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1. Background
1.1 iCLIP (individual-nucleotide resolution CrossLinking-ImmunoPercipitation)
CLIP (CrossLinking-ImmunoPercipitation) is a method in molecular biology that combines UV crosslinking with immunopercipitation to detect protein interactions with RNA genome-wide.

Traditional CLIP protocol starts with inducing covalent bonds between RNA-binding protiens (RBP) and target RNA molecules. The RBP-RNA complex is then pulled down with designed antibodies. After that, the protein is then digested and adaptors are ligated to both ends of the RNA. The RNA is reverse transcribed with cDNA, which is further amplified and detected with high-throughput sequencing.

As the RBP is digested, a leftover polypeptide molecule remains on the RNA, causing some of the cDNA to be truncated at the crosslinking site because the polypeptide blocks the reverse transcriptase. These cDNAs only contain one adaptor sequence and cannot be amplified with PCR, and are discarded. The iCLIP method solves this limitation by adding only one adaptor sequence to the 5’-end of all cDNAs, then circularize the cDNA molecule and cleave the adaptor in between. Thus all reads are linked with adaptors on both ends, enabling the detection of truncated reads. (Fig 1)

Because iCLIP captures large amounts of shorter, truncated reads, these reads are more likely to map to multiple positions on the genome. We have discovered the proportion of multi-mapped reads varies from 30%~50%. These reads are usually discarded. We believe by inferring the true origin of multi-mapped reads could improve the accuracy of the binding region detection for iCLIP experiments.

	Sample
	Uniquely-mapped
	Multi-mapped

	iCLIP_mSRSF1_P19_mSRSF1-LAP_Mm_NNNCCACNN_20140206_lane2_8
	1744350
	949696
(35.2%)

	iCLIP_mSRSF1_P19_mSRSF1-LAP_Mm_NNNCCACNN_20140206_lane3_8
	122295
	121158
(49.8%)

	iCLIP_mSRSF1_P19_mSRSF1-LAP_Mm_NNNGGTCNN_20140206_lane2_7
	3080632
	1575670
(33.8%)

	iCLIP_mSRSF1_P19_mSRSF1-LAP_Mm_NNNGGTCNN_20140206_lane3_7
	755256
	598296
(44.2%)


Table 1. Number of multi-mapped reads
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Fig 1. Comparison between iCLIP and HITS-CLIP


2. Methods
2.1 Reads mapping
We use 28 sets of iCLIP sequencing results of 7 mouse RNA-binding Proteins (SRSF1~7). Reads that pass the quality control are mapped to mm10 genome using NovoAlign.

2.2 Evaluation of iCLIP mapping results
Theoretically, reads that are truncated at the same crosslinking site will have coinciding starting sites when mapped to the genome, while the readthrough reads.  In this sense, RBP binding sites can be identified merely by the starting sites of the truncated reads. In reality, the starting site of reads may deviate significantly from the actual binding site. In order to evaluate whether this can be applied to real iCLIP data, we map the truncated reads (<66bp) to the genomic regions defined by readthrough reads. We first segment the genome into bins of 300bp and discard the bins with read count less than 50. Then we calculate the offset of the starting sites of the truncated reads relative to the readthrough reads they overlap with.

2.3 Remapping of multi-mapped reads
iCLIP captures large amounts of shorter, truncated reads that  are more likely to map to various genomic locations, and are usually discarded for further analysis. However, these reads may contain important information that may improve the accuracy of binding peak detection when taken into account. We designed an Expectation-Maximization algorithm to estimate the true distribution of reads over the genome.

Define  as the parameters of true distribution of reads over the genome where  denotes genomic locations.  denotes the set of positions the th read ( is mapped to. For each read , define  when read  is generated from position  and  () as the indicator function of whether . The estimation of  indicates the expected probability whether read  is generated from position .

The Expectation-Maximization algorithm finds the maximum likelihood estimate of statistical variables in statistical models when the model contains unobserved latent variables (in our case). In the E-step (expectation), the expected values of latent variables are calculated according to the estimated parameters. Use  to denote the observation of mapping results.


In the M-step, the parameters are updated so as to maximize the likelihood of observed data given the estimated latent variables. 




The two steps are iterated until converge, when the difference function  falls below the defined threshold .


2.4 Distribution fitting and peak detection
We assume that the fit model distribution of the read count data represents the background noise, while locations with unexpectedly large read counts are identified as candidate binding peaks. This could be achieved using the software Piranha, which fits a zero-truncated negative binomial distribution to the read count data. We also tested on several other distributions like zero-truncated Poisson. Parameters are estimated with maximum-likelihood estimation. We conducted peak calling for both remapping results and uniquely-mapped reads only.

We also included RNA-seq data of the experimental groups using the zero-truncated negative binomial regression method enabled by Piranha. The expression data is provided to the algorithm as a covariate that corresponds to iCLIP read counts.

2.5 Motif analysis
Peak calling results of different samples of the same RBP are merged. Genomic regions 25nt upstream and downstream of the identified binding peaks are extracted from mm10 genome. We use DREME to find enriched motifs from the sequence sets. DREME reports motifs with lower P-values from Fisher’s exact test.


3. Results
3.1 iCLIP reads statistics
The read length of iCLIP reads varies from 12nt up to 67nt (Fig 2), in which 67nt-long reads constitute the largest proportion.

We plotted the heatmap (Fig 3a) of the overlapping results of shorter, truncated reads (<66nt) to the longer, readthrough reads (≥66nt). Reads of 66nt length are regarded as readthrough because their abundance are relatively few compared to any other length, and may probably be a result of sequencing errors. The peak in the middile shows that offsets of starting sites of the truncated reads relative to those of the readthrough reads are confined to a relatively small value (~±5nt), indicating iCLIP reads could be represented by their starting sites. Deviation of the peaks from the middle axis in the heatmap middle and end sites of the reads (Fig 3b,c) corresponds to the length of reads, further justifying the previous conclusion.

a. Start site
[image: Macintosh HD:Users:Tianxiao:Documents:Projects:iCLIP:0_overlap:2_png:iCLIP_mSRSF1_P19_mSRSF1-LAP_Mm_NNNCCACNN_20140206_lane2_8.start_start.png]
b. Middle site
[image: Macintosh HD:Users:Tianxiao:Documents:Projects:iCLIP:0_overlap:2_png:iCLIP_mSRSF1_P19_mSRSF1-LAP_Mm_NNNCCACNN_20140206_lane2_8.middle_middle.png]
c. End site
[image: Macintosh HD:Users:Tianxiao:Documents:Projects:iCLIP:0_overlap:2_png:iCLIP_mSRSF1_P19_mSRSF1-LAP_Mm_NNNCCACNN_20140206_lane2_8.end_end.png]
Fig3. Offset of start (a)/middle (b)/end (c) sites of overlapping reads


3.2 Remapping with EM algorithm
The trend of differences over iterations generally decreases (Fig 4), though there may be small fluctuations in the middle before it converges. 
[image: Macintosh HD:Users:Tianxiao:Documents:Projects:iCLIP:logs:png:remap_iCLIP_GFP_P19_control_Mm_NNNCCGGNN_20130724_lane1red_5.o1291016.txt.png]
Fig4. Change of differences over time

Remapping results show that signals merely constitute of multi-mapped reads without any uniquely-mapped reads are generated. We plotted the histogram of remapping results, in which  is the expected read count at position . The major characteristic of the read count distribution is that though non-integral values exist, integral values constitute much larger proportion of the overall values, making the histogram seem “discrete” and model fitting difficult because the fitted continuous distribution is mostly influenced by the count of integral values and could not represent the data well (Fig 5).

[image: iCLIP_mSRSF1_P19_mSRSF1-LAP_Mm_NNNCCACNN_20140206_lane2_8.remap.output.bed_0_10.png][image: iCLIP_mSRSF1_P19_mSRSF1-LAP_Mm_NNNCCACNN_20140206_lane2_8.remap.output.bed_20_30.png]
Fig5. Histogram of reads count

In order to overcome this problem, we assigned the multi-mapped reads uniquely to the locations with largest  value if the value is greater than 60% of the sum of all s of the locations the read is mapped to, otherwise the read is discarded. The proportion of reads retained varies from 30% to 60% (Table 2). This enables us to fit the distribution with a discrete model. Zero-truncated negative binomial fits the data better than zero-truncated Poisson (Fig 6).

	Sample
	Multi-mapped 
	Retained 

	iCLIP_mSRSF1_P19_mSRSF1-LAP_Mm_NNNCCACNN_20140206_lane2_8
	949696
	379543
(40.0%)

	iCLIP_mSRSF1_P19_mSRSF1-LAP_Mm_NNNCCACNN_20140206_lane3_8
	121158
	49697
(41.0%)

	iCLIP_mSRSF1_P19_mSRSF1-LAP_Mm_NNNGGTCNN_20140206_lane2_7
	1575670 
	859630
(54.6%)

	iCLIP_mSRSF1_P19_mSRSF1-LAP_Mm_NNNGGTCNN_20140206_lane3_7
	598296 
	210409
(35.2%)


Table 2. Reads retained after assigning
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Fig 7. ZTNB and ZTP fitting of reads count


3.3 Peak calling
Binding peaks are identified using zero-truncated negative binomial distribution using Piranha. When setting the cutoff of P-value to 0.01, generally more peaks are identified in the uniquely-mapped sets, while with cutoff 0.001 more peaks are identified from the remapping sets (Table 3a,b). This is mainly due to the properties of the read count distribution, as the remapping results feature more abundant medium values (2~20) as well as more outliers.

When incorporating expression data, the number of peaks fluctuates dramatically for some datasets while not for others (Table 3c). This shows that the influence of expression data is heterogeneous across samples.  

a. Cutoff 0.01
	RBP
	Uniquely-mapped
	Remapping

	SRSF1
	26408
	25777

	SRSF2
	15391
	13119

	SRSF3
	142881
	107935

	SRSF4
	35980
	38318

	SRSF5
	38867
	31894

	SRSF6
	97512
	84695

	SRSF7
	98672
	93527


b. Cutoff 0.001
	RBP
	Uniquely-mapped
	Remapping

	SRSF1
	13036
	14000

	SRSF2
	4252
	5381

	SRSF3
	36344
	38562

	SRSF4
	21461
	25629

	SRSF5
	13190
	15662

	SRSF6
	37232
	43732

	SRSF7
	50666
	53900


c. Cutoff 0.01, with expression data
	RBP
	Uniquely-mapped
	Remapping

	SRSF1
	25074
	24160

	SRSF2
	3454
	1602

	SRSF3
	114780
	148586

	SRSF4
	43704
	35002

	SRSF5
	27266
	40740

	SRSF6
	87838
	100438

	SRSF7
	109973
	101085


Table 3. Number of peaks detected

3.4 Motif analysis of identified binding regions
With cutoff 0.01, we could hardly see any improvement in sequence conservation after remapping (Table 4a). When the cutoff is lowered to 0.001, the remapping sets generally contain more enriched motifs than uniquely-mapped sets (Table 4b), but the improvements are not significant. For another thing, the occurrences of even the most enriched motifs are relatively small compared to the size of datasets, indicating low sequence conservation. Also, the motifs detected in the two methods for the same RBP are not corresponding to each other. The problem still exists when incorporating expression data (Table 4c). These observations indicate that read counts cannot be the sole criteria to detect peaks in iCLIP data and more sophisticated statistical methods are required.

a. Cutoff 0.01
	RBP
	Uniquely-mapped
	Remapping

	SRSF1
	[image: m02nc_GSKCTACA.png]888/26408
P = 3.2e-185
	[image: m01nc_RRGTTCGA.png]1020/25777
P = 2.5e-233

	SRSF2
	[image: m02nc_CAGCCWGG.png]529/15391
P = 3.9e-82
	[image: m02nc_CTGGKCTA.png]488/13119
P = 1.1e-111

	SRSF3
	[image: m01nc_GAWGR.png]69880/142881
P = 7.1e-840
	[image: m01nc_GAWGR.png]51129/107935
P = 5.2e-575

	SRSF4
	[image: m02nc_CASGCKGG.png]1126/35980
P =2.3e-168
	[image: m02nc_GSKCTACA.png]1150/38318
P = 1.8e-225

	SRSF5
	[image: m03nc_CWGAAGAB.png]2252/38867
P = 3.7e-259
	[image: m02nc_GRGTTCRA.png]1462/31894
P = 2.2e-321

	SRSF6
	[image: m01nc_ANGAKGA.png]16469/97512
P = 3.6e-705
	[image: m01nc_MWGAAGA.png]13457/84695
P = 1.4e-551

	SRSF7
	[image: m01nc_MDGAAGA.png]14304/98672
P = 1.8e-585
	[image: m01nc_MWGAAGA.png]11182/93527
P = 1.7e-567


b. Cutoff 0.001
	RBP
	Uniquely-mapped
	Remapping

	SRSF1
	[image: m02nc_CAKSCTGG.png]788/13036
P = 7.3e-144
	[image: m02nc_CAGCCWGG.png]909/14000
P = 1.4e-194

	SRSF2
	[image: m02nc_GGKCTACA.png]226/4252
P = 7.4e-55
	[image: m02nc_GGKCTACA.png]283/5381
P = 2.8e-80

	SRSF3
	NA
	NA

	SRSF4
	[image: m02nc_CASGCKGG.png]874/21461
P = 1.1e-155
	[image: m02nc_CAGCCWGG.png]928/25629
P =  2.2e-196

	SRSF5
	[image: m02nc_SRGCTACA.png]761/13190
P = 9.5e-171
	[image: m02nc_MDGAAGA.png]1117/15662
P = 1.4e-253

	SRSF6
	[image: m01nc_ARGAHGA.png]5054/37232
P = 5.5e-257
	[image: m01nc_MWGAAGA.png]6366/43732
P = 1.2e-225

	SRSF7
	[image: m01nc_MWGAAGA.png]5837/50666
P = 5.2e-303
	[image: ]6326/53900
P = 2.7e-336


c. Cutoff 0.01, with expression data
	RBP
	Uniquely-mapped
	Remapping

	SRSF1
	[image: ]
941/25074
P = 1.5e-173
	[image: ]
1117/24160
P = 6.6e-232

	SRSF2
	[image: ]
82/3454
P = 1.1e-20
	[image: ]
223/1602
P = 2.9e-54

	SRSF3
	[image: ]
69922/114780
P = 1.4e-831
	[image: ]
51197/148586
P = 1.5e-559

	SRSF4
	[image: ]
1237/43704
P = 7.2e-171
	[image: ]
1095/35002
P  =  3.6e-244

	SRSF5
	[image: ]
1970/27266
P = 2.9e-284
	[image: ]
1265/40740
P = 4.1e-264

	SRSF6
	[image: ]
21950/87838
P = 4.4e-321
	[image: ]
16142/100438
P = 2.5e-286

	SRSF7
	[image: ]
27172/109973
P = 2.7e-420
	[image: ]
29685/101085
P = 9.7e-485


Table 4. Motif analysis results


4. Summary
We have designed and implemented an Expectation-Maximization algorithm to remap the discarded multi-mapped reads to the genome and carried out peak detection and motif analysis. At present, the advantages of including multi-mapped reads have not been apparent compared to the traditional methods. Meanwhile, the poor performance of Piranha in both methods indicates that read count alone could not identify high-quality binding peaks. 

Also, we would need different methods to evaluate the identified peaks other than DREME due to the false discoveries in large datasets. It would be a more optimal choice to consider the distribution of the motifs, rather than just the occurrences.


5. Outlook
The high-resolution signals produced by iCLIP experiment require more sophisticated analytical methods. There are several possible ways to improve the current results.

Remapping the multi-mapped reads could make peak detection more accurate, but it could also produce artifacts if large numbers of reads are mapped to the same location. Assuming the real peaks are sparse relative to the abundance of signals, the accuracy of remapping could be improved by placing a negative Dirichlet prior on the distribution of parameters , which enforces sparseness of the distribution with locations with small values discarded.

Since iCLIP aims to find the binding sites at single-nucleotide resolution, it may not be rational to bin the genome and regard the bins as a whole for downstream analysis. Because of this, the Hidden-Markov Model could be implemented to identify binding sites after filtering out the enriched regions. The problem is that the emission probability of reads may not be uniform across the genome, as the model assumes.

Finally, the binding preferences of RBPs could alternate. We could evaluate the identified binding regions more reliably by either clustering the sequences into groups for motif analysis or considering the secondary structure features of the regions. Also, constrains in motif conservation could be incorporated into remapping and peak detection algorithms.
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