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ABSTRACT 
Identifying genomic regions with a higher-than-expected mutation 
burden (i.e. overburdened regions) has a number of useful applica-
tions. In the context of somatic cancer variants, overburdened re-
gions may be highly associated with cancer progression. In the 
germline, accumulation of rare variants could be an indicator of posi-
tive selection. Mutation burdens could also be applied in the context 
of de novo mutations to identify precursor variants for genetic dis-
ease. Here, we release a new GPU-based computational tool, called 
MOAT (the Mutations Overburdening Annotations Tool), to perform 
mutation burden analysis with ultrafast speed. MOAT takes no as-
sumption about the mutation process except that the background 
mutation rate (BMR) changes smoothly with other genomic features. 
This nonparametric scheme randomly permutes the variants (or 
target regions) on a relatively large scale where the BMR is as-
sumed to be constant to provide robust burden analysis in various 
scenarios. Furthermore, it also incorporates a somatic variant simu-
lator called MOATsim, which randomly permutes the input variants 
with effective covariate control. In conclusion, MOAT will be useful 
for a broad range of analyses that would benefit from a methods 
evaluation on variant permutation data. 
Availability: MOAT is available at moat.gersteinlab.org 

2 INTRODUCTION  
A common analysis strategy in high throughput sequencing is to 
look for genomic elements with a high accumulation of variants 
across a large cohort of patients. However, it is well known that the 
background mutation rate (BMR) is highly heterogeneous across 
the whole genome due to numerous external features. For example, 
replication timing and chromatin structure usually affects the BMR 
at a scale of up to one megabase (Lochovsky, et al., 2015). Such 
effects may change in a dynamic way across the genome, and is 
usually difficult to model. Hence, our Mutations Overburdening 
Annotations Tool (MOAT) relies on no assumption except that the 
BMR changes slowly across the genome and approximately re-
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mains the same within a local context. Therefore, this non-
parametric scheme provides robust mutation burden significance 
results for any element through permutations. 

MOAT offers two methods for determining elevated mutation 
burdens, the annotation-centric algorithm (MOAT-a) and the vari-
ant-centric algorithm (MOAT-v), both of which involve a compar-
ison of each annotation’s mutation accumulation to that of the 
surrounding genome. We also offer MOATsim, a variant distribu-
tion simulator based on MOAT-v’s source code, which reflects the 
distribution of whole genome covariates that influence the BMR. 
In the following sections, we will describe the implementation of 
MOAT for parallel computer systems, which enables highly effi-
cient data size scalability. We also evaluate MOAT’s ability to 
recall known noncoding cancer drivers on a collection of several 
hundred cancer whole genomes’ variant data. 

3 METHODS 
A number of covariates jointly affect the BMR in a complicated 
and dynamic manner, making variant burden analysis very chal-
lenging (Lochovsky, et al., 2015). However, the length of target 
region usually varies from hundreds of bases (such as transcription 
start sites) to thousands of bases (such as enhancers), while exter-
nal features, such as replication timing, work at up to megabase 
resolution. Therefore, MOAT circumvents the necessity for such 
parametric models by explicitly permuting the variants or annota-
tions within a region that has essentially constant levels of all the 
covariates. It assumes constant covariate values over a fairly large 
interval—with a typical size of ~100kb—that is appreciably larger 
that the annotations we wish to assess for elevated mutation bur-
dens.  

One important issue with these permutation algorithms is that 
their running times do not scale well to noncoding annotation sets. 
A typical burden analysis usually consists of more than 105 annota-
tions (such as all transcription start sites of GENCODE annota-
tion), with 1000 permutations per region. It can easily expand to 
billions of permutation and intersection calculations, making the 
overall operation very compute intense. Our analyses indicate that 
an unoptimized run that involves ~3 million annotations with 1000 
permutations each would take about 14 hours to complete. 
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Here we have addressed this compute intensity by taking ad-
vantage of very large-scale parallelization available on modern 
GPU technology. The key realization behind this design choice is 
the fact that MOAT’s most intense operations consist of a huge 
number of mathematical calculations with no data dependencies 
between each calculation, which plays perfectly into the strengths 
of general purpose GPU pipelines. In the following sections, we 
demonstrate MOAT’s parallelization schemes for both the variant-
based and annotation-based permutation algorithms. 

3.1 MOAT-a: Annotation-centric Permutation 
MOAT takes two input files: the annotation file (afile) and the 
variant file (vfile). The parallel version of MOAT’s annotation-
centric permutation algorithm, MOAT-a, is a C++ program that 
uses NVIDIA’s CUDA language to instantiate parallel graphics 
processing unit (GPU) threads, and divides the computational 
workload across these threads. MOAT-a’s steps are illustrated in 
Fig. 1. MOAT-a iterates through the annotations, computing the 
intersecting variant count per annotation. It then defines a genomic 
block with user-defined boundaries centered on the current input 
annotation, and randomly moves the annotation within this block. 
MOAT-a will find the variant counts from the vfile that intersect 
each of the random bins, which are compared to the input annota-
tion’s variant count. The input annotation’s p-value is defined as 
the fraction of bins with a variant count equal to or greater than the 
input annotation’s variant count. 

In the GPU version, the input variants and annotations are copied 
to the video RAM (VRAM), making the data accessible to the 
GPU’s threads. The annotations are divided among the threads, 
and each thread iterates through its subset of annotations, finding 
the observed variant count for each annotation, computing the 
permuted locations, and calculating the permuted variant counts. 
The permuted annotation locations are temporarily stored to calcu-
late the variant counts and derive the annotation’s p-value, after 
which the memory is freed for the next annotation. Only the p-
values are persistently stored, which controls MOAT-a’s usage of 
VRAM—a far more limited resource compared to main memory. 
The p-values are then copied back to main memory for generating 
the program’s output. 

3.2 MOAT-v: Variant-centric Permutation 
MOAT-v’s variant-centric permutation algorithm creates permuted 
datasets by assigning new coordinates to each variant within a 
local genome region to account for the covariate effects from 

known genomic features (Fig. 2a). MOAT-v preserves the trinu-
cleotide context of the original variant when choosing a new vari-
ant location. In other words, the new variant must have the same 
nucleotide identity as the original variant, and the two neighbors of 
the new variant must also have the same nucleotide identity as the 
original variant’s neighbors. For example, if MOAT-v is given an 
input variant that has a reference base G, and is surrounded by a T 
and a C (i.e. the variant’s trinucleotide context is TGC), then 
MOAT-v gathers up every position in the same bin where TGC 
occurs in the reference, and selects one of these with uniform 
probability (Fig. 2b). This constraint reflects the differential muta-
tion probabilities of different trinucleotides (i.e. due to biochemical 
differences, some trinucleotides are more likely to be mutated than 
others), and ensures that the permuted variant set does not change 
the expected distribution of mutated trinucleotides. Hence, MOAT-
v preserves the mutational signature of the input variants. 

MOAT-v takes a vfile and an afile as inputs, and generates a 
permuted dataset by subdividing the genome into blocks of a user-
defined size (excluding mappability blacklist regions), and assign-
ing each block’s variants new positions within the same block, 
preserving trinucleotide context in the process. This process con-
tinues until n permutations have been generated. At this point, 
MOAT-v will calculate n intersecting permuted variant counts for 
each of the input annotations. A p-value for each annotation is 
determined based on the fraction of the n intersecting permuted 
variant counts that are equal to or greater than the count derived 
from the original vfile variants. 

3.3 MOATsim: Simulated Somatic Variant Datasets 
In addition to the main MOAT programs, we have developed a 
somatic variant simulator, MOATsim, that reflects the levels of 
whole genome covariates that directly influence the background 
mutation rate. It is based off the variant permutation step in 
MOAT-v, but also incorporates bigWig signal files in its determi-
nation of permuted variant locations. Before working with the 
actual variant data, MOATsim imports the covariate data, and 

Figure 1 For each input annotation, MOAT-a finds the number of intersect-
ing vfile variants (red). The annotation’s coordinates are then shuffled to a 
new location within the local genome context bounded by user-defined 
parameters d_min and d_max, producing n permutations (blue). Each per-
mutation’s intersecting variant count is computed. 

d_max	 d_min	 d_min	 d_max	annota+on	

permuted	annota+ons	

Figure 2 (a) In MOAT-v, the variant locations are permuted within the 
local genome context. The whole genome is divided into bins of a user-
defined size, and variants are moved to new coordinates within the same 
bin, preserving the local mutation context. As with MOAT-a, n permuta-
tions are produced. (b) To reflect the influence of nucleotide identity on 
mutation likelihood, MOAT-v ensures that variants are moved to locations 
with the same trinucleotide context. 
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evaluates covariate signals over a set of whole genome bins (user-
defined size, mappability blacklist regions excluded). These bins 
are then clustered based on their covariate signal profile using k-
means clustering. With this information, variants can be permuted 
not just within their local genome context, but across all bins with 
the same covariate signal profile (i.e. within the same cluster). This 
additional functionality enhances MOATsim’s accurate reflection 
of the expected somatic variant distribution of a human genome. 

4 RESULTS 
4.1 MOAT-a 

Table 1. Speed benchmark of MOAT-a with respect to the number of 
input annotations, and MOAT-v with respect to the number of parallel 
CPUs. MOAT-a’s time trials involved generating 1000 permuted variant 
datasets, while MOAT-v’s time trials involved generating one permuted 
variant dataset using ~8 million input variants, and 1,000,000-bp bins. For 
large datasets, the GPU algorithm substantially outperforms the CPU ver-
sion. 

MOAT-a MOAT-v 

Annota-
tions 

   GPU 
speedup  

Parallel 
CPUs 

Speedup  

 ~14,000   1.01x 2 1.97x 
 ~130,000   1.34x 4 3.50x 
 ~3,000,0

00 
  6.26x 8 5.60x 

 
We demonstrate the magnitude of the CUDA speedup by evaluat-
ing the running time of MOAT-a on datasets of various sizes. We 
took a dataset of pancancer whole genome variant calls that in-
cludes 507 cancer genomes of various types from (Alexandrov, et 
al., 2013), and 100 stomach cancer genomes from (Wang, et al., 
2014), totaling ~8 million variants. We used 3 different annotation 
sets as input to demonstrate MOAT-a’s scalability. We tested 
MOAT-a’s running time on these 3 annotation sets with the num-
ber of random bins n = 1000 (Table 1, left half). It is clear that 
when scaling up to very large datasets, the CPU version’s runtime 
increases considerably, while the GPU version’s runtime rises very 
gradually. 

Due to the relative lack of verified noncoding regulatory ele-
ments associated with cancer, it is difficult to assess the accuracy 
of MOAT-a’s predictions. Nevertheless, we demonstrate MOAT-
a’s usefulness for finding elevated mutation burdens in genomic 
elements by identifying highly mutated GENCODE transcription 
start sites, promoters, and enhancers, using the aforementioned 
pancancer variant dataset. TERT, which has well-documented 
cancer-associated promoter mutations (Vinagre, et al., 2013), was 
found to have two TSSes with significant mutation burden (both 
had BH-corrected p-values of zero). Other well-known cancer-
associated TSS sites, including TP53, LMO3, and AGAP5, also 
had significant mutation burdens (all had BH-corrected p-values of 
zero). 

4.2 MOAT-v 

Using the same set of cancer variants used in the MOAT-a tests, 
parallel MOAT-v’s running time was evaluated across multiple 
CPU configurations to demonstrate the performance gains of the 
OpenMPI implementation. MOAT-v in OpenMPI is set up to run 
one master process on one of the available CPU cores, and use the 
rest for worker processes. Hence, the program must be run with 3 
cores to get two cores to process the work simultaneously, 4 cores 
to get three cores to process the work simultaneously, etc. Table 1 
(right half) represents the running time improvement relative to the 
number of workers added. This improvement scales close to linear 
with the number of workers, indicating that the load balancing 
between each CPU core is very evenly divided, enabling signifi-
cant time savings when MOAT-v is run in parallel. MOATsim’s 
running time exhibited similar characteristics (data not shown). 

MOAT-v was used on the same variant and annotation sets used 
to demonstrate MOAT-a’s usefulness for finding elevated cancer 
mutation burdens. MOAT-v produced comparable results—the 
same known cancer-associated TSSes flagged as significant in 
MOAT-a were also flagged in MOAT-v. 
 

5 DISCUSSION 
Identification of genomic elements with a high mutation burden is 
useful for narrowing down the exact site of functional disruption. 
We introduce Mutations Overburdening Annotations Tool 
(MOAT), a new software tool to facilitate such analyses. We 
demonstrate the usefulness of this tool for flagging putative 
noncoding cancer drivers, and provide CUDA- and OpenMPI-
accelerated versions that dramatically increase the speed of muta-
tion burden analysis. Given the demand for efficient, meaningful 
analysis of genome sequence data that is now being produced at a 
very high rate, we consider MOAT’s provision of such analysis for 
genetic disease drivers quite timely. 
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A typical MOAT-a run involves an annotation count on the order of ~105 at a minimum, each of which are permuted 1000 
times. Hence, the overall computation involves millions—or even billions—of permutation and intersection calculations, which 
take an inordinate amount of time to complete. However, this computation is very easily adaptable to parallel execution, so 
MOAT-a breaks up the overall computation into many separate, independent units of computation. 

MOAT-a’s speed can be further improved by taking advantage of the thousands of parallel stream processors available on 
modern graphics processing units (GPUs). GPUs are designed for efficiently processing 3D graphics calculations, which largely 
consist of numerous matrix operations with relatively low memory usage Due to the limited amount of video RAM (VRAM) 
available on GPUs, MOAT-a’s GPU version was planned to use GPU acceleration only for the most compute intense step. This is 
the permutation step, where new annotation locations are determined in the local genome surrounding each annotation. The anno-
tation coordinates are copied to VRAM, and one permutation per annotation is calculated in parallel. The coordinates for the 
permuted annotations are copied back to main memory for the fast intersection step. This permutation/intersection loop is per-
formed n times (the user-defined total number of permutations), after which p-values are calculated using the observed variant 
counts and the permuted variant counts (Fig. 1). 
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Figure 2 (a) In MOAT-v, the variant locations are permuted within the 
local genome context. The whole genome is divided into bins of a user-
defined size, and variants are moved to new coordinates within the same 
bin, preserving the local mutation context. As with MOAT-a, n permuta-
tions are produced. (b) To reflect the influence of nucleotide identity on 
mutation likelihood, MOAT-v ensures that variants are moved to locations 
with the same trinucleotide context. 
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Table 2. Speed benchmark of MOAT-v with respect to the number of CPU cores assigned worker processes. Each time trial involved using 
MOAT-v to generate one permuted variant dataset using ~8 million input variants, and 1,000,000-bp bins. 

# of worker CPU cores Running time Fold speedup 

1 3hr44min 1.00x 
2 1hr54min 1.97x 
4 1hr4min 3.50x 
8 40min 5.60x 
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