
	
  

	
  

NSF ABI INNOVATION.  
A GRAPH BASED APPROACH FOR THE GENOME WIDE 
PREDICTION OF CONDITIONALLY ESSENTIAL GENES 

1.   SPECIFIC AIMS 

In recent years, numerous large-scale genomics projects combined with fast sequencing 
techniques have generated enormous amounts of data. This has led to the identification of 
thousands of previously unseen genes. However, understanding the function and cellular role 
of genes, as well as their impact on certain phenotypes remains a challenge. Apart from the 
Mendelian single gene traits, a substantial portion of the phenotypes we observe in nature result 
from a complex interplay between numerous genes in addition to various environmental 
factors. 

Of particular interest in the gene-phenotype landscape are the essential genes. These genes are 
necessary for organisms’ growth and survival. The study of essential genes can shed light on 
the universal principle of life \cite{22951051}. Moreover, they are key players in the field of 
synthetic biology and can be regarded as potential targets for antimicrobial and vaccine design 
\cite{24209780}. 

From an experimental point, the last decade has seen the development of a number of 
approaches for determining gene-essentiality \cite{15313213} including systematic knockouts 
\cite{12140549}, genetic foot-printing \cite{10591650}, and RNA interference 
\cite{12529635}. However their application on a genome wide scale is expensive, time 
demanding, and labour-intensive. Moreover, designing new functional characterization assays 
for genomic targets that have not been previously described is a difficult process.  

A fundamental goal in computational biology is therefore to characterize which sets of 
genes are essential for the organisms survival in a given set of conditions.  

This project aims at shedding some light on this question by computationally predicting 
and experimentally verifying which genes are conditionally essential under a variety of 
different treatments.  

Our computational predictions will be based on a data driven analysis that will integrate 
information on two levels: phenotypical and molecular. At the phenotypical level, we are 
going to develop a machine learning method to assign phenotypic attributes to genes and 
identify sets of genes that share the similar phenotypic characteristics. We will then integrate 
these preliminary predictions with molecular level information, and particularly we will exploit 
transcriptomics data to identify the mechanisms that govern the gene activity. This will allow 
us to increase the reliability of our preliminary phenotypical assignments and in particular to 
select from the groups of genes with similar phenotypes the conditionally essential genes. 
Finally, we are going to experimentally validate our predictions in two yeast systems, and 
feedback the results into the prediction workflow in order to improve the computational 
models. 

This project will deliver a mathematical framework that will allow scientists, to predict 
genes which are conditionally essential under a given condition and also suggest a 
hypothesis for their phenotype generation, regulation, and activity. This framework will 
be also implemented in a software package that will be made available to the scientific 
community. 

This project will be developed as a collaboration between the groups of Dr Mark Gerstein at 
Yale University, Dr Haiyuan Yu at Cornell University, and Dr Alberto Paccanaro at Royal 
Holloway University of London. The three group leaders have a decade-long history of 
successful collaborations. Together, they have developed methods for predicting networks 



	
  

	
  

from heterogeneous biological datasets, for predicting protein function, and for calculating 
semantic similarity between genes, among others. 

This project can be subdivided into four main aims: 

AIM 1: We will develop a machine-learning method to infer phenotype from network 
neighbourhoods. For this, we will develop semi-supervised machine-learning techniques that 
make use of both labelled and unlabelled data for training. In particular, we will develop 
specialised diffusion-based algorithms that will exploit the structure of graph models 
representing phenotypical associations between genes. Here we make the assumption that 
phenotypic attributes associated with characterized-entities can be extended to other 
uncharacterized entities depending on their level of “connectedness” in the graph model. 
Diffusion-based algorithms will thus allow us to exploit on a genome-wide scale and in an 
organized fashion the “guilt by association” principle, to predict the phenotypes of 
uncharacterized genes. 

AIM 2: At high-level, genes displaying similar phenotypes are expected to exhibit similar 
expression and regulatory trajectories. On this premise, we will develop a computational 
model that, given a set of genes (predicted from AIM 1), will evaluate their expression 
dynamics patterns, uncovering the regulatory effects that govern them. By refining the 
input genes sets into groups of genes with similar dynamic patterns we will be able to pin point 
conditionally essential genes. This analysis will be done by decomposing the gene expression 
into internal contributions (e.g. AIM1 predictions sets), and external contributions (all other 
genes). Specifically, we will use a state space model to represent the temporal gene expression 
dynamics and identify principal temporal dynamic patterns. Next, we will use dimensionality 
reduction approaches to identify canonical temporal expression trajectories unravelling the 
regulatory effects from various contributors. Moreover, we will implement a scoring metric 
that will evaluate to what extent the expression dynamics of a group of genes are driven by 
their internal regulatory network. Finally, we will cluster the genes with similar regulatory 
dynamics and similar conditional essential phenotype.  

AIM 3: We will experimentally validate our predictions in Saccharomyces cerevisiae and 
Schizosaccharomyces pombe.  While the first two aims are strictly computational, we are 
going to validate our top predictions in the two model organisms under three stress conditions: 
oxidative stress, osmotic stress, and DNA damage stress. 

AIM 4: We will integrate the computational models into a state-of-the art software suite. 
All theoretical models, datasets, and analysis results will be deployed online and will be made 
available to the larger scientific community through a web portal. The successful completion 
of this project will provide proof of concept methods for identifying conditionally expressed 
genes. 

2.   BACKGROUND AND PRELIMINARY RESULTS 

2.1   Background on Phenotype Prediction 

The concept of phenotype is defined as the set of organism observable traits such as its 
biochemical, physiological, behavioural properties, etc. Identifying the genes and 
understanding their contribution to a certain phenotype is an on-going quest for many 
researchers in the field of genomics. In order to address this challenge, phenotypes have been 
collected and systematically organised in formal, organisms-specific, phenotype ontologies. 
An ontology provides a conceptualization of a knowledge domain that is both human and 
computer comprehensible \cite{14681407}. It uses a hierarchical structure to represent 
relationship between concepts using a controlled vocabulary \cite{14681407,21261995}. 
There are a number of publicly available phenotype ontologies for human \cite{24217912}, 
worm \cite{21261995}, fly \cite{24138933}, mammals \cite{20052305}, yeast 
\cite{23658422}, etc.  



	
  

	
  

Comparative genomics has been proposed for uncovering gene-trait relationships 
\cite{9790834,9598967}. This approach begins by constructing phenotypic profiles, which 
indicate which organism exhibits a particular phenotype – this is similar to the concept of 
phylogenetic profiles \cite{10200254}. Then causal relationships between genes and traits can 
be deduced from the co-occurrence of genes and phenotypes across a large number of genomes. 
The underlying principle is that orthologous genes involved in similar biological processes 
should determine orthologous phenotypes called “phenologs”, across various species. These 
ideas were applied to predict genes involved in well characterised traits such as 
hyperthermophily \cite{12683966} and flagellar motility \cite{12546786}. Several approaches 
have been developed for this comparative analysis. For example, Tamura et al. 
\cite{18467347} proposed a rule-based data mining algorithm to associate Clusters of 
Orthologous Groups of proteins (COGs) with phenotypes. Slonim et al. \cite{6732191} 
proposed an information-theoretic approach to extract preferentially co-inherited clusters of 
genes having significant association with an observed phenotype. 

However, most comparative genomics approaches do not take into account numerous clues 
regarding the various aspects of gene phenotype that are hidden in a vast array of gene 
expression, metabolite expression, and protein-protein interaction data. Biological systems are 
mediated by interactions between thousands of molecules. Network-based statistical models 
are particularly useful in unlocking the complex organization of biological systems 
\cite{17473168,11034217,10521342,10935628,12202830,12399590,16730024,18421347,15
190252,12134151,17274682,19372386,16311037}. Although network based models have 
been previously used for the prediction of gene function (e.g. of GO labels), these ideas have 
not been exploited for the prediction of phenotype on a genome wide scale.   

In this project, which builds on earlier joint works and preliminary results in the area of 
network analysis by Gerstein, Yu, and Paccanaro, we will develop new state-of-the-art methods 
for gene essentiality prediction. In particular, the methods proposed here will combine, in a 
unique fashion, the decomposition of temporal gene expression dynamics and diffusion-based 
algorithms to improve conditionally essential gene prediction. 

2.2   Background on Modelling Gene Expression Dynamics Using a State-Space Model 

The state-space model has been widely used in engineering \cite{Brogan}. It models the 
dynamical system output as a function of both the current internal system state, and the 
external input signal. A commonly used example in engineering is the vehicle cruise control 
system where the internal system state is the vehicle’s speed. Based on the road conditions 
(external input signal), the cruise control will output the required fuel amounts in order to keep 
the desired speed. In biology state-space models have been used in the study of regulatory 
networks and in particular in the analysis of temporal gene expression data 
\cite{16403793,17044234,14962938}. Compared to other methods that calculate the 
expression correlation between individual genes, the state-space model has the advantage that 
it predicts the temporal-causal relationships at the system level i.e., the state at a time is 
determined by the state and external input at the prior time point. 

One of the early adopters, Wu et al (2004) used state-space equations to model the gene 
expression from microarray data. The authors describe the gene expression profiles as 
observation variables whose values are modelled by a linear combination of the current internal 
state variables (e.g. regulatory elements expression levels). Factor analysis was used to identify 
the internal state variables and calculate their expression values. The results suggest that it is 
possible to unambiguously determine a gene expression dynamic pattern from a limited time-
course dataset.  More recently Mar and Quackenbush (2009) \cite{20041215} have used state-
space models to study cell differentiation. They decompose the state-space gene expression 
trajectories into components one representing the changes inherent to the biological process 
(cellular phenotypic changes) and another component that captures the cell response to the 
perturbation (variation in gene expression levels).  



	
  

	
  

However, these models have been able to account for only a limited number of genes. In fact, 
it is not feasible to use state space models for describing systems composed of thousands of 
genes due to the limited amount of data available, which would not allow us to learn all the 
required model parameters.  

In this project, for the first time, we will combine state-space models with dimensionality 
reduction techniques in order to model the gene expression data on a genome-wide scale. 
Dimensionality reduction techniques will allow us to model gene expression data in terms of 
the expression of a few meta-genes, thus uncovering the regulatory effects. 

2.3   Preliminary Results 

2.3.1   Preliminary Results on Phenotype Predictions and Diffusion-Based Methods 

Yu, Gerstein, and Paccanaro have developed a correlation-based method \cite{17038185} that 
was able to discover genotype-phenotype associations combining phenotypic information from 
a biomedical informatics database, GIDEON, with the molecular information contained in 
COGs \cite{12969510}.  

Paccanaro has developed and applied graph diffusion methods in biology. In biological 
networks, the relations (represented by the links) are inherently very noisy and therefore 
algorithms that employ these links directly are prone to errors. The idea behind graph diffusion 
methods is to improve the accuracy of inferences from these local relations by instead 
considering the connections globally in a certain neighbourhood, or even in the whole graph – 
this is somewhat analogous to taking averages to reduce the noise. Importantly, the diffusion 
of information over graphs offers a natural framework for integrating datasets which are 
themselves graphs; that is, when diverse sets of data are available, graph diffusion allows us to 
combine them to obtain sound statistical inferences. In this way, the weak signals contained in 
each dataset are enhanced through data integration. Paccanaro has developed a new machine 
learning method for the diffusion of information over large weighted graphs. This method has 
been applied to the prediction of protein function with great success. In particular, the results 
obtained by his system in the recent CAFA competition (Critical Assessment of Functional 
Annotation) placed its performance among the very best systems in the world. The results are 
appearing in a Genome Biology article which is now in press \cite{arXiv:1601.00891}. 

In this project, we will develop and implement analogous diffusion-based approaches to 
characterize and predict conditionally essential genes under a variety of different treatments. 

2.3.2   Preliminary Results on Networks and State Space Models 

The Gerstein, Yu,  and Paccanaro labs have carried out projects in biological networks for over 
a decade. We have made extensive contributions in the analysis of genomic data using network 
frameworks \cite{14564010}.  In particular, we have integrated regulatory networks with gene 
expression to uncover different kinds of dynamic sub-networks \cite{15372033}.  We also 
developed methods to analyse the regulatory networks of a variety of species from yeast to 
human, using a wide range of data \cite{22125477,20439753,22955619,21177976}. In the 
following we will give more details on our earlier results in network biology that are most 
relevant to this project. 

Biological networks, normally large in scale, are organized with topological structures in the 
form of interacting modules. We have previously collaborated in developing various methods 
to identify the functional modules of biological networks. We developed a method to extract 
metabolic modules from metagenomic data, enabling the identification of pathways that are 
expressed under different environmental conditions \cite{19164758}. We have also developed 
a way to identify nearly complete, fully connected modules (cliques) present in network 
interactions \cite{16455753}, and we have been using networks to map various kinds of 
functional genomics data \cite{22955619}. For example, by mapping gene-expression data 
onto yeast regulatory network, we identified different sub-networks that are active in different 
conditions \cite{15372033}.  



	
  

	
  

Using biological networks, we have developed a computational approach OrthoClust 
\cite{25249401}, to extract meaningful new information from gene expression data. 
OrthoClust is a universal computational framework that integrates co-association networks of 
individual species using gene orthology relationships to enable the identification of functional 
modules formed by species-specific or conserved gene. Leveraging on the modENCODE 
RNA-seq data for C. elegans and D. melanogaster we used OrthoClust functional module 
predictions to infer putative functions of uncharacterized elements (e.g. non-coding RNAs) 
based on the guilt-by-association principle.  

More recently, Gerstein has developed a computational approach that uses state space models 
to analyse the regulatory effects of evolutionary conserved vs divergent transcription factors 
across C. elegans and D. melanogaster using data from the modENCODE project (in 
preparation). Studying the regulation and expression patterns of orthologus and species specific 
genes we were able to characterize the regulatory systems that govern fundamental embryonic-
developmental processes.  

In this project, we will build upon our expertise in biological network and in the development 
of advanced computational approaches using state space models, to design and implement 
genome-wide workflows for the prediction and characterization of conditionally essential 
genes. 

2.3.3   Preliminary Results on Growth Assays Under Stress Conditions  

The Yu Lab established a stress-response interactome for the fission yeast, S. pombe, named 
StressNet  \cite{23695164}. In S. pombe, Sty1 is activated in response to various stresses, 
including oxidative and osmotic stress, starvation, and other conditions  \cite{17605132, 
\cite{8824587}. Sty1 has orthologs in S. cerevisiae (Hog1, with 89% sequence similarity) and 
human (p38, with 69% sequence similarity). Both p38 and Sty1 respond to a wide range of 
stresses and both are different from Hog1 in terms of function  \cite{9443913}. With our stress-
response interactome, we detected key interactions at every step of the MAPK signal 
transduction pathway and, 
therefore, completely 
recapitulated the entire Sty1 
pathway. This confirmed the 
sensitivity and accuracy of our 
HT-Y2H method, especially 
for discovering transient 
interactions in signaling 
pathways. Among all Sty1 
interactions in StressNet, those 
with its activator (Wis1) and 
inhibitor (Pyp2) were both 
conserved between the two 
yeast species, and the Sty1-
Wis1 interaction interface was 
intact. By contrast, the 
interaction between Sty1 and 
its known target in fission 
yeast, Atf1, represented a 
rewired interaction (Fig. 1C). 
We also identified a previously 
unknown interactor of Sty1: 
SPBC2D10.09, a protein that we named Snr1 (Sty1-interacting stress-response protein). To 
confirm this interaction in vivo, we performed co-immunoprecipitation of tagged proteins 
expressed in S. pombe (Fig. 1D). The amount of Snr1 pulled down in the presence of Sty1 was 
greater than that pulled down in the absence of Sty1, indicating that the interaction with Sty1 
stabilizes Snr1 (Fig. 1D). The corresponding orthologous pair of Hog1 and Ehd3 in S. 

Figure 1 Gene expression under stress conditions in S. pombe 



	
  

	
  

cerevisiae did not interact by Y2H (Fig. 1E). Cells lacking snr1 (snr1∆ cells) grew slower 
under stress, similar to sty1∆ cells (Fig. 1F), whereas growth of ehd3∆ cells was not 
compromised. These results suggested that Snr1 is a component of the Sty1 pathway and that 
its functions diverged from its budding yeast counterpart. Moreover, snr1 also has a human 
ortholog, HIBCH, further investigation of which may expand our knowledge of the human p38 
MAPK pathway.  

In this project, we will build upon our expertise in large-scale gene deletions and growth assays 
under stress conditions to validate a large number of predictions made in AIMs 1 and 2. 

3.   RESEARCH PLAN AND METHODS 

3.1   AIM 1: Inferring Phenotypes Through Diffusion on Biological Networks 

The vast array of available data brings a fresh perspective in the area of gene phenotype 
prediction. By integrating various datasets we believe that we can make statistically significant 
large-scale phenotypical inferences.  

The data available for phenotype prediction can be divided into two categories. While some 
types of data translate directly into a probability of a given phenotype, other types of data 
instead describe a “relatedness” in the phenotypes associated to two genes in the same genome. 
For example, detecting a phenolog (i.e. an orthologous phenotype between organisms) amounts 
to assigning a probability P that a certain gene is involved in phenotype F. On the other hand, 
finding a certain correlation between the profiles of the expression of genes X and Y amounts 
to assigning a certain probability Q that the two genes have related phenotypes. We will refer 
to these two types of data as “unary relations” and “binary relations” respectively (Table 1). 

Table 1. Phenotype prediction input data. 

Binary relations have a natural 
representation as graphs. Recently, 
there has been a lot of interest in the 
machine learning community in 
methods for making inferences on 
graphs. We propose to leverage on 
these ideas and develop theoretical 
graph-based methods for large-scale 
phenotypical inference. The approach 

makes use of the phenotypical labels associated with some genes to infer phenotypes of 
uncharacterized ones (semi-supervised learning). 

In a typical situation, for a given genome there will be genes that have already been associated 
with a given phenotype, and genes whose associated phenotype is still unknown. We begin by 
constructing graphs, in which the nodes represent the genes and each edge represents a (binary) 
relation between the two connected genes, i.e. co-expression. Each edge is labelled with a value 
that quantifies the relation it represents (i.e. their level of co-expression); similarly each node 
is labelled with its known phenotypical assignment or “NA” otherwise.  

The two different types of relations described above will be treated differently for inference: 
binary relations will allow the characterization of the unknown genes by diffusing the 
information of the labelled nodes over the graph, through the links; while unary relations will 
be thought of as representing a “tendency” (or a prior probability) of a gene to be associated 
with a given phenotype. 

Here we provide an intuition for how the diffusion process works. Let us imagine the graph as 
having a physical implementation as a network of water wheels connected by underground 
pipes in which water flows: for each node (gene) we have a wheel, and for each edge (binary 
relation) we have a pipe connecting the corresponding wheels. The pipes have different sizes 

Data Type Example 
UNARY 
RELATIONS 

Experimental evidence 
Phenolog 

BINARY 
RELATIONS 

Gene expression 
Protein expression 
Protein-protein interaction 
Genetic interaction 
Pathway information 



	
  

	
  

according to the edge label, thus allowing different amounts of water to flow through them, 
depending on the strength of the relation. Each different phenotypical assignment of genes in 
the dataset is represented by a salt (dye) of a specific colour. When a salt is dropped in a wheel, 
it colours the water in it, and we will assume that waters of different colour don’t mix. The 
diffusion process consists in dropping the coloured salt of each known gene in its 
corresponding wheel, and then letting the coloured water be transported by the pipes. No salt 
is dropped in the wheels corresponding to the uncharacterized gene. However, the water in 
these wheels will also eventually become coloured due to the coloured waters coming from the 
pipes. After the coloured waters have been allowed to circulate in the pipes for some time, the 
amounts of different coloured waters arriving at such unlabelled wheels will provide the basis 
for a probabilistic distribution of assignments over the phenotypical classes for the 
corresponding uncharacterized genes. It is important to notice that the whole process can 
naturally take into account genes having multiple phenotypes, as salts of different colours can 
be poured into the same wheel. 

From this analogy we can see that the diffusion of information over graphs offers a natural 
framework for integrating datasets which are themselves graphs. This process produces 
evidence for phenotypical assignments that can be further integrated with the evidence coming 
from the unary relations using a statistical method, such as the Bayesian model. The strength 
of the methodology proposed here lies in its ability to use diverse sets of noisy data, and to 
combine them to obtain sound statistical inferences of gene phenotypes; the weak signals 
contained in each dataset are enhanced by integrating the data. 

3.1.1   Algorithm Development 

The phenotype inference method will contain several parameters that will be learned from the 
data. Here we assume that, for a given genome, this will be done by applying various machine 
learning techniques (as described below) to subsets of genes for which the phenotypic 
assignment is known (training sets). The method development will have to solve two main 
issues: (i) how to integrate information coming from different experimental sources; and (ii) 
how to properly diffuse the information over the graphs. The study of solutions for these two 
problems will constitute most of the algorithmic research of AIM 1. In the remainder of this 
section we will analyse each one in turn, proposing some possible ideas for their solution. 

(i) Integration of Information from Different Experimental Sources. As anticipated earlier, 
a possible method for integrating the various types of information is using a statistical Bayesian 
model. Using the Naïve Bayes assumption, we can rewrite the likelihood of the combined 
vector of evidences given the phenotype as a product of each evidence given the phenotype. 
That is, the posterior probability distribution of the phenotypic assignment given the evidence, 
P(Fi | E1…En), is defined as: 

  

and can be approximated by:  

 

 

 

where (E1 … En) is the combined vector of n different evidences or features (Ej), and Fi 
represents the i-th phenotypical assignment. Here, each Ej represents evidence coming either 
from a unary relation (i.e. a phenolog) or a binary relation (i.e. co-expression). Since unary and 
binary relations must be treated differently, their likelihood model P(Ej|Fi) will be built in a 
different way from the training set.  
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For unary relations, the likelihood models, P(Ej|Fi), can be approximated directly by using 
maximum likelihood estimates, that is by using the frequencies of the features in the training 
set (or alternatively using more robust “smoothed” estimates). 

In order to estimate a likelihood model for a given binary relation we first need to build a graph, 
and then we need to run the diffusion process (described in the next sub-section). The graph 
will have a node for each gene. The values for the edges controlling the diffusion process will 
be a non-linear mapping of the experimental data that will be learned1 \cite{16554755} from 
the training set using, for example, Support Vector Machines. Thus, for each binary relation 
there would be a different graph and the diffusion process would be carried out separately. The 
result of each diffusion process, corresponding to the amount of different phenotypic labels, 
will constitute the feature for that binary relation. The likelihood models for the binary relations 
will be approximated by the frequencies of these features in the training set. The prior 
probabilities of phenotypic assignment, P(Fi), will also be approximated by the relative 
numerosity of the different phenotypic classes in the training set. Thus, having obtained 
likelihood models for both unary and binary relations and estimates for the priors, we can 
obtain a phenotypical assignment by computing the numerator of the above equation (notice 
that the denominator is independent on the phenotypical class). 

The Bayesian model outlined here is not the only possible way to integrate the information 
coming from the different types of data. In this project we will evaluate a number of different 
machine learning techniques in order to find the optimum method for solving our porblem. In 
general, data from unary relations can be included directly, while for each binary relation we 
would go through the additional step of the diffusion process. However, once the diffusion 
process has generated a feature for a binary relation, then all the features can be collected into 
a vector and a unique probability distribution of phenotypical assignments can be obtained as 
a non-linear mapping of this vector. Such non-linear mapping would also be learned from a 
well-characterized training set. 

(ii) Diffusion of Experimental Information for Phenotypical Assignments. Here we 
describe three methods for diffusing the phenotypic label information over the graphs that we 
will evaluate in this project: 

Method 1. This approach consists of simply diffusing the phenotypical labels by simulating 
Markov random walks on the graph. Given a graph, we can derive the Markov transition matrix 
that controls the Markov diffusion process, and use it to diffuse the normalized vectors of 
known phenotypic assignments over the graph. Using similar approaches, Paccanaro has 
recently obtained excellent results clustering protein sequences \cite{16547200}. 

Method 2. This approach projects the nodes of the graph onto points in a (low dimensional) 
space in such a way that the distance between any two points is related to how well connected 
the two nodes are in the original graph. In other words, we project the nodes in such a way that 
for any two nodes, the higher the number of short paths existing between them in the original 
graph, the smaller their distance in the projected space (here the length of a path in a graph is 
defined as the sum of the values that label the edges along the path). Once the genes have been 
projected into this space, we need to discriminate between the distinct phenotypical classes. 
This could be done by learning an appropriate discriminative function using some training data; 
or by learning a separate probabilistic model for the points in each phenotypical category. This 
type of projection, sometimes called Diffusion Maps, has recently been successfully applied to 
solve problems from Computer Vision: lip-reading and image-sequence alignment 
\cite{15899970}. We have used these ideas with very good results for predicting protein-
protein interactions using the topological properties of networks of interactions observed 
experimentally \cite{AlbertoPac}. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 This technique for building the graph is similar to the method that we (Gerstein and Paccanaro) have already 
successfully applied to obtain a unique protein-protein interaction network from several independent protein-
protein interaction datasets obtained using different experimental techniques in yeast [46]. 



	
  

	
  

Method 3. Finally, a third approach is to map the problem of phenotypical assignment onto 
that of learning a particular classification on a Riemannian manifold. This approach has been 
shown to be very successful in a variety of classification problems, in the context of semi-
supervised learning, by Belkin et al \cite{Belkin}. The authors modelled the manifold where 
the data lies as a weighted graph G. Next, they showed that any function on G can be 
decomposed as a weighted sum of eigenfunctions of the graph Laplacian L, and they learned 
such coefficients from the training data. For the problem of phenotypical assignment, data from 
binary relations are already in the form of graphs, and therefore we need to learn the values for 
the weights for the eigenfunctions of the graph Laplacian. This can be seen as another way to 
diffuse information, as the Laplacian matrix is related to the Markov random walk 
\cite{16547200}. 

Details on Method Development and Validation. We will develop and validate our proof-
of-concept using publicly available data on S. cerevisiae and S. pombe. Phenotype ontologies 
as well as genotype-phenotype associations are available for these organisms 
\cite{23658422,16982638}. Our algorithms will be trained using training sets composed of 
known gene-phenotype associations, and their performance will be evaluated by means of test 
sets (by “cross-validation”). However, the general approach presented in this proposal does not 
have any species specificity, and for this reason the methods developed here on yeast should 
also perform well in different organisms. The performance of the algorithms will be evaluated 
“in silico” by cross-validation. 

Impact and Innovation. The methods developed in AIM 1 provide, for the first time, a 
principled computational approach to functionally annotate the phenotypes of previously 
uncharacterized genes on a genome-wide scale. 

 

3.2   AIM 2: Identification of Gene Canonical Expression Patterns Using State-Space 
Models and Biological Networks 

The results of AIM 1 will provide us with sets of genes sharing similar phenotypes, and will 
inform us with respect to genes sharing the similar conditional essential characteristics. 
However, questions regarding how  phenotypes emerge and are regulated, and which subset of 
genes are conditionally essential remain unanswered. Thus in AIM 2 we will provide a 
molecular characterization of phenotype by looking at gene expression and uncovering the 
regulatory effects that govern it. Using as input the gene clusters from AIM 1, we will develop 
a novel computational method for decomposing the gene expression into contribution from 
internal (within the same group) and external (all other genes) regulatory components using 
state-space models and dimensionality reduction techniques. Finally we will introduce a 
scoring function that will measure the similarity in the expression dynamics for genes within 
the same phenotypic cluster allowing us to obtained a refined set of conditionally essential 
genes. 

3.2.1   Development of a State Space Model for Large-Scale Gene Expression Data 

A gene regulatory network is composed of a variety of smaller regulatory sub-systems that 
define each a particular regulatory function \cite{12840046,16738561}. Given a group of genes 
of interest in a subsystem, their expression levels are controlled by internal interaction within 
their subsystem and by external interactions with regulatory factors from other sub-systems. 
Both the internal and external regulatory factors control the gene expression patterns in a 
dynamic fashion (e.g. the regulatory signal at time t will be affect the gene expression at time 
t+1). Thus a state-space model can be used to formulate the temporal gene expression dynamics 
for the group of genes of interest as a linear combination between the internal and external 
interactions.  



	
  

	
  

Let X be the gene group of interest and U a set of external regulators (Fig. 2A). The state-space 
model of gene expression dynamics is: 

  Xt+1=AXt+BUt 

where the vector 𝑋" ∈ ℝ%consists of the expression levels of each the N genes from group X at 
time t, and the vector 𝑈" ∈ ℝ' contains the expression levels of each of the M regulatory genes 
in group U at time t. The system matrix 𝐴 ∈ ℝ%×% captures the internal causal interactions 
among genes in X (e.g. Aij describes the contribution from the jth gene expression at time t to 
the ith gene expression at time t+1) which instantiates a gene regulatory network. The control 
matrix 𝐵 ∈ ℝ%×' captures the external causal regulation from the U genes to the X genes (e.g. 
Bij describes the contribution from the jth gene expression in U at time t to the ith gene expression 
in X at time t+1). ℝ represents the real number domain.  

Unfortunately, the above equation cannot be applied directly to large-scale gene expression 
data. In fact, gene expression experiments normally have limited time samples (for example, 
there may only be a dozen time points), which are far less than the time samples needed to 
estimate the large matrices A and B, when X and U are composed of hundreds or thousands of 
genes. Our idea for solving this problem is to project the experimental high dimensional 
expressions data onto a much lower dimensional space in which the expression of a few meta-
genes accounts for most of the variance in the original expression data. We will attempt to 
achieve this using a dimensionality reduction technique, such as Principal Component Analysis 
or Locally Linear Embedding \cite{11125150} (Fig. 2B). Having reduced the dimensionality 
of the problem, we will be able to model the resulting small scale system composed of the few 
meta-genes using the above space-state equation – the expression data is now sufficient to learn 
the smaller set of required parameters 𝐴 and 𝐵 (Fig. 2C). 

The learned model provides us with a way to decompose the contributions of internal (𝐴) and 
external (𝐵) meta-gene regulatory factors into canonical dynamic patterns. This can be done, 
for example, by applying the eigenvalue decomposition to the 𝐴 and 𝐵, in which case we would 
obtain canonical 
patterns. 

This will allow 
us to quantify 
the contribution 
of each of the 
genes in the 
external or 
internal set to the 
expression of the 
genes in the 
internal set. In 
other words, for 
every gene in the 
dataset, we will 
understand what 
its contribution 
is, in terms of canonical patterns, to the dynamics of the internal set. 

Moreover, we will develop a scoring function to measure the degree to what extent the 
expression dynamics of a group of genes are driven by their internal regulatory network, e.g. 
an “internal score”. This metric will work under the assumption that the higher internal score 
is, the more degree of their expression dynamics are driven by internal genes themselves. The 
mathematical definition of internal score, sint can be proposed as follows: given a group of 
genes or meta-genes (internal group X), the internal score, sint is the distance of their time-
series expression matrix and the product of the internal principal dynamic pattern (iPDP) 

Figure 2 Decomposing the high dimensional experimental gene expression 
data into contributions from the internal and external regulatory 



	
  

	
  

coefficient matrix (c(i,j)) and iPDP time-series expression matrix, normalized by their time 
series expression matrix; i.e.,  
 

𝑠,-" =
𝑋/, 𝑋1, … , 𝑋" − 𝑐 𝑖, 𝑗 ∙ 𝑖𝑃𝐷𝑃 :

𝑋/, 𝑋1, … , 𝑋" :
 

 
where L can be different norms for matrix distance such as Frobenius norm \cite{Frobenius}.  

3.2.2   Identification and Refinement of the Conditionally Essential Gene Sets 

In order to identify with high confidence the set of conditionally essential genes, we are going 
to use the phenotypic assignment of AIM 1 to cluster the genes into phenotypic groups. Each 
group containing genes associated with a conditionally essential label will be used as input for 
the internal group X and be subjected to the analysis of its internal and external regulatory 
dynamics patterns, while the remaining genes will form the external group U. Following the 
expression and regulatory analysis workflow as described in 3.2.1., we will be able to obtain a 
refined subgroup of conditionally essential genes that will be further validated experimentally 
as described in AIM 3.  
 
Details on Method Development and Validation. We plan to validate our state-space 
methods for gene expression pattern decomposition using publicly available data for two yeast 
species S. cerevisiae and S. Pombe as described in AIM 3. In particular, we will test our 
methods by analysing the gene expression dynamics patterns during yeast development. As 
such we will use the conditionally essential genes as the internal group X and species specific 
non essential transcription factors as the external group U.  

Impact and Innovation The outcome of AIM 2 will provide a state-of-the-art approach to 
characterize temporal expression data and differentiating the contributions from Internal and 
External regulatory factors. This general approach will allow us to compare the dynamic 
expression patterns of multiple datasets. By integrating this results with phenotypical 
characterization we will be able to identify conditionally essential genes.  

 

3.3   AIM 3: Experimental Validation of Conditional Essential Gene Predictions in 
Saccharomyces cerevisiae and Schizosaccharomyces pombe  

We will validate the conditionally essential gene predictions from AIM 1 and 2  through wet 
lab experiments in two yeast species. 

3.3.1   Experimental Design for  Essential Gene Validation in S. cerevisiae Under Three 
Stress Conditions  

The budding yeast, S. cerevisiae is one of the best-characterized model organisms with a vast  
amount of associated functional genomics data. In the past decade, budding yeast has been 
often used to study gene expression under a variety of stress conditions \cite{27074556,	
  
26888869,26596469,27305947,26849847}. Therefore, we are now able to make highly 
accurate predictions regarding gene expression and organism viability in various growth/stress 
conditions without relying on functional genomics data from other species. In this project we 
will test our top 15% of  conditional essentiality predictions under oxidative stress, osmotic 
stress, and DNA damage stress conditions (top 5% of predictions for each condition).  

Deletion strains will be ordered from the Stanford Yeast Deletion Library. For each strain, we 
will verify the deletion upon arrival through PCR by using a primer specific to the 3’ end of 
the gene and a primer specific to the region downstream of the gene. A pair of primers specific 
to the KanMX4 cassette will also be used to detect the deletion cassette. For strains where 
genes of interest are not deleted correctly, we will generate our own deletion strains using a 



	
  

	
  

PCR-based strategy. Briefly, primers with 50 bp homology to the regions immediately 
upstream and downstream of the gene will be synthesized for PCR of the pFA6a-KanMX6 
cassette. This deletion cassette will be transform into S. cerevisiae BY4741 strain, and 
transformed yeast cells will be selected on yeast extract peptone dextrose (YEPD) media plates 
containing 300 mg/L G418. The deletion strain will be verified by PCR as described above. In 
our hands, 50 bp gene-specific regions upstream and downstream of gene is enough for deletion 
of most genes in S. cerevisiae. For certain difficult genes, we will increase the gene-specific 
region to 100 bp. 

For the growth assay under stress conditions, S. cerevisiae cells will be grown in medium. All 
yeast strains are initially grown as a starter culture overnight at 30°C. From the starter culture, 
yeast cells are diluted into fresh medium to an initial OD600nm = 0.2. The cultures are grown to 
mid-log phase (OD600nm = 0.7). The S. cerevisiae strains are serially diluted 4-fold in sterile 
water and spotted onto YEPD plates, respectively, containing various stressors. Spotted plates 
were incubated at 30°C and yeast growth was assessed after 3 days. 

3.3.2   Experimental Design for Essential Gene Validation  in S. pombe Under Three Stress 
Conditions  

The fission yeast, S. pombe does not have nearly as much functional genomics data available 
under diverse stress conditions, compared to S. cerevisiae. Therefore we will rely on 
evolutionary analysis and orthology mapping from S. cerevisiae to inform the predictions in S. 
pombe. Although the two yeast species are often considered related, their divergence is 
estimated to be more than 1 billion years apart \cite{12415314}. Thus S. pombe will serve as 
a proof of principle  model organism, allowing us to test our prediction pipeline for species 
where not a lot of functional genomics data are available, and we have to rely on data from 
distant species. We will test our top 15% of the conditional essentiality predictions under 
oxidative stress, osmotic stress, and DNA damage stress conditions (top 5% predictions for 
each condition).  

Deletion strains will be ordered from the the Bioneer Schizosaccharomyces pombe Genome-
wide Deletion Library. For each strain, we will verify the deletion upon arrival through PCR 
by using a primer specific to the 3’ end of the gene and a primer specific to the region 
downstream of the gene. A pair of primers specific to the KanMX4 cassette will also be used 
to detect the deletion cassette. For strains where genes of interest are not deleted correctly, we 
will generate our own deletion strains using a PCR-based strategy. Briefly, in the first round 
of PCR, primers with 20 bp homology to the regions upstream and downstream of the gene of 
interest, respectively, will be synthesized for PCR of the pFA6a-KanMX6 cassette. Primers 
with 20 bp homology to the pFA6a-KanMX6 will be synthesized to PCR ~300 bp upstream 
and ~300 bp downstream of the gene of interest. The three PCR products will be stitched 
together sequentially with a second round of PCR. Stitch PCR of the upstream region and 
pFA6a-KanMX6 and of the downstream region and pFA6a-KanMX6 are carried out separately. 
In the third round of PCR, both upstream and downstream stitched PCR products are further 
stitched together to produce a final product of pFA6a-KanMX6 flanked on the 5’ and 3’ ends 
by ~300 bp that are homologous to the upstream and downstream chromosomal regions of the 
gene of interest. The final PCR product was transformed into S. pombe 972h- canonical wild-
type (ATCC). The deletion strain will be verified by PCR as described above. In our hands, 
~300 bp gene-specific regions upstream and downstream of gene is enough for deletion of most 
genes in S. pombe. For certain difficult genes, we will increase the gene-specific region to ~500 
bp. 

For the growth assay under stress conditions, S. pombe cells will be grown in medium. All 
yeast strains are initially grown as a starter culture overnight at 30°C. From the starter culture, 
yeast cells are diluted into fresh medium to an initial OD600nm = 0.2. The cultures are grown to 
mid-log phase (OD600nm = 0.7). The S. pombe strains are serially diluted 4-fold in sterile water 
and spotted onto YEPD plates, respectively, containing various stressors. Spotted plates were 
incubated at 30°C and yeast growth was assessed after 3 days. 



	
  

	
  

Impact and Innovation The results of AIM 3 will provide an in-depth experimental validation 
of the predicted, both known and previously uncharacterised, conditional essential genes as 
well as their molecular characterization of gene activity for two yeast species.  

 

3.4   AIM 4: Development of a Software Package for Essential Genes Annotation and 
Analysis 

In this project we will design and the implement a suite of software tools for the identification 
and characterization of phenotypes. All algorithms will be developed using publicly available 
data for model organisms S. cerevisiae, and  S. pombe. The performance of the algorithms will 
be evaluated “in silico” by means of test sets (using cross-validation). The successful 
completion of this project will provide a proof of concept workflow for identifying 
conditionally essential gene. 

All software tools will incorporate all the algorithms developed as described in AIMs 1 and 2. 
The algorithms will be prototyped using MATLAB and R as well as scripting languages such 
as Python. Once refined, we will develop a robust implementation in C/C++/Java. Full unit 
tests and documentation of the code will be provided to facilitate future improvements and 
development. 

We will create a web portal for this project that will allow the larger scientific community to 
freely access both the implementation of our algorithms as well as the results of all our 
phenotype predictions and characterization. 

 

4.   BROADER IMPACTS OF THE PROPOSED WORK 

4.1   Integration of Research into Education  

We propose to integrate the above described research activities into graduate and 
undergraduate education.  
Mark Gerstein is the Co-Director of the Computational Biology and Bioinformatics (CBB) 
PhD program (cbb.yale.edu) at Yale University, and he has been designing and teaching 
graduate courses in bioinformatics, genomics, and data mining for almost 20 years. These 
activities could easily be translated into class projects, which may help recruit undergraduates 
into Yale labs.  
In addition, we will take full advantage of the Yale program for students of 
underrepresented groups called “Science, Technology and Research Scholars” or STARS 
(science.yalecollege.yale.edu/stars-home), which includes Computer Science, 
Bioinformatics, and Genomics components. As part of this grant, we are going to design 
research projects for the STARS undergraduates with the potential of recruiting them 
for graduate degree programs (MSc & PhD).   
All the tools developed for phenotype prediction will be integrated into Computational 
Biology and Bioinformatics 752 (Bioinformatics: Practical Application of Simulation and 
Data Mining), a course directed by Dr Gerstein, and taught to undergraduates and graduate 
students. The course is an introduction to the computational approaches used for addressing 
questions in genomics and structural biology. The function and phenotype component of the 
course can be substantially improved by introducing the students to innovative tools to predict 
gene phenotypes using a variety of data. This resource represents the integration of many 
facets of bioinformatics, including functional data, biological network analysis, 
programming, as well as sets of algorithms applied to address questions about phenotype 
discovery and gene essentiality. It will also be integrated into final year projects, and as part 



	
  

	
  

of these projects, students will develop online phenotype libraries and essential gene 
repositories. The students will also have the opportunity to exchange ideas and expand their 
networking skills by attending the invited lectures and seminars that will be offered by Dr 
Paccanaro during his work visits at Yale. 
The students will have for the first time, the chance to take part in in-class Kaggle-like 
competition projects (https://inclass.kaggle.com/) focused on designing and developing new 
machine learning algorithms for phenotype annotations for previously uncharacterized 
genomes. Also following a positive student feedback we will proceed on extending in-class 
Kaggle project at a university wide level.  

Haiyuan Yu has been an active participant and contributor to the annual Career Explorations 
Conference organized by the New York State 4-H Youth Development. 4-H started over 
100 years ago. Currently, with ~500,000 teen and adult volunteers and over 7 million youth 
members, 4-H is the largest out of school youth program in the US. In the State of New York, 
Cornell University hosts and organizes New York State 4-H. As the land-grant university of 
New York, Cornell is committed to community service and has established scores of outreach 
programs. In 2011, Cornell University earned one of the nation’s top recognitions – The 
Carnegie Foundation for the Advancement of Teaching designated Cornell as an "institution 
of community engagement." Dr Yu, worked tirelessly on developing a new focus program, 
“A new age of biology: working with robots”, for the annual 4-H Career Explorations 
Conference, aiming to expose youth to academic fields and career choices, to develop 
leadership skills, to provide hands-on experience in a college setting and to introduce 
youth to Cornell University. 

4.2   Conferences and Workshops  

As a “tool is just as useful as the consumer's ability to effectively use it” we plan to reach out 
to the scientific community and popularize our newly developed methods using reach media 
interactions such as webinars and hands-on workshops. Also, we aim to present the developed 
algorithms at scientific conferences as well as at “Open Day” events.  

As part of numerous consortia (i.e. Kbase, exRNA, 1000 Genomes, ENCODE), Dr Gerstein 
will also have the opportunity to disseminate the research findings and make available the 
developed tools to all his consortia colleagues and collaborators.   

We will set up one-day, free attendance, Machine Learning in Bioinformatics workshops that 
will be led by Dr Paccanaro and will be hosted at Yale University. These workshops will be 
dedicated to both computer science students as well as experimental biologist that would like 
to learn more about “in-silico” analysis of biological data. All the seminars as well the 
instruction material will be also made available online following the workshop. 

5.   PROJECT MANAGEMENT PLAN 

The research will be conducted by graduate students and early career personnel under the 
supervision of Dr Mark Gerstein at Yale University, Haiyuan Yu at Cornell University,  and 
Dr Alberto Paccanaro at Royal Holloway University of London.  

In leading this collaborative project, we will draw on considerable experience we have had 
with other integrative collaborative projects. In particular, Dr Gerstein has been an integral part 
of the ENCODE Project as well as the modENCODE Project since its inception. Within these 
he has had a number of leadership roles, as he has co-directed the Networks/Elements Group.  

This project will integrate the biological networks expertise of Dr Gerstein with the machine 
learning and software development expertise of Dr Paccanaro and the experimental assay 
development of Dr Yu, brining a fresh new perspective to conditionally essential genes 
prediction. The three group leaders have been collaborating for over ten years on many 



	
  

	
  

network-based approaches for problems in biology. To some degree the collaboration between 
the three labs will be cemented through knowledge exchange and work visits. As such Dr Sisu 
(Yale) will have a visiting scientist appointment in Dr Paccanaro’s lab and will work closely 
with his team to integrate the network analysis tool with essential genes predictions. Dr Sisu 
will also be the project manager and will be the contact person between the three labs. Dr 
Paccanaro is already scheduled to spend a period of time as visiting professor at Yale 
University in Dr Gerstein’s Lab in the next three years. During this time at Yale he will 
contribute invited lectures to the computational biology and bioinformatics course led by Dr 
Gerstein. He will also take this opportunity to visit the lab of Dr Yu at Cornell University. 

The three group leaders will have scheduled monthly conference calls to exchange details on 
the project progress and development. Dr Gerstein will also contribute invited talks to both 
Cornell University and Royal Holloway University of London.   

Dr Paccanaro will be involved in the design and development of gene essentiality and 
phenotype prediction tools associated with AIM 1. Dr Gerstein will be responsible for the 
coordination, designing and development of tools associated with AIM 2 created by Dr Sisu at 
Yale. As lead of AIM 3, Dr Yu will lead the experimental validation of the functional 
predictions resulted from AIMs 1 and 2. While AIMs 1, 2 and 3 are led by each lab mostly 
independently, all three groups will collaborate towards their completion. As such, the 
Paccanaro group will help with model development and implementation for AIM 2, while the 
Gerstein group will help with assessment of data quality, standardization and biological 
interpretation of AIM 1 results’. Both the Gerstein and Paccanaro groups will work closely 
together to facilitate the implementation of AIM 4 and improve their predictions methods 
following experimental validation feedback. All three groups will be involved in the design of 
the experimental validation as described in AIM 4. 

The overall progress of the project is summarized in milestones as follows: 

[[CSDS to update the milestones]] 

Year 0-1.5 The Gerstein lab will work on the development of algorithms for decomposing 
expression dynamic patterns in contribution for internal and external regulators using 
biological networks network analysis (AIM 2). Dr Paccanaro will provide technical support for 
the correct implementation and optimization of the algorithm.  

Year 1.5-2. We (Gerstein and Paccanaro labs) will extend the model validations from the model 
organism (worm, fly) to other more complex systems organisms (i.e. human, mouse, primates, 
etc.) and thus improve the proposed algorithms accordingly. We will also combine our efforts 
to implement AIM 3. 
Year 3. The work in both labs will be focused on completing AIM 3 and AIM 4. Together, we 
will also develop a robust and friendly interface for the phenotype prediction and 
characterization tools. The third year will also be dedicated to publishing collaborative papers 
describing the newly developed tools as well as the scientific advances resulting from their use. 

The three groups will also coordinate the analysis and writing of collaborative manuscripts. To 
achieve this, we plan to implement regular conference calls between the three groups, and also 
open them to the larger networks, functional genomics and computer science research 
community.  

We will also take advantage of the plethora of tools available to facilitate collaboration. To this 
end the software development between the three labs will be hosted on a communal version 
control system, github. In order to guarantee a high standard of our tool, we will employ 
regular code reviews. Similarly, we will use google drive and online whiteboard tools on a 
regular basis to enhance the sharing of ideas between the three groups. 


