
© Oxford University Press 2005 1

1 GENOME ANALYSIS

Efficient Detection of Highly Mutated Regions with Mutations
Overburdening Annotations Tool (MOAT)
Lucas Lochovsky1,2,† , Jing Zhang1,2,† and Mark Gerstein1,2,3*
1Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
2Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
3Department of Computer Science, Yale University, New Haven, Connecticut 06520, USA
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Identifying genomic regions with a higher-than-expected mutation
burden (i.e. overburdened regions) has a number of useful applica-
tions. In the context of somatic cancer variants, overburdened re-
gions may be highly associated with cancer progression. In the
germline, accumulation of rare variants could be an indicator of posi-
tive selection. Mutation burdens could also be applied in the context
of de novo mutations to identify precursor variants for genetic dis-
ease. Here, we release a new GPU-based computational tool, called
MOAT (the Mutations Overburdening Annotations Tool), to perform
mutation burden analysis with ultrafast speed. MOAT takes no as-
sumption about the mutation process except that the background
mutation rate (BMR) changes smoothly with other genomic features.
This nonparametric scheme randomly permutes the variants (or
target regions) on a relatively large scale where the BMR is as-
sumed to be constant to provide robust burden analysis in various
scenarios. Furthermore, it also incorporates a somatic variant simu-
lator called MOATsim, which randomly permutes the input variants
with effective covariate control. In conclusion, MOAT will be useful
for a broad range of analyses that would benefit from a methods
evaluation on variant permutation data.
Availability: MOAT is available at moat.gersteinlab.org

2 INTRODUCTION
A common analysis strategy in high throughput sequencing is to
look for genomic elements with a high accumulation of variants
across a large cohort of patients. However, it is well known that the
background mutation rate (BMR) is highly heterogeneous across
the whole genome due to numerous external features. For example,
replication timing and chromatin structure usually affects the BMR
at a scale of up to one megabase (Lochovsky, et al., 2015). Such
effects may change in a dynamic way across the genome, and is
usually difficult to model. Hence, our Mutations Overburdening
Annotations Tool (MOAT) relies on no assumption except that the
BMR changes slowly across the genome and approximately re-

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint First Authors.

mains the same within a local context. Therefore, this non-
parametric scheme provides robust mutation burden significance
results for any element through permutations.

MOAT offers two methods for determining elevated mutation
burdens, the annotation-centric algorithm (MOAT-a) and the vari-
ant-centric algorithm (MOAT-v), both of which involve a compar-
ison of each annotation’s mutation accumulation to that of the
surrounding genome. We also offer MOATsim, a variant distribu-
tion simulator based on MOAT-v’s source code, which reflects the
distribution of whole genome covariates that influence the BMR.
In the following sections, we will describe the implementation of
MOAT for parallel computer systems, which enables highly effi-
cient data size scalability. We also evaluate MOAT’s ability to
recall known noncoding cancer drivers on a collection of several
hundred cancer whole genomes’ variant data.

3 METHODS
A number of covariates jointly affect the BMR in a complicated
and dynamic manner, making variant burden analysis very chal-
lenging (Lochovsky, et al., 2015). However, the length of target
region usually varies from hundreds of bases (such as transcription
start sites) to thousands of bases (such as enhancers), while exter-
nal features, such as replication timing, work at up to megabase
resolution. Therefore, MOAT circumvents the necessity for such
parametric models by explicitly permuting the variants or annota-
tions within a region that has essentially constant levels of all the
covariates. It assumes constant covariate values over a fairly large
interval—with a typical size of ~100kb—that is appreciably larger
that the annotations we wish to assess for elevated mutation bur-
dens.

One important issue with these permutation algorithms is that
their running times do not scale well to noncoding annotation sets.
A typical burden analysis usually consists of more than 105 annota-
tions (such as all transcription start sites of GENCODE annota-
tion), with 1000 permutations per region. It can easily expand to
billions of permutation and intersection calculations, making the
overall operation very compute intense. Our analyses indicate that
an unoptimized run that involves ~3 million annotations with 1000
permutations each would take about 14 hours to complete.

Style Definition: Normal

Deleted: A major challenge of working with somatic
cancer variants is the need to identify those variants
responsible for disruptions that drive cancer progres-
sion out of the thousands that arise due to background
mutation processes. One approach is to scan the ge-
nome for elements with a high frequency of intersecting
somatic variants, or elevated mutation burdens. The
detection of significant mutation burdens is also useful
in germline variant analysis, as rare variant burdens
may indicate increased risk of genetic disease.. Here,
we introduce the Mutations Overburdening Annotations
Tool (MOAT), a new computational tool designed to
identify regions with a high mutation burden relative to
the surrounding genome in a non-parametric way.
MOAT is useful for prioritizing annotations to study in
downstream analyses, as high mutation burden anno-
tations are most likely to be driver elements in genetic
disease. We release an implementation that offers us-
ers two forms of mutation burden analysis through em-
pirical permutations, as well as serial and parallel ver-
sions of each form. We also demonstrate MOAT’s ca-
pability for finding known noncoding drivers in cancer
variant data.

Deleted: High

Formatted: Indent: First line: 0"

Deleted: of genetic disease cohorts has enabled the identi-
fication of the molecular causes of these illnesses. This data
can be utilized to find the somatic single nucleotide variants
(SNVs) in each patient. However, due to the relatively high
number of neutral variants in such patients’ genomes, it is
not immediately apparent which variants are directly con-
nected to the disease phenotype. A common strategy for
addressing this issue

Deleted: . By modeling the factors that influence the sto-
chastic mutation rate, the elements that are more mutated
than expected under the background model can be deter-
mined. ... [1]
Deleted: , such as

Deleted: This effect

Deleted: background mutation rate

Deleted: such

Deleted: of

Deleted: This scalability is important for guaranteeing a
reasonable running time given the high computational inten-
sity of the permutation step.

Lochovsky et al.

2

Deleted: K.Takahashi

Here we have addressed this compute intensity by taking ad-
vantage of very large-scale parallelization available on modern
GPU technology. The key realization behind this design choice is
the fact that MOAT’s most intense operations consist of a huge
number of mathematical calculations with no data dependencies
between each calculation, which plays perfectly into the strengths
of general purpose GPU pipelines. In the following sections, we
demonstrate MOAT’s parallelization schemes for both the variant-
based and annotation-based permutation algorithms.

3.1 MOAT-a: Annotation-centric Permutation
MOAT takes two input files: the annotation file (afile) and the
variant file (vfile). The parallel version of MOAT’s annotation-
centric permutation algorithm, MOAT-a, is a C++ program that
uses NVIDIA’s CUDA language to instantiate parallel graphics
processing unit (GPU) threads, and divides the computational
workload across these threads. MOAT-a’s steps are illustrated in
Fig. 1. MOAT-a iterates through the annotations, computing the
intersecting variant count per annotation. It then defines a genomic
block with user-defined boundaries centered on the current input
annotation, and randomly moves the annotation within this block.
MOAT-a will find the variant counts from the vfile that intersect
each of the random bins, which are compared to the input annota-
tion’s variant count. The input annotation’s p-value is defined as
the fraction of bins with a variant count equal to or greater than the
input annotation’s variant count.

In the GPU version, the input variants and annotations are copied
to the video RAM (VRAM), making the data accessible to the
GPU’s threads. The annotations are divided among the threads,
and each thread iterates through its subset of annotations, finding
the observed variant count for each annotation, computing the
permuted locations, and calculating the permuted variant counts.
The permuted annotation locations are temporarily stored to calcu-
late the variant counts and derive the annotation’s p-value, after
which the memory is freed for the next annotation. Only the p-
values are persistently stored, which controls MOAT-a’s usage of
VRAM—a far more limited resource compared to main memory.
The p-values are then copied back to main memory for generating
the program’s output.

3.2 MOAT-v: Variant-centric Permutation
MOAT-v’s variant-centric permutation algorithm creates permuted
datasets by assigning new coordinates to each variant within a
local genome region to account for the covariate effects from

known genomic features (Fig. 2a). MOAT-v preserves the trinu-
cleotide context of the original variant when choosing a new vari-
ant location. In other words, the new variant must have the same
nucleotide identity as the original variant, and the two neighbors of
the new variant must also have the same nucleotide identity as the
original variant’s neighbors. For example, if MOAT-v is given an
input variant that has a reference base G, and is surrounded by a T
and a C (i.e. the variant’s trinucleotide context is TGC), then
MOAT-v gathers up every position in the same bin where TGC
occurs in the reference, and selects one of these with uniform
probability (Fig. 2b). This constraint reflects the differential muta-
tion probabilities of different trinucleotides (i.e. due to biochemical
differences, some trinucleotides are more likely to be mutated than
others), and ensures that the permuted variant set does not change
the expected distribution of mutated trinucleotides. Hence, MOAT-
v preserves the mutational signature of the input variants.

MOAT-v takes a vfile and an afile as inputs, and generates a
permuted dataset by subdividing the genome into blocks of a user-
defined size (excluding mappability blacklist regions), and assign-
ing each block’s variants new positions within the same block,
preserving trinucleotide context in the process. This process con-
tinues until n permutations have been generated. At this point,
MOAT-v will calculate n intersecting permuted variant counts for
each of the input annotations. A p-value for each annotation is
determined based on the fraction of the n intersecting permuted
variant counts that are equal to or greater than the count derived
from the original vfile variants.

3.3 MOATsim: Simulated Somatic Variant Datasets
In addition to the main MOAT programs, we have developed a
somatic variant simulator, MOATsim, that reflects the levels of
whole genome covariates that directly influence the background
mutation rate. It is based off the variant permutation step in
MOAT-v, but also incorporates bigWig signal files in its determi-
nation of permuted variant locations. Before working with the
actual variant data, MOATsim imports the covariate data, and

Figure 1 For each input annotation, MOAT-a finds the number of intersect-
ing vfile variants (red). The annotation’s coordinates are then shuffled to a
new location within the local genome context bounded by user-defined
parameters d_min and d_max, producing n permutations (blue). Each per-
mutation’s intersecting variant count is computed.

d_max	 d_min	 d_min	 d_max	annota+on	

permuted	annota+ons	

Figure 2 (a) In MOAT-v, the variant locations are permuted within the
local genome context. The whole genome is divided into bins of a user-
defined size, and variants are moved to new coordinates within the same
bin, preserving the local mutation context. As with MOAT-a, n permuta-
tions are produced. (b) To reflect the influence of nucleotide identity on
mutation likelihood, MOAT-v ensures that variants are moved to locations
with the same trinucleotide context.

annota%on	

permuted	variants	

CTTCAAGTTCTGACCTCCTGTCAATATCCCTTCCCCTCAACTTGACAATC	
*	 *	 *	

Original	loca%on	

(a)	

(b)	

*	=	possible	new	loca%ons	

Deleted: MOAT takes two input files: the annotation file
(afile) and the variant file (vfile).

Deleted:

Deleted: (Nickolls, et al., 2008)

Deleted: an extended region

Deleted: a

Deleted: distance

Deleted: at

Deleted: extended region

Deleted:

Deleted: <sp><sp>A typical MOAT-a run involves an
annotation count on the order of ~105 at a minimum, each of
which are permuted 1000 times. Hence, the overall computa-
tion involves millions—or even billions—of permutation and
intersection calculations, which take an inordinate amount of
time to complete. However, this computation is very easily
adaptable to parallel execution, so MOAT-a breaks up the
overall computation into many separate, independent units of
computation. ... [2]
Deleted: <sp>

Deleted: These covariates influence the whole genome
background mutation rate, hence they must be taken into
consideration when assessing an annotation’s mutation bur-
den relative to background mutation. For small enough re-
gions, we assume these covariates are essentially constant,
and we can perform variant permutations under the assump-
tion of uniformity, with one key constraint. MOAT-v must
preserve

Deleted: bins

Deleted: bin’s

Deleted: bin

Deleted: <sp>

Deleted: intersecting variant

Deleted: Initial prototypes of the parallel version of
MOAT-v used the Nvidia CUDA framework, but the neces-
sity of loading the reference genome sequence to preserve
trinucleotide context in the permutation step resulted in pro-
hibitive memory requirements with respect to the available
GPU video RAM. As a result, MOAT-v was instead written
to parallelize its workflow across multi-core CPUs using the
OpenMPI framework (Gabriel, et al., 2004). Under this ar-
rangement, a single CPU core is designated to run the "mas-
ter" process, and is responsible for dividing up the overall
work and distributing it to the "worker" processes, which run
on the remaining cores.

Efficient Detection of Highly Mutated Regions with Mutations Overburdening Annotations Tool (MOAT)

3

evaluates covariate signals over a set of whole genome bins (user-
defined size, mappability blacklist regions excluded). These bins
are then clustered based on their covariate signal profile using k-
means clustering. With this information, variants can be permuted
not just within their local genome context, but across all bins with
the same covariate signal profile (i.e. within the same cluster). This
additional functionality enhances MOATsim’s accurate reflection
of the expected somatic variant distribution of a human genome.

4 RESULTS
4.1 MOAT-a

Table 1. Speed benchmark of MOAT-a with respect to the number of
input annotations, and MOAT-v with respect to the number of parallel
CPUs. MOAT-a’s time trials involved generating 1000 permuted variant
datasets, while MOAT-v’s time trials involved generating one permuted
variant dataset using ~8 million input variants, and 1,000,000-bp bins. For
large datasets, the GPU algorithm substantially outperforms the CPU ver-
sion.

MOAT-a MOAT-v

Annota-
tions

 GPU
speedup

Parallel
CPUs

Speedup

 ~14,000 1.01x 2 1.97x
 ~130,000 1.34x 4 3.50x
 ~3,000,0

00
 6.26x 8 5.60x

We demonstrate the magnitude of the CUDA speedup by evaluat-
ing the running time of MOAT-a on datasets of various sizes. We
took a dataset of pancancer whole genome variant calls that in-
cludes 507 cancer genomes of various types from (Alexandrov, et
al., 2013), and 100 stomach cancer genomes from (Wang, et al.,
2014), totaling ~8 million variants. We used 3 different annotation
sets as input to demonstrate MOAT-a’s scalability. We tested
MOAT-a’s running time on these 3 annotation sets with the num-
ber of random bins n = 1000 (Table 1, left half). It is clear that
when scaling up to very large datasets, the CPU version’s runtime
increases considerably, while the GPU version’s runtime rises very
gradually.

Due to the relative lack of verified noncoding regulatory ele-
ments associated with cancer, it is difficult to assess the accuracy
of MOAT-a’s predictions. Nevertheless, we demonstrate MOAT-
a’s usefulness for finding elevated mutation burdens in genomic
elements by identifying highly mutated GENCODE transcription
start sites, promoters, and enhancers, using the aforementioned
pancancer variant dataset. TERT, which has well-documented
cancer-associated promoter mutations (Vinagre, et al., 2013), was
found to have two TSSes with significant mutation burden (both
had BH-corrected p-values of zero). Other well-known cancer-
associated TSS sites, including TP53, LMO3, and AGAP5, also
had significant mutation burdens (all had BH-corrected p-values of
zero).

4.2 MOAT-v

Using the same set of cancer variants used in the MOAT-a tests,
parallel MOAT-v’s running time was evaluated across multiple
CPU configurations to demonstrate the performance gains of the
OpenMPI implementation. MOAT-v in OpenMPI is set up to run
one master process on one of the available CPU cores, and use the
rest for worker processes. Hence, the program must be run with 3
cores to get two cores to process the work simultaneously, 4 cores
to get three cores to process the work simultaneously, etc. Table 1
(right half) represents the running time improvement relative to the
number of workers added. This improvement scales close to linear
with the number of workers, indicating that the load balancing
between each CPU core is very evenly divided, enabling signifi-
cant time savings when MOAT-v is run in parallel. MOATsim’s
running time exhibited similar characteristics (data not shown).

MOAT-v was used on the same variant and annotation sets used
to demonstrate MOAT-a’s usefulness for finding elevated cancer
mutation burdens. MOAT-v produced comparable results—the
same known cancer-associated TSSes flagged as significant in
MOAT-a were also flagged in MOAT-v.

5 DISCUSSION
Identification of genomic elements with a high mutation burden is
useful for narrowing down the exact site of functional disruption.
We introduce Mutations Overburdening Annotations Tool
(MOAT), a new software tool to facilitate such analyses. We
demonstrate the usefulness of this tool for flagging putative
noncoding cancer drivers, and provide CUDA- and OpenMPI-
accelerated versions that dramatically increase the speed of muta-
tion burden analysis. Given the demand for efficient, meaningful
analysis of genome sequence data that is now being produced at a
very high rate, we consider MOAT’s provision of such analysis for
genetic disease drivers quite timely.

Funding: This work was supported by the National Institutes of
Health [5U41HG007000-04].
REFERENCES
Alexandrov, L.B., et al. Signatures of mutational processes in human cancer. Nature

2013;500(7463):415-421.

Lochovsky, L., et al. LARVA: an integrative framework for large-scale analysis of

recurrent variants in noncoding annotations. Nucleic acids research

2015;43(17):8123-8134.

Vinagre, J., et al. Frequency of TERT promoter mutations in human cancers. Nature

communications 2013;4:2185.

Wang, K., et al. Whole-genome sequencing and comprehensive molecular profiling

identify new driver mutations in gastric cancer. Nature genetics 2014;46(6):573-582.

Deleted: (CPU and GPU versions) …ith respect to the ... [3]

Deleted: Annotation set

Formatted Table

Deleted: Number of annotations

Deleted: CPU version running time

Deleted: GPU version running time

Deleted: Fold…PU speedup of GPU version ... [4]
Deleted: DRM

Deleted: 1hr23min

Deleted: 1hr22min

Deleted: TSS

Deleted: 1hr55min

Deleted: 1hr26min

Deleted: DHS

Deleted: 13hr46min

Deleted: 2hr12min

Deleted: , using both the CPU and GPU versions to calcu-
late the output.… We took a dataset of pan- ... [5]

Deleted: MOAT’s…OAT-a’s predictions. Nevertheless, ... [6]

Deleted: 2

Deleted: Table 2. Speed benchmark of MOAT-v with
respect to the number of CPU cores assigned worker pro-
cesses. Each time trial involved using MOAT-v to generate
one permuted variant dataset using ~8 million input variants,
and 1,000,000-bp bins.
Running time ... [7]

Deleted: After applying BH correction to all p-values,
there were 1394 promoters, 451 TSSes, and 109 DRMs with
significant mutation burdens. Hence, MOAT-v appears to be
the more conservative algorithm.

Formatted: Font:Times

Formatted: Indent: First line: 0"

Deleted: Benjamini, Y. and Hochberg, Y. Controlling the
false discovery rate: a practical and powerful approach to
multiple testing. Journal of the Royal Statistical Society.
Series B (Methodological). 1995;57(1):289-300.
Nickolls, J., et al. Scalable parallel programming with
CUDA. Queue 2008;6(2):40-53. ... [8]

Deleted: Nickolls, J., et al. Scalable parallel programming
CUDA. Queue 2008;6(2):40-53. ... [9]
Deleted: Yip, K.Y., et al. Classification of human genomic
regions based on experimentally determined binding sites of
more than 100 transcription-related factors. Genome biology
2012;13(9):R48.

Page 1: [1] Deleted LL+JZ 8/23/16 5:45:00 PM
. By modeling the factors that influence the stochastic mutation rate, the elements that are more mutated than expected under the
background model can be determined.
It is

Page 2: [2] Deleted LL+JZ 8/23/16 5:45:00 PM

A typical MOAT-a run involves an annotation count on the order of ~105 at a minimum, each of which are permuted 1000
times. Hence, the overall computation involves millions—or even billions—of permutation and intersection calculations, which
take an inordinate amount of time to complete. However, this computation is very easily adaptable to parallel execution, so
MOAT-a breaks up the overall computation into many separate, independent units of computation.

MOAT-a’s speed can be further improved by taking advantage of the thousands of parallel stream processors available on
modern graphics processing units (GPUs). GPUs are designed for efficiently processing 3D graphics calculations, which largely
consist of numerous matrix operations with relatively low memory usage Due to the limited amount of video RAM (VRAM)
available on GPUs, MOAT-a’s GPU version was planned to use GPU acceleration only for the most compute intense step. This is
the permutation step, where new annotation locations are determined in the local genome surrounding each annotation. The anno-
tation coordinates are copied to VRAM, and one permutation per annotation is calculated in parallel. The coordinates for the
permuted annotations are copied back to main memory for the fast intersection step. This permutation/intersection loop is per-
formed n times (the user-defined total number of permutations), after which p-values are calculated using the observed variant
counts and the permuted variant counts (Fig. 1).

Page 3: [3] Deleted LL+JZ 8/23/16 5:45:00 PM
(CPU and GPU versions)

Page 3: [3] Deleted LL+JZ 8/23/16 5:45:00 PM
(CPU and GPU versions)

Page 3: [3] Deleted LL+JZ 8/23/16 5:45:00 PM
(CPU and GPU versions)

Figure 2 (a) In MOAT-v, the variant locations are permuted within the
local genome context. The whole genome is divided into bins of a user-
defined size, and variants are moved to new coordinates within the same
bin, preserving the local mutation context. As with MOAT-a, n permuta-
tions are produced. (b) To reflect the influence of nucleotide identity on
mutation likelihood, MOAT-v ensures that variants are moved to locations
with the same trinucleotide context.

annota%on	

permuted	variants	

CTTCAAGTTCTGACCTCCTGTCAATATCCCTTCCCCTCAACTTGACAATC	
*	 *	 *	

Original	loca%on	

(a)	

(b)	

*	=	possible	new	loca%ons	

Page 3: [3] Deleted LL+JZ 8/23/16 5:45:00 PM
(CPU and GPU versions)

Page 3: [3] Deleted LL+JZ 8/23/16 5:45:00 PM
(CPU and GPU versions)

Page 3: [3] Deleted LL+JZ 8/23/16 5:45:00 PM
(CPU and GPU versions)

Page 3: [3] Deleted LL+JZ 8/23/16 5:45:00 PM
(CPU and GPU versions)

Page 3: [4] Deleted LL+JZ 8/23/16 5:45:00 PM
Fold

Page 3: [4] Deleted LL+JZ 8/23/16 5:45:00 PM
Fold

Page 3: [5] Deleted LL+JZ 8/23/16 5:45:00 PM
, using both the CPU and GPU versions to calculate the output.

Page 3: [5] Deleted LL+JZ 8/23/16 5:45:00 PM
, using both the CPU and GPU versions to calculate the output.

Page 3: [5] Deleted LL+JZ 8/23/16 5:45:00 PM
, using both the CPU and GPU versions to calculate the output.

Page 3: [5] Deleted LL+JZ 8/23/16 5:45:00 PM
, using both the CPU and GPU versions to calculate the output.

Page 3: [5] Deleted LL+JZ 8/23/16 5:45:00 PM
, using both the CPU and GPU versions to calculate the output.

Page 3: [5] Deleted LL+JZ 8/23/16 5:45:00 PM
, using both the CPU and GPU versions to calculate the output.

Page 3: [5] Deleted LL+JZ 8/23/16 5:45:00 PM
, using both the CPU and GPU versions to calculate the output.

Page 3: [5] Deleted LL+JZ 8/23/16 5:45:00 PM
, using both the CPU and GPU versions to calculate the output.

Page 3: [6] Deleted LL+JZ 8/23/16 5:45:00 PM
MOAT’s

Page 3: [6] Deleted LL+JZ 8/23/16 5:45:00 PM
MOAT’s

Page 3: [6] Deleted LL+JZ 8/23/16 5:45:00 PM
MOAT’s

Page 3: [6] Deleted LL+JZ 8/23/16 5:45:00 PM
MOAT’s

Page 3: [7] Deleted LL+JZ 8/23/16 5:45:00 PM

Table 2. Speed benchmark of MOAT-v with respect to the number of CPU cores assigned worker processes. Each time trial involved using
MOAT-v to generate one permuted variant dataset using ~8 million input variants, and 1,000,000-bp bins.

of worker CPU cores Running time Fold speedup

1 3hr44min 1.00x
2 1hr54min 1.97x
4 1hr4min 3.50x
8 40min 5.60x

Page 3: [8] Deleted LL+JZ 8/23/16 5:45:00 PM
Benjamini, Y. and Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society.

Series B (Methodological). 1995;57(1):289-300.

Gabriel, E., et al. Open MPI: Goals, concept, and design of a next generation MPI implementation. Springer 2004:97-104.

Harrow, J., et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome research 2012;22(9):1760-1774.

Page 3: [9] Deleted LL+JZ 8/23/16 5:45:00 PM
Nickolls, J., et al. Scalable parallel programming with CUDA. Queue 2008;6(2):40-53.

Thurman, R.E., et al. The accessible chromatin landscape of the human genome. Nature 2012;489(7414):75-82.

