owe	their	significance	to	the	uORFs	that	they	
modify.	Our	additional	observation,	that	the	interruption	of	a	predicted	positive	uORF,	has	
significant	impact	on	downstream	protein	level,	also	suggests	validity	of	our	predictions.	In	this	
case,	it	is	also	of	interest,	that	the	overall	effect	of	uORF	interruption,	appears	to	be	a	decrease	
in	the	downstream	protein	level.	This	is	contrary	to	common	view	that	uORFs	act	as	
translational	repressors.	Mechanisms	have	been	studied,	where	uORFs	act	to	up-regulate	the	
presence	of	a	downstream	coding	sequence	(e.g.	leaky-scanning).	Our	analysis	would	appear	to	
suggest	that	this	effect	is	a	possibly	common	consequence	for	upstream	open	reading	frames.	
However,	we	note	that	this	natural	experiment	is	at	a	minimum	threshold	of	statistical	power,	
and	would	benefit	from	repeat	observation	in	a	larger	cohort.	
	
These	applications	of	our	results,	suggest	exciting	avenues	for	future	research.	Our	results	offer	
a	broad	and	validated	catalog	of	uORFs.	We	hope	that	catalog	can	serve	as	a	point	of	reference	
for	other	researchers,	towards	investigation	of	the	function	of	uORFs,	in	meaningful	context	to	
areas	of	personal	expertise	and	interest.	
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Figures:	

	
Figure	1:	
	
A.	The	structure	of	upstream	open	reading	frames.	The	stop	codon	for	a	uORF	may	be	located	
before	the	CDS	start	codon.	It	may	also	be	located	within	the	CDS,	if	the	uORF	is	frame-shifted	
relative	to	the	CDS	(upper	and	middle,	respectively).	An	open	reading	frame	may	also	utilize	the	
same	stop	codon	as	the	CDS,	such	that	the	ORF	acts	as	a	5’	extension	of	the	CDS.	
	
B.	The	effect	of	mutation	or	variation	on	upstream	open	reading	frames.	The	creation	or	
destruction	of	an	upstream	open-reading,	may	result	in	downstream	effect	on	the	rate	of	
translation	of	the	coding	sequence.	Change	in	degree	of	translation	of	the	coding	sequence,	
may	in	turn,	result	in	change	in	phenotype,	and	disease	risk.	
	
C.	The	global	space	of	upstream	open	reading	frames,	and	within	that	space,	the	subset	of	
ribosome	profiling	identified	uORFs.	Ribosome	studies	by	Fritsch	et	al.,	Lee	et	al.,	and	Gao	et	
al.,	are	interpreted	as	a	Venn	diagram.	Pair-wise	and	three-way	intersections	between	these	
experiments	are	highlighted,	as	these	uORFs	consititute	our	gold	standard	positive	set.	The	
universe	of	all	possible	uORFs,	is	derived	from	the	GENCODE	annotation,	and	numbers	1.3	
million.	Ribosome	profiling	positive	uORFs,	are	used	to	identify	a	population	of	predicted	
positive	uORFs,	among	the	set	of	1.3	million	computationally	derived	uORFs.	
	



	

D.	The	frequence	of	uORF	ATG	start	codons,	and	near-cognate	start	codons,	from	ribosome	
profiling	experiments.	Frequency	is	given	both	for	the	overall	frequency	of	start	codons	(union),	
and	uORFs	that	are	translated	in	more	than	one	experiment	(intersection).	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	

	
	
	
	
	
	



	

Figure	2:	
	
A.	Methodology	for	distinguishing	positive	from	unlabeled	uORFs.	Computationally	derived	
uORFs	and	ribosome	profiling	identified	uORFs,	represent	unlabeled	and	positive	examples	
respectively.	Attributes	of	these	positive	and	unlabeled	uORFs	are	extracted.	The	positive	and	
unlabeled	examples	are	used	to	train	a	machine	learning	algorithm.	The	machine	learning	
algorithm	assigns	a	score	all	computationally	derived	uORFs.	A	threshold	on	this	score,	yields	
positive	and	negative	uORFs.	
B.	Distributions	of	attributes	for	positive	and	unlabeled	uORFs.	The	attributes	of	uORF,	are	
used	to	distinguish	positive	from	unlabeled	uORFs.	Attributes	like	the	sequence	conservation	
(GERP	score),	and	tissue	mRNA	expression	(GTEX	Expression	-	Liver),	have	different	continuous	
distributions	for	the	unlabeled	uORFs,	compared	to	the	positive	uORFs.	These	continuous	
distributions,	can	be	discretized	and	optimized	for	machine	learning,	using	the	minimum	
description	length	principle	(MDLP)	binning	algorithm.	Horizontal	lines	on	the	plot	correspond	
to	these	binning	intervals.	The	10	attributes	with	the	greatest	difference	in	distribution	(largest	
kolmogorov	smirnov	statistic)	between	positive	and	unlabeled	uORFs	are	shown.	
C.	Upstream	open	reading	frame	attributes	as	classifiers,	ranked.	The	kolmogorov	smirnov	(KS)	
test	provides	an	index	for	distinction	between	positive	and	unlabeled	attributes.	Attributes	are	
ranked,	according	to	the	difference	in	distribution	between	positive	and	unlabeled	attributes,	
using	the	KS	statistic.	The	KS	statistic	thus	provides	an	index	for	the	utility	of	attributes	in	
distinguishing	between	positive	and	unlabeled	uORFs.	
	



	

Figure	3:	
	
A.	Score	distributions	for	upstream	open	reading	frames,	according	to	category	determined	
via	ribosome	profiling.	Score	distributions	for	[a]	and	unlabeled	uORFs,	that	are	identified	
computationally,	through	a	comprehensive	scan	of	the	GENCODE	annotation,	but	are	not	found	
translated	in	any	ribosome	profiling	experiment	(top),	[b]	positive	ribosome	profiling	uORFs,	
that	are	positively	identified	in	two	or	more	ribosome	profiling	experiments	(middle),	and	[c]	
neutral	ribosome	profiling	uORFs,	that	are	identified	in	only	a	single	ribosome	profiling	
experiment,	and	are	so	witheld	from	both	the	positive	and	the	unlabeled	sets	(bottom).	
B.	ROC	curves	gauge	performance	of	the	machine	learning	algorithm.	The	machine	learning	
algorithm	was	trained	on	two	of	the	three	ribosome	profiling	data	set,	and	then	used	to	extract	



	

the	third	data	set	from	the	unlabeled	data	set.	The	ROC	curve	is	shown	for	each	of	the	three	
combinations	1.	Train	Lee	et	al.	and	Fritsch	et	al.	–	extract	Gao	et	al.	(AUC	=	0.79),	2.	Train	Lee	et	
al.	and	Gao	et	al.	–	extract	Fritsch	et	al.	(AUC	=	0.77).	3.	Train	Fristch	et	al.	and	Gao	et	al.	-	
extract	Lee	et	al.	(AUC	=	0.82).	
C.	Positively	identifed	uORFs	from	the	computational	set,	and	ribosome	profiling	experiments.	
Of	the	computationally	derived	uORFs	extracted	from	the	GENCODE	annotation,	approximately	
180	000	are	predicted	as	active	upstream	open	reading	frames.	These	are	the	upstream	open	
reading	frames	that	are	predicted	to	undergo	translation.	This	large	set,	includes	72%	of	the	
uORFs	identified	in	the	ribosome	profiling	experiment	of	Gao	et	al.,	71%	of	the	uORFs	identified	
in	the	experiment	of	Lee	et	al.,	and	70%	of	the	uORFs	identified	in	the	experiment	of	Fritsch	et	
al.	
D.	The	frequence	of	uORF	ATG	start	codons,	and	near-cognate	start	codons,	for	predicted	
positive	upstream	open	reading	frames.	Frequency	is	given	both	for	the	overall	frequency	of	
computationally	derived	uORFs	from	GENCODE	(computational),	and	for	the	subset	of	
computationally	derived	uORFs	that	are	predicted	to	be	translated	(predicted	positive).	



	

	
	
	
	
	



	

	
	
	
Figure	4:	
	
A:	Density	matrix,	showing	the	distribution	of	1000	genomes	variants,	interrupting	postively	
scored	uORF	start	codons.	The	vertical	axis	displays	the	reference	start	codon,	the	horizontal	
axis	shows	the	interrupting	variant	(position	–	1,2,3	–	and	codon	–	A,T,G,C).	
B:	Density	matrix,	showing	the	distribution	somatic	mutations	found	in	tumor	samples	
(Alexandrov	et	al.),	interrupting	positively	scored	uORF	start	codons.	The	vertical	axis	displays	
the	reference	start	codon,	the	horizontal	axis	shows	the	interrupting	variant	(position	–	1,2,3	–	
and	codon	–	A,T,G,C).	
C:	Ratio	of	all	uORFs	interrupted	by	start-codon	destroying	mutants	(Alexandrov	et	al.),	to	
positively	scored	uORFs	interrupted	by	start	codon	destroying	mutants,	according	to	cancer	
type.	
D:	GO/PANTHER	terms,	for	statistically	overrepresented	genes	with	uORF	start	codons	
interrupted	by	somatic	variants	in	tumor	samples	(Alexandrov	et	al.).	The	size	of	each	node,	
corresponds	to	the	number	of	uORFs	associated	that	GO	term.	Thresholds	were	established	to	
eliminate	relatively	common	GO	terms	(>1250	associated	uORFs),	and	relatively	uncommon	GO	
terms	(<250	associated	uORFs).	This	was	done,	in	order	to	produce	a	network	structure	that	is	
neither	too	general,	nor	too	specific.	3	principle	networks	emerge	a)	tissue	morphogenesis	b)	
immune	function	c)	apoptosis.	Networks	were	developed	using	the	statistical	package	BiNGO,	
and	include	adjustment	for	multiple	testing.	
E:	The	standardized	change	in	protein	level	for	a	given	gene,	between	wild	type	individuals,	
and	individuals	with	uORF	start	codon	interrupting	variants.	This	difference	in	protein	level	is	
shown	for	different	ratios	of	variant	possessing	individuals	(+/-,	-/-)	to	wild-type	individuals	
(+/+).	Larger	numbers	of	individuals	with	the	variant	allele,	allow	for	larger	statistical	power,	in	
calculating	the	effect	of	the	variant	on	protein	level.	
F:	rQTLs	(Battle	et	al.	2015)	interrupting	uORF	start	codons,	according	to	the	score	of	the	
corresponding	uORF.	rQTLs	are	more	likely	to	be	associated	with	a	positive	scoring	uORF.	
	
Tables:	
	
Table	1:	uORF	features.	Features	are	listed	according	to	the	KS	statistic	for	each	attribute,	
measured	between	positive	and	unlabeled	uORFs.	
	
Rank	 Attribute	 KS	statistic	 p	value	 Rank	 Attribute	 KS	statistic	 p	value	

1	 GTEX	Bone	
Marrow	

0.54	 0.000	 46	 #AGG	 0.20	 0.000	

2	 GTEX	Liver	 0.50	 0.000	 47	 #CTG	 0.20	 0.000	

3	 GTEX	Lung	 0.49	 0.000	 48	 Kozak	context	 0.19	 0.000	



	

4	 GTEX	
Pituitary	

0.49	 0.000	 49	 %	GERP	elements	 0.19	 0.000	

5	 Ribosome	
profiling	
uORF	start	
codon	

frequency	

0.48	 0.000	 50	 uORF	start	codon	to	
CDS	start	codon	

distance	

0.19	 0.000	

6	 GTEX	Nerve	 0.48	 0.000	 51	 mRNA	ΔG	uORF	start	
[20-59]BP	

0.18	 0.000	

7	 GTEX	Muscle	 0.47	 0.000	 52	 #GTG	 0.18	 0.000	

8	 GTEX	
Pancreas	

0.47	 0.000	 53	 mRNA	ΔG	uORF	start	
[40-79]BP	

0.18	 0.000	

9	 GTEX	
Adipose	
Tissue	

0.47	 0.000	 54	 %A	 0.17	 0.000	

10	 GTEX	Skin	 0.47	 0.000	 55	 5'	cap	to	uORF	start	
codon	distance	

0.16	 0.000	

11	 GTEX	Spleen	 0.47	 0.000	 56	 mRNA	ΔG	uORF	stop	
codon	[0,39]BP	

0.16	 0.000	

12	 GTEX	
Stomach	

0.46	 0.000	 57	 mRNA	ΔG	uORF	stop	
codon	[-20,19]BP	

0.16	 0.000	

13	 GTEX	Cervix	
Uteri	

0.46	 0.000	 58	 uORF	stop	codon	to	
CDS	start	codon	

distance	

0.16	 0.000	

14	 GTEX	
(combined)	

0.46	 0.000	 59	 mRNA	ΔG	CDS	start	[-
20,19]BP	

0.14	 0.000	

15	 GTEX	
Salivary	
Gland	

0.46	 0.000	 60	 Noderer	context	 0.13	 0.000	

16	 GTEX	Uterus	 0.46	 0.000	 61	 %G	 0.13	 0.000	

17	 GTEX	Small	
Intestine	

0.46	 0.000	 62	 mRNA	ΔG	uORF	start	
[60,99]BP	

0.12	 0.000	

18	 GTEX	
Prostate	

0.46	 0.000	 63	 mRNA	ΔG	uORF	start	
[80,119]BP	

0.12	 0.000	



	

19	 GTEX	
Esophagus	

0.46	 0.000	 64	 mRNA	ΔG	uORF	start	
[-20,19]BP	

0.12	 0.000	

20	 GTEX	Heart	 0.46	 0.000	 65	 mRNA	ΔG	uORF	end	
[-40,-1]	

0.11	 0.000	

21	 GTEX	
Bladder	

0.46	 0.000	 66	 mRNA	ΔG	uORF	start	
[100,139]	

0.11	 0.000	

22	 GTEX	Brain	 0.45	 0.000	 67	 mRNA	ΔG	CDS	start	
[20,59]	

0.11	 0.000	

23	 GTEX	Breast	 0.45	 0.000	 68	 mRNA	ΔG	uORF	start	
[0,39]	

0.10	 0.000	

24	 GTEX	Blood	
Vessel	

0.45	 0.000	 69	 %C	 0.10	 0.000	

25	 GTEX	
Fallopian	
Tube	

0.45	 0.000	 70	 mRNA	ΔG	uORF	end	
[20,59]	

0.09	 0.000	

26	 GTEX	Blood	 0.45	 0.000	 71	 mRNA	ΔG	CDS	start	
[40,79]	

0.09	 0.000	

27	 GTEX	
Thyroid	

0.44	 0.000	 72	 mRNA	ΔG	uORF	end	
[40,79]	

0.08	 0.000	

28	 GTEX	Vagina	 0.44	 0.000	 73	 SNPs/length	 0.07	 0.001	

29	 GTEX	Colon	 0.44	 0.000	 74	 mRNA	ΔG	CDS	start	
[0,39]	

0.06	 0.004	

30	 GTEX	Kidney	 0.43	 0.000	 75	 #TCG	 0.06	 0.011	

31	 GTEX	Testis	 0.43	 0.000	 76	 mRNA	ΔG	CDS	start	
100.139	

0.05	 0.027	

32	 GTEX	
Adrenal	
Gland	

0.42	 0.000	 77	 mRNA	ΔG	uORF	start	
[80,119]	

0.05	 0.028	

33	 GTEX	Ovary	 0.41	 0.000	 78	 %T	 0.05	 0.053	

34	 GTEX	Tissue	
Entropy	

0.40	 0.000	 79	 #ACG	 0.05	 0.056	

35	 	#Same	start	
codon	

0.30	 0.000	 80	 #CGA	 0.04	 0.142	



	

36	 #ATG	 0.28	 0.000	 81	 #CGT	 0.04	 0.198	

37	 #ATA	 0.28	 0.000	 82	 mRNA	ΔG	CDS	start	
[60,99]	

0.03	 0.309	

38	 #ATT	 0.26	 0.000	 83	 uORF	length	(BP)	 0.03	 0.447	

39	 #ATG	+	CTG	 0.26	 0.000	 84-89	 #ACG	 	 	

40	 #AAG	 0.23	 0.000	 84-89	 #CTA	 	 	

41	 #ATC	 0.22	 0.000	 84-89	 #GTA	 	 	

42	 Size	5'UTR	
(%)	

0.22	 0.000	 84-89	 Heterozygosity/length	 	 	

43	 Start	codon	
GERP	score	

0.22	 0.000	 84-89	 #1000	Genomes	SNPs	 	 	

44	 Stop	codon	
GERP	score	

0.21	 0.000	 84-89	 Heterozygosity	 	 	

45	 #TTG	 0.21	 0.000	 	 	 	 	

	
Table	3:	Individual	genes,	with	uORFs	interrupted	by	germline	human	variation.	Top	10,	with	
disease	assocations.	
	

uORF	ID	 SNP	 Score	 VAF	 Gene	
Transcripts	

Affected	

Disease	Process	

(PMID)	

ENST00000435422.3.u

ORF_CTG.11	
rs13170573	 12.3	 0.47	 SGCD	 28/80	 OSA	(25474115)	

ENST00000526686.1.u

ORF_TTG.4	
rs1461496	 10.3	 0.68	 HSPA8	 3/72	

CHF/asthma	

(20300519,	

22370858)	

ENST00000228872.4.u

ORF_CTG.8	
rs34330	 21.5	 0.66	 CDKN1B	 4/9	

Various	cancers	

(17908995)	

ENST00000355739.4.u

ORF_ATG.13	
rs751402	 15.0	 0.71	 ERCC5	 3/45	

Gastric	cancer	

(27228234)	

ENST00000302418.4.u

ORF_ACG.1	
rs12251445	 23.9	 0.31	 KIF5B	 1/7	

Exercise	

response	

(18984674)	



	

ENST00000270139.3.u

ORF_GTG.2	
rs2850015	 24.2	 0.78	 IFNAR1	 2/16	

Malaria	

susceptibility	

(25445652)	

ENST00000270139.3.u

ORF_GTG.4	
rs2850015	 23.1	 0.78	 IFNAR1	 2/16	 		

ENST00000406438.3.u

ORF_ATT.1	
rs1563634	 9.0	 0.68	 SMCR8	 1/3	

Cancer	risk	

(19432957)	

ENST00000462284.1.u

ORF_ATC.1	
rs937283	 19.2	 0.34	 MDM2	 15/20	

Epithelial	cancer	

(26261649)	

ENST00000310823.3.u

ORF_CTG.2	
rs12692386	 21.5	 0.58	 ADAM17	 4/8	

Vascular	disease	

(24853957)	

	
	
	
Table	4:	Individual	genes,	with	uORFs	interrupted	by	somatic	cancer	mutations.	Top	10	by	
prediction	score.	
	

uORF	ID	 Location	 Score	 Cancer	Type	
Gene	

Name	

Transcripts	

Affected	

ENST00000371142.4.uOR

F_ACG.2	
98346749	 28.4	 Lung	 TM9SF3	 2/3	

ENST00000371142.4.uOR

F_ACG.1	
98346749	 28.1	 Lung	 TM9SF3	 2/3	

ENST00000254480.5.uOR

F_ACG.2	
47823347	 26.9	 Lung	 SMARCC1	 3/8	

ENST00000254480.5.uOR

F_ACG.1	
47823347	 26.8	 Lung	 SMARCC1	 3/8	

ENST00000000233.5.uOR

F_ACG.2	
127228421	 26.7	 Stad	 ARF5	 1/3	

ENST00000250894.4.uOR

F_ACG.1	
1756190	 26.5	 Lung	 MAPK8IP3	 1/3	

ENST00000345496.2.uOR

F_CTG.3	
46221698	 25.7	 Breast	 UBE2G2	 4/15	



	

ENST00000358015.3.uOR

F_GTG.2	
110045592	 25.6	 Stad	 RAD23B	 2/17	

ENST00000258341.4.uOR

F_ACG.1	
182992786	 25.5	 Lung	 LAMC1	 1/8	

ENST00000395686.3.uOR

F_GTG.1	
53162310	 25.4	 Breast	 ERO1L	 5/20	

	
	


