
 

Significance [1pg] 

Innovation [1/4pg] 

Research strategy 

AIM1: Calling the TEs on large scale datasets. 

Rationale [1/4pg] 

To understand the mechanistic regulation activity of Transposable Elements (TEs) activity we 
are working on [[TESeq]], a framework developed by our group to unveil genomic and 
transcriptomic activity of Transposable Elements in whole genome and transcriptomes datasets. 
[[TESeq]] uses genomic datasets to detect, at the base level, retrotransposition of L1s, ALUs, 
SVAs, HERVs and retroCNVs by incorporating Paired-end and Split reads strategies. Our group 
is also developing TeXP, a transcriptome module of [[TESeq]] that uses fingerprints created by 
the mappability profile of TE subfamilies to distinguish pervasive transcription from autonomous 
transcription of Transposable Elements. We will apply the [[TESeq]] framework to thousands of 
local (aim2) and PCAWG (TCGA/ICGC) samples. In order to support these huge datasets, 
[[TESeq]] will be developed to leverage cloud environments. Ultimately, these studies will 
deliver the most comprehensive understanding of genomic and transcriptomic somatic 
activity of TEs in humans and empower us to make novel biological inferences.  

Preliminary [1.5pg] 

Our group has extensive experience in developing pipelines to detect structural variations in 
whole genome datasets. Paired-End Mapper (PEMer) is a pipeline for mapping SVs at high 
resolution with a confidence measure. Our group developed incorporated error models based 
on extensive simulations facilitated parameterization of PEMer and an evaluation of its 
performance.[R] Alignment with Gap Excision ( AGE) is a solution that finds the optimal solution 
by simultaneously aligning the 5′ and 3′ ends of two given sequences and introducing a ‘large-
gap jump’ between the local end alignments to maximize the total alignment score. AGE is also 
able to tandem duplications, inversions and complex events involving two large gaps[R].; 
CNVNator is a tool for CNV discovery and genotyping in a population and characterization of 
atypical CNVs, such as de novo and multi-allelic events.  
 
Consortium efforts such as the 1000 Genomes Project (1000GP) estimate that a typical genome 
contains 2.1–2.5 thousand SVs, affecting ~20 million bases, or ~5–6 times that of SNPs. 



 

Transposable Elements are one of the major mechanisms creating variation across human 
populations. As part of the 1000GP SV project, we have provided the research community with 
an unprecedented set of germline SVs from more than 2,500 normal human genomes that have 
been sequenced at low depth. As part of this effort we detected a total of 15,834 insertions of 
transposable elements; of which 3,048 are LINE-1 insertions and 12,786 are Alu insertions. 

 

[[1pg - Pgenes]] 

 
Our lab has expertise in pseudogene identification and annotation. Our work on this topic 
includes the creation of computational pipelines (PseudoPipe) for the automated identification of 
pseudogenes via sequence homology. Additionally, we have experience layering functional and 
comparative genomic information on top of identified pseudogenes. As a contributor to the 
GENCODE project, we developed the GENCODE pseudogene resource, which contains both 
computationally predicted and manually annotated pseudogenes as well as corresponding 
functional information from the ENCODE project. This includes information on transcription 
factor and Pol II binding sites, chromatin marks, and expression. This data can provide an 
indication of potential pseudogene activity. 
  
We also apply comparative genomic methods to identify sequence conservation at both the 
pseudogene level as well as between the CDS and 3’ UTR of a given pseudogene. These 
enable the identification of pseudogenes under selective pressure suggestive of a possible 
functional role, perhaps as noncoding RNA. This combination of functional and comparative 
data for identified pseudogenes has been collected in the psiDR resource 
(http://pseudogene.org/psidr/). 
  
The approaches and resources described above will be leveraged in the context of cancer 
genomics to better understand the possible roles played by processed pseudogenes. We are 
well positioned to identify processed pseudogenes in cancer genomes and study their 
expression and activity across various cancer types and in relation to corresponding healthy 
tissues. 
  

Tools for uniform processing of RNA-seq data.  

We have considerable expertise in analyzing RNA-Seq data, including experience in developing 
and setting up pipelines for the processing of RNA-seq data; specially for long RNA-seq data for 
ENCODE, long and short RNA-seq data for the PsychENCODE43 and Brainspan project as well 
as a custom pipeline developed for the analysis of small exRNA-seq data for the Extracellular 
RNA Communication Consortium (ERCC). We have already developed an efficient in-house 
data processing workflow for RNA-seq data that includes data organization, format conversion, 
and quality assessment. RSeqTools44 is a modular tool developed for the processing of RNA-
seq data and generating either transcript, gene or exon level quantifications. We also developed 
IQSeq45 which calculates the relative and absolute abundance of contributing transcript isoforms 
to a gene from RNA-seq data using a fast algorithm based on the Fisher information matrix. 



 

 

Research Plan [2-3pg] 

Calling genomic and transcriptomic activity of Transposable Elements 

a. Genomic caller - TeXP (1pg) 

We plan to develop new tools and to identify and classify structural variations (SVs) caused by 
the mobilization of Transposable Elements (TEs). The new and improved [[TESeq]], will deliver 
1) comprehensive identification of somatic mobilization of L1s, ALUs, SVAs, HERVs (+LTR) and 
retroCNVs (processed pseudogenes) in human healthy and tumoral genomes and 2) integration 
of RNA-seq data and TEs subfamily mappability profiles to estimate the autonomous 
transcriptional activity of TEs. 
 
Sample Selection. In order to understand the regulatory mechanisms of TEs in cancer we ought 
to describe the genomic and transcriptomic activity of TEs across healthy human tissue. As part 
of the 1000 Genomes Structural Variation our group we have access to three cohorts using the 
most comprehensive set of sequencing technologies. This dataset, in conjunction with 1000 
Genomes Phase3, will be used to assess the populational variation of TEs across healthy 
individuals. In the same line of thought our group is using RNA-seq datasets extracted from 
healthy individuals by GTEx to assess the autonomous transcriptional activity of TEs in healthy 
somatic tissue. GTex-p6 is comprised of 9,798 samples from 53 human tissues. After describing 
the transcriptomic and genomic activity of TE in healthy individuals we will tackle the somatic 
activity of TEs in tumoral samples. Our group is processing datasets from TCGA+ICGC (The 
Pan-Cancer Analysis of Whole Genomes - PAWG) that contains [[5790 samples from 2834 donnors - 
http://pancancer.info/]]. A dataset of that magnitude requires special strategies to be processed 
(described below). We will first prioritize samples with RNA-seq [[1299]] and particularly those 
with paired-end RNA-seq [[162]]. [...] [[CL+AM: Add local samples from JAX?]] 
 
Detection of somatic mobilization of Transposable Elements. 
Recent literature suggests that L1 is not the only autonomous TE active in the human genome. 
HERVs, especially solo LTRs, were recently described as polymorphic in human populations. In 
other hand, little is known about the mobilization of non-autonomous TEs. ALUs, SVAs and 
protein-coding mRNA (retroCNVs) mobilizations are thought to be rare events in the tumoral 
context, although only a handful of publications investigated the mobilization of these entities. 
To date, most of the pipelines to detect the mobilization of TE in humans focus on the 
mobilization of large L1Hs by using paired-end reads alignments or transductions of L1Hs. Non-
autonomous mobilizations, such as the mobilization of SVAs, ALUs, and retroCNVs are also 
contains the molecular signatures of L1 reverse transcriptase, therefore, contains Direct 
Repeats (DR) flanking their insertion and polyA at the 3' end.  
 
Our group is developing pipelines to detect mobilizations mediated by L1 reverse transcriptase 
by detecting the signatures of L1 retrotransposition and reads partially aligned to the human 



 

reference genome. This strategy intends to save processing time by avoiding realignment of the 
original datasets. In a given run from TCGA, typically 30x coverage, [N%] reads are aligned to 
the reference genome with high quality, of these, [N%] are partially aligned. We are clustering 
hard and soft clipped reads to define putative structural variations supported by multiple 
alignments. We use sequences extracted from soft-clipped reads to perform a local assembly 
and infer inserted/deleted sequences. Posteriorly, inferred insertions and deletions are mapped 
to annotated Transposable Elements (and protein coding genes for retroCNVs) to select 
potential mobilizations of TEs. Due to DR, insertion points of L1 machinery retrotranspositon are 
never at the base pair resolution but at the DR length resolution - 7-20bp. We are using DRs 
and poly(A) presence/absence at the 3' extremity to further support non-autonomous TE 
mobilization. At this stage, putative mobilizations of TE can be germinative or somatic. When 
available we will use paired tissue information and 1000 Genomes TE polymorphism dataset to 
annotate germinative mobilization of TEs. As a pilot analysis, we analyzed 63 samples from 
PCAWG and focused on the mobilization of ALUs. We found 1062 putative somatic insertions in 
63 tumor samples, yielding an average of 17 ALU insertions per tumor. [[extend?]] One of the 
insertion ALU insertions overlapped the ATR gene, known to restrict cell cycle and DNA 
damage sensor.    
 
To evaluate the performance of our genomic caller we took advantage of deep-coverage, PCR-
Free WGS data from 27 samples sequenced by the 1000 Genomes Project. Using the 
annotated SVs, specifically the L1 and Alu mobilizations, from the 1000GP Phase 3, we 
performed k=3 cross fold validation on this cohort, wherein we built a model using 18 samples 
and applied the model to the other 9 samples for SV discovery ab initio. This step was repeated 
1000 times with random selection for the learning samples and the test samples. 
 

b. Retrodup Caller [STL/AA] 

 

c. Transcriptome caller - TeXP (1.5pg) 

We analyzed more than 5,000 [[How much is enough for a pilot analysis?]] RNA-seq 
experiments from available datasets ([N]Table S1) from [N] human organs and explored the 
expression of repetitive elements across the human samples. We found that most of ancient 
and, therefore highly expressed and reliably mappable TEs - such as LTRs, DNA transposons, 
L2s; correlate with the most proximal genes, implying that its expression is due to background 
transcription near transcriptional active regions (TAR) ([N]Supplementary Figure 1). 
 
In other hand, for most RNA-seq experiments, read counts overlapping evolutionary young 
elements correlate with their cumulative subfamily bases count in the genome (Figure[[N]]). We 
hypothesize that most of this signal is generated by pervasive transcription of regions annotated 
as repetitive elements. In order to distinguish between autonomous transcription of L1, LTR 
and SVAs subfamilies and passive transcription of L1 subfamilies we simulated reads 
originating from their respective putative subfamily transcripts. The simulated reads were 
aligned to the human reference genome and the TE subfamily mappability fingerprint was 
created (Figure[N]). We found that younger TEs tends to have more reads mapped to other 
closely related subfamilies. For example, we find that only ~30% of reads from L1Hs (the most 



 

recent – and supposedly active. L1) maps back to loci annotated as L1Hs. While older 
subfamilies such as L1PA4, have a higher proportion of reads mapping back to its instances. 
We rationalized that the number of reads mapped to each subfamily must be a combination of 
signals generated by autonomous transcription of L1 Subfamilies and Pervasive transcription 
(Supplementary figure [N]).  
  
We developed a method called TeXP. TeXP is a comprehensive suite that creates TE subfamily 
fingerprint and also process RNA-seq experiments to estimate the proportion of transcriptional 
signal originating from pervasive transcription and autonomous transcription of TEs. Using 
TeXP, we first estimated the transcription level of L1 subfamilies across RNA-seq experiments 
generated by ENCODE (Table [N]). 
  
We find that MCF-7, a cell line derived from breast cancer, shows a remarkable high level of 
L1Hs transcription (288 TPM) as in agreement with previous works [R]. We further investigated 
the transcription level of L1 subfamilies in different cell compartments. Using RNA-seq from 
different cell compartments publicly available from ENCODE, we find that WholeCell(polyA+), 
WholeCell(polyA-) and Nuclear(polyA+) yield 20 thousand reads mapping to L1 subfamilies (Fig 
Sup[N]) while Cytoplasmic(polyA+) yields a [N]. Interestingly, the number of reads mapped to 
different L1 subfamilies varies across different cell compartments (Figure [N]). We find that 
despite the absolute difference, WholeCell(polyA+) and Cytoplasmic(polyA+) have a similar 
profile that according to TeXP indicates that approximately 50% of the reads are result of 
autonomous transcription of L1Hs. In contrast, less the 10% of the transcriptional signal in 
WholeCell(polyA-) and Nuclear(polyA+) derives from autonomous transcription of L1Hs. 
Conversely, most of the Nuclear(polyA+) signal is originated by pervasive transcription, 
suggesting that, at least in MCF-7, the signal of autonomous L1Hs transcription is mostly 
represented by potentially functional cytoplasmatic mature L1Hs RNA.  
 

 
 
We further analyzed ENCODE RNA-seq datasets and found that GM12878, a lympoblastoid cell 
line derived from a healthy individual blood, have no autonomous L1Hs regardless of the cell 
compartment and transcript selection process. As well as the most of the compartments from 
K562 and SKMEL5. However, in contrast to GM12878, SK-MEL-5 and K562 are cancer derived 
cell lines and show transcription level of respectively [N] and [N] in whole-cell polyA+ datasets. If 



 

pervasive transcription is the dominant mechanism L1s in a given experiment, we expect the 
number of reads overlapping each subfamily to correlate with the number of bases annotated as 
each subfamily. Indeed, We find that all experiments using GM12878 have correlations higher 
than .9[N]. With that result in mind we reprocessed [N] samples from BrainSpan and GTEx to 
assess the activity of L1 elements in developmental and adult brain tissues. Figure[N] shows 
that the majority of brain samples show extremely high correlation with the proportion of bases 
annotated as subfamilies. However, when discriminating samples per tissue we found that a 
number of them have lower correlation and therefore could support autonomous transcription of 
L1 subfamilies. 
 
[[+Tumoral brain samples?What sort of result I should add at this point?]] 
 

d. Ankit/Charles Caller 

 

e. Cloud Computing  [1 pg] 

PCAWG is a wonderful resource for this project but the file sizes prohibit standard processing 

pipelines. For example, for the lung cancer PCAWG data there are 180 BAM files with a mean 

size of 145 GB. Standard processing involves downloading the data and running analyses 

locally, however, assuming a 10 Mbps internet connection, it would take approximately one 

month to simply download the lung cancer data. Scaling this to all of the tissues available in 

PCAWG brings the download time to over two years.  

Rather than downloading and processing the files locally we've adapted TESeq to run in the 

cloud. While conceptually this process seems straightforward, there are significant hurdles to 

creating the algorithms in this fashion; TESeq remain the only transposable elements caller that 

are fully cloud compatible [is this true???]. This makes us uniquely positioned to be able to 

execute this analysis on the scale of the entire PCAWG dataset.  

The callers are run by … doing something in the cloud. 

Significant time and cost savings are also gained by processing a subset of the data. As 

described earlier, TESeq specifically targets those reads that are either [partially/poorly] aligned 

or unaligned, ignoring the significant portion of reads that map to the genome unambiguously. 

In addition to the logistical issues involving the size of the datasets, there are other issues to 

consider when executing analyses of this magnitude. It has been observed that the locations 

and quantities of TE activities in a genome is highly polymorphic in the human population; 

therefore, the data generated by this analysis are particularly useful for identifying individuals. 

We have extensive experience analyzing potential privacy incursions and have demonstrated 

how such files can be de-identified without losing information. ???? 



 

 

Expected Results + Pitfalls/Alternative approaches [1/2 pg] 

 
 

AIM2: Validation. 

Rationale [1/4pg] 

Preliminary [1.25pg] 

Research Plan [3pg] 

Expected Results + Pitfalls/Alternative approaches [1/2 pg] 

 

AIM3: Characterization of TEs activity. 

Develop tools to analyze the functional impact of TEs. We anticipate that most of TEs discovered 
in the human genome will not impact coding regions; thus, methods to evaluate the functional 
impact of TEs need to be genome-wide, including non-coding regions. We propose to develop a 
framework to evaluate TEs over three contexts: (1) Impacting protein coding genes; (2) 
Impacting non-coding RNAs; (3) Impacting non-coding regulatory regions such as Transcription 
Factor Binding Sites (TFBS). The impact score will take into account the varied ways a TE can 
affect genomic elements (e.g. partial overlap or engulf) and will integrate conservation 
information, existing genomic annotations, and epigenetic and transcriptomic datasets from 
sources such as ENCODE, 1000 Genomes, and GTEx.  Furthermore, we will upweight the 
impact score of SVs overlapping elements with ubiquitous activity, high network connectivity (ie 
hubs) and strong allelic activity (i.e. demonstrated functional sensitivity to variants). 

Rationale [1/4pg] 

Complex SVs are frequently associated to genetic diseases and are responsible for more nucleotides 
variation than single nucleotide polymorphism in the human genome. Despite their relevance, little is 
known about their functional impact in a genome-wide fashion. These events are disproportionately 
observed in the noncoding part of the genome and we anticipate that comprehensive assessment of TEs 
functional impact will require the integration of large-scale data resources such as ENCODE, 1000 



 

Genomes and GTEx. We also anticipate that this proposal will catalogue the largest number of TEs so 
far; therefore, new methods to functionally prioritize TEs and select a smaller number for the association 
studies will be necessary. 

Preliminary Results [1.5pg] 

Mechanism Classification (NAHR v NHR) 
We have intensively studied the distinct features of SVs originated from different mechanisms. This 
indicates specific creation processes and potentially divergent functional impacts[24092746][26028266]. 
The most notable type, NAHR, is associated with activating enhancers and open chromatin environment. 
Our analysis also showed that micro-insertions flanking NH type breakpoints are templated from late 
replicating genome sited with characteristic distances from breakpoints. These results not only shed light 
on SV forming processes but also indicate differences in functional impacts of different SVs types. We 
also performed SV mechanism annotations for the 1000 Genomes Phase 3 deletions using BreakSeq 
[20037582]; and categorized 29,774 deletions into NAHR, NHR, TEI and VNTR by their origination 
mechanisms. Among these, NHR is the most prevalent mechanism (~73% of all categorized deletions) 
[1000G Phase3 SV reference]. 
 
Functional Impact in Genes and Pseudogenes 
We have extensive experience in functional interpretation of coding mutations. To this end, we 
develop Variant Annotation Tool (VAT, vat.gersteinlab.org) to annotate protein sequence 
changes of mutations. VAT provides transcript-specific annotations and annotates mutations as 
synonymous, missense, nonsense or splice-site disrupting changes\cite{22743228}. We have 
used VAT to systematically survey loss-of-function (LoF) variants in a cohort of 185 healthy 
people as part of the Pilot Phase of the 1000 Genomes Project\cite{22344438}, distinguishing 
deleterious LoF alleles from common LoF variants in nonessential genes. We have done an 
integrative annotation of variants from 1092 humans from the 1000 Genomes Project Phase 1 
study\cite{24092746}. By using enrichment of rare nonsynonymous SNPs as an estimate of 
purifying selection, we showed that genes tolerant of LoF mutations are under the weakest 
selection, whereas cancer-causal genes are under the strongest. We have also participated in 
the 1000 Genomes Project Phase 3 studies on LoF variants and functional impact of SVs and 
found that a typical genome contains ~150 LoF variants. Furthermore, we discovered a 
significant depletion of SVs (including deletions, duplications, inversions and multiallelic copy 
number variants) in CDS, UTRs and introns of genes, compared to a random background 
model, which implies strong purifying selection. 

We developed PseudoPipe, the first large-scale pipeline for genome wide human 
pseudogene annotation\cite{16574694}, and then obtained the “high confidence” pseudogenes 
by combining computational predictions with extensive manual 
curation\cite{22951037,25157146}. We identified parent gene sequence from which the 
pseudogene arises based on their sequence comparisons\cite{22951037}. We have also 
studied the mechanisms of pseudogene formation by relating pseudogenes to segmental 
duplications\cite{20615899} and retroduplication events\cite{24026178}. Through integration of 
functional genomics data generated by the ENCODE Project, we identified a broad spectrum of 
biological activity for pseudogenes, and in particular, revealed ~15% of pseudogenes are 
transcribed\cite{25157146}. 
  
Functional Impact in non-coding RNAs 
We have also developed RSEQtools and IQseq, tools that build gene models and determine 
gene- and isoform-level RNA-Seq quantifications \cite{21134889, 22238592}.  Beyond 
quantification of RNA in gene regions, we have also been interested in identifying transcription 
in unannotated regions, and have developed specific tools to help quantify specific types of 



 

transcripts that require special processing, particularly pseudogenes and fusion transcripts 
\cite{17567993,25157146, 22951037, 20964841}. We have applied our expertise in RNA-Seq 
analysis to analyze and compare the transcriptomes of human, worm, and fly, using ENCODE 
and modENCODE datasets.  We found a finding striking similarity between the processes 
regulating transcription in these three distant organisms \cite{21177976, 25164755, 22955620}.  
We have also developed tools that specifically analyze features of ncRNAs. Our incRNA 
pipeline combines sequence, structural and expression features to classify newly discovered 
transcriptionally active regions into RNA biotypes such as miRNA, snRNA, tRNA and 
rRNA\cite{21177971}. Our ncVar pipeline further analyzes genetic variants across biotypes and 
subregions of ncRNAs, e.g. showing that miRNAs with more predicted targets show higher 
sensitivity to mutation in the human population \cite{21596777}. 
  
Functional Impact in non-coding regulatory regions 
We have extensive experience performing annotation of non-coding regulatory regions, with 
expertise in developing tools to analyze ChIP-Seq data to identify genomic elements and 
interpret their regulatory potential. For ChIP-Seq, we have developed two tools - PeakSeq and 
MUSIC - that identify regions bound by transcription factors and chemically modified histones 
\cite{19122651, 25292436}.  PeakSeq has been widely used in consortium projects such as 
ENCODE \cite{19122651, ENCODE main paper}.  MUSIC is a newly developed tool that uses 
multiscale decomposition to help identify enriched regions in cases where strict peaks are not 
apparent.  This tool has the advantage that it robustly calls both broad and punctate 
peaks\cite{25292436}.  We have further developed methods to use ChIP-Seq signals to identify 
regulatory regions such as enhancers and to predict gene expression, using both supervised 
and unsupervised machine learning techniques \cite{21324173, 22039215, 22955978, 
25164755, 22950945}. We developed method called Target Identification from Profile (TIP) to 
predict a TF’s target genes\cite{22039215}.  Furthermore, we have analyzed the patterns of 
variation within functional noncoding regions, along with their coding 
targets\cite{21596777,22950945,22955619}. We used metrics, such as diversity and fraction of 
rare variants, to characterize selection pressure on various classes and subclasses of functional 
annotations\cite{21596777}. In addition, we have also defined variants that are disruptive to a 
TF-binding motif in a regulatory region\cite{22955616}. 
  
Preliminary results related to networks and allelic expression 
A powerful way to integrate diverse genomic data is through networks representations. We have 
great experience studying regulatory network and relating variants to networks. In particular, we 
have integrated multiple biological networks to investigated gene functions. We found that 
functionally significant and highly conserved genes tend to be more central in various 
networks\cite{23505346} and positioned on the top level of regulatory networks \cite{22955619}. 
Further studies showed relationships between selection and protein network topology (for 
instance, quantifying selection in hubs relative to proteins on the network 
periphery\cite{18077332,23505346}). Incorporating multiple network and evolutionary 
properties, we have developed a computational method - NetSNP\cite{23505346} to quantify 
the indispensability of each gene. This method shows strong potential for interpretation of 
variants involved in Mendelian diseases and in complex disorders probed by genome-wide 
association studies. 
We have also developed a wide range of analyses on biological networks, with a particular 
focus on regulatory networks. We constructed regulatory networks for data from the ENCODE 
and modENCODE projects, identifying functional modules and analyzing network 
hierarchy\cite{22955619}. To quantify the degree of hierarchy for a given hierarchical network, 
we defined a metric called hierarchical score maximization (HSM) to infer the hierarchy of a 
directed network\cite{25880651}. We also developed Loregic to integrating gene expression and 



 

regulatory network data and characterize the cooperativity of regulatory factors and interrelate 
gate logic with other aspects of regulation, such as indirect binding via protein-protein 
interactions, feed-forward loop motifs and global regulatory hierarchy\cite{25884877}. We have 
also introduced several software tools for network analysis, including Topnet, tYNA and 
PubNet\cite{14724320, 17021160,16168087}.  
 We have also developed a tool, AlleleSeq\cite{21811232}, for the detection of candidate 
variants associated with allele specific binding (ASB) and allele specific expression (ASE) based 
on the construction of a personal diploid genome sequence (and corresponding personalized 
gene annotation) using genomic sequence variants (SNPs, indels, and SVs). 
 
 

Research Plan [1pg] 

1. 2-3pg Charles 

 

2.  (1) JZ/DL K562 & GM12878 - building regulatory network, relate to epigenome, how TE gets turned 

off 

 
By comparing the L1Hs from K562 and GM12878, we aim to answer two questions: 1) how and 
what regulatory signal changes around the full-length L1Hs open the transcriptional 
machineries; 2) how will the newly transcribed copies affect the downstream gene expressions. 
 
While roughly 17% of the human genome is derived from L1 elements, only a small fraction, 
which is about 7,000 in average human genome (needs to confirm, 
https://genomebiology.biomedcentral.com/articles/10.1186/gb-2009-10-9-r100), of elements are 
full-length and capable of retrotransposition. Our preliminary analysis revealed that only a small 
fraction of L1Hs retrotransposon insertions falls into the human genome blacklist regions. Of 
1,653 potential L1Hs regions, only 9 full-length L1Hs were overlapped with these regions. 
Hence it is possible to locate most of the parental L1Hs. 
 
We first aim to characterize both proximal and distal regulatory changes to identify the active 
one (autonomous?) from the potentially mappable full-length 1,644 L1Hs. In specific, we will set 
up models to quantify the TF binding events using ChIP-seq experiments as TF scores to 
search for promoter like regions. Such TF scores will represent the potential of L1Hs proximal 
regions to initiate the transcription process. Besides, we have also developed a match-filter 
based enhancer discovery algorithm to discover enhancers in these cell lines. Another algorithm 
called ENGINE will try to utilize Hi-C or ChIA-PET experiment to find target regions of the 
discovered enhancers. These distal regulatory elements could help to uncover the underlying 
mechanism of L1Hs transcription. Finally, the differences in epigenomic landscape within and 
flanking regions of these distal and proximal regulatory events will be characterized between 
K562 and GM12878 using the ENCODE DNase-seq and histone ChIP-seq data. Based on 



 

these profiles, we will identify parental L1Hs that were responsible for insertions specific to K562 
and cancer etiology. 
 
In addition , we will try to uncover the functional impact of the newly transcribed L1Hs (is this 
call newly transcribed?). A full category of cell-line-specific functional elements for K562 and 
GM12878 will be extracted from the ENCODE project, and we will investigate the effect of newly 
inserted regions to these functional elements. In particular, we will divide the potential functions 
into two categories, oncogenic and tumor-suppressive. For example, we will systematically 
search for disruptive functions of tumor suppressor gene transcription in K562 (compared to 
GM12878) through their distal or proximal regulatory elements as cancer suppressive events. 
We will also investigate the TF regulatory networks to search for the alternation of key TFs that 
are regulating either oncogene or tumor suppressor gene. 
 
 

3.  (1) SK functional impact of TEs 

 

4.  (1) FN GTEx+Aging 

 
 
 
 
 

Tissue Correlation p-value 

Brain - Cortex 0.23 1.8x10-2 
Brain - Putamen 0.25 3.1x10-2 

Kidney 0.27 2.9x10-2 
Pituitary gland 0.17 9x10-3 

Prostate -0.31 5.4x10-8 

Skin (not exposed) 0.22 1.38x10-5 
Stomach 0.12 1.9x10-2 

Testis 0.24 1.5x10-2 
Whole blood -0.1 4x10-3 
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