RESPONSE LETTER

Reviewer #1

-- Ref 1.0 - annotation source, false negatives --

Reviewer					
	It seems all SNVs curated from various resources are non-				
Comment	synonymous as shown in Figure S1A, but this is not clearly				
	mentioned in the Methods part of the main text. Was the				
	basic annotation (non-synonymous or synonymous) of all				
	SNVs from different sources done by the VAT? As we all				
	know, not all variants from 1KG and ExAC are "benign", did				
	you apply any filter to minimize the potential false				
	negatives (e.g., in silico prediction tools)?				
Author	We would first like to thank the reviewer for taking to time to carefully				
Response	read through our study, and we also thank the reviewer for valuable				
	suggestions on how we may improve this work.				
	suggestions on now we may improve this work.				
	In the revised version of the manuscript, we now specify that we				
	exclusively look at non-synonymous SNVs. The reviewer has correctly				
	pointed out that the annotations of coding SNVs were obtained using				
	VAT. Furthermore, we agree with the reviewer that not all variants from				
	1KG and ExAC are necessarily benign. In an effort to deal with this, we				
	have removed any known disease-associated variants (HGMD and				
	TCGA) that were initially present in the 1KG and ExAC datasets.				
E (E					
Excerpt From	"In order to avoid redundancy and false positive call sets, we only consider HGMD SNVs				
Revised Manuscript	annotated as pathological variants (labeled as "DM") in the HGMD dataset. Furthermore, we				
	removed HGMD variants present in the 1000 Genomes and ExAC datasets. Similarly, we also				
	removed known TCGA variants present in the original ExAC SNV datasets."				

-- Ref 1.1 -core/surface residue description--

Reviewer	Please briefly define and compare the "core" and "surface"
Comment	residuals in the main text as they are critical to
	understand the differential impact evaluated in this
	study.
Author	We thank the reviewer for this suggestion, and we have now
Response	accordingly provided this information in the main text instead of the
	supplement.
Excerpt From	"Moreover, we sub-classify each of these three categories into core and surface residues based
Revised Manuscript	on their RSASA value. We calculated the RSASA value for each residue using NACCESS (1).
	Residues were defined as core when the RSASA value was lower than or equal to 25 % and
	surface residues had RSASA value greater than 25%."

-- Ref 1.2 – SNV frequency summary --

Reviewer	Please summarize the number of SNVs used in each of your
Comment	comparison analysis as Table 1 (e.g., benign/disease-
	associated, common/rare, conserved/variable,

	driver/pass	enger).						
Author	These statist	ics are ir	ndeed	d valuable	to know,	and th	hey are r	now
Response	provided in Ta	ible 1, whi	ch m	ay be foun	d within the	main te	ext.	
Excerpt From Revised Manuscript Table 1. Summary statistics on the number of SNVs used in comparative analyses. Shown are varian counts for non-disease (top), HGMD (bottom-left), and pan-cancer SNVs (bottom-right).						t		
	Conservation	1	1000 Genomes			ExAC		-
	measure	core		surface	co	re	surface	_
	DAF rare (common)	2267 (8	35)	1570 (106)	1797	2 (102)	11550 (83)	
	GERP conserved (variable)	1552 (2	287)	1132 (212)	1216	5 (2174)	7637 (1406)	
	Conservation measure	HG	HGMD core surface		SNV type	PANCAN core surface		-
					non-CAG	2153	1848	-
	GERP conserved (variable)	5158 (961)	1113	(221)	CAG	4140	2767	
	contraction (variable)				driver	877	486	

-- Ref 1.4 -- variants with unknown significance --

Reviewer	The results are interesting. However, I was looking
Comment	forward to seeing how the workflow was applied to variants
	of unknown significance to help classify/predict their
	impact, e.g., using a certain value of ΔF as a threshold.
	This would be extremely valuable and useful for other
	investigators.
Author	We agree that greater value may be derived from ΔF if a specific
Response	threshold may be used when making predictions on newly discovered
	SNVs. In order to rigorously define a ΔF that may optimally be used to
	distinguish between deleterious and benign SNVs, we have taken the
	empirical approach of jointly analyzing the distributions of ΔF scores for
	HGMD (disease-associated) and SNVs from ExAC (presumably
	benign). The details and results of this analysis are now included within
	the Supplementary Materials (Supplementary text S3)
Excerpt From	Excerpt in the Main Text
Revised Manuscript	The deleteriousness of an SNV is a continuous variable, and indeed, this is reflected in the
	continuous nature of ΔF values. However, there is still considerable value in applying a binary
	classification scheme to newly discovered SNVs, which may be predicted to be benign or deleterious. In order to perform such binary classification, we applied a simplified decision
	boundary scheme, wherein we analyzed ΔF distributions for HGMD variants (disease-
	associated) and SNVs from ExAC (seemingly benign). The threshold was set with the objectives
	of a) minimizing the fraction of HGMD SNVs with ΔF values above the threshold, and b)
	minimizing the fraction of ExAC SNVs with ΔF values below the threshold. Using this
	approach, we observed that variants with ΔF score ≤ -1.221 can be considered deleterious.
	Details of this scheme are provided as part of the supporting information.
	Excerpt in the Supplement:
	As discussed in the results of the main text, disease-associated SNVs from HGMD generally
	induce more negative ΔF values relative to benign SNVs. Given a newly discovered SNV, is
	there a specific ΔF threshold that may optimally be used to classify SNVs as benign or
	deleterious ? We address this issue empirically by optimizing a function $f(x)$ defined by two distributions (Supplementary figure S5)
	ustroutons (supprementary right 55)
	f(x) = h(x) + e(x)

Let ΔF_{HGMD} denote the distribution of ΔF scores induced by HGMD SNVs. $h(x)$ is defined to be the difference between the fraction of ΔF_{HGMD} scores less than x (<i>fract</i> [$\Delta F_{HGMD} < x$]) and the fraction of ΔF_{HGMD} scores greater than x (<i>fract</i> [$\Delta F_{HGMD} > x$]):	
$h(x) = fract[\Delta F_{HGMD} < x]) - fract[\Delta F_{HGMD} > x])$	
With ΔF_{ExAC} similarly defined for the distribution of ΔF values associated with ExAC SNVs:	
$e(x) = fract[\Delta F_{ExAC} > x]) - fract[\Delta F_{ExAC} < x])$	
Note that, in building the distribution of ΔF_{ExAC} values, a random sample of ExAC SNVs was chosen in order to match the number of SNVs in the ΔF_{HGMD} distribution. The <i>x</i> that maximizes the function $f(x)$ is taken as the ΔF threshold for predicting whether a newly discovered SNV is deleterious or benign. Using this approach, we find that this ideal threshold takes a value of ΔF	
	the difference between the fraction of ΔF_{HGMD} scores less than $x (fract[\Delta F_{HGMD} < x])$ and the fraction of ΔF_{HGMD} scores greater than $x (fract[\Delta F_{HGMD} > x])$: $h(x) = fract[\Delta F_{HGMD} < x]) - fract[\Delta F_{HGMD} > x])$ With ΔF_{ExAC} similarly defined for the distribution of ΔF values associated with ExAC SNVs: $e(x) = fract[\Delta F_{ExAC} > x]) - fract[\Delta F_{ExAC} < x])$ Note that, in building the distribution of ΔF_{ExAC} values, a random sample of ExAC SNVs was chosen in order to match the number of SNVs in the ΔF_{HGMD} distribution. The <i>x</i> that maximizes the function $f(x)$ is taken as the ΔF threshold for predicting whether a newly discovered SNV is

-- Ref 1.5 - Clarification regarding p-value --

Reviewer	In the last paragraph of Results: Differential effects of			
Comment	benign and disease-associated SNVs on ΔF profiles, you			
	tated that "In addition, disease-associated SNVs (from			
	HGMD) result in similar frustration changes between core			
	and surface residues (p-value < 2e-16 from two-sample			
	Wilcoxon test) (Figure 2C)." The frustration changes are			
	similar between core and surface residues, but the p-value			
	looks so significant (2e-16). Please confirm.			
Author	We agree with reviewer that ΔF values are similar for the above-			
Response	mentioned comparisons. Unfortunately, the p-value statement was			
•	misplaced in the original text, which was intended for the next			
	statement (describing the comparison between HGMD core and			
	1KG/EXAC core residues). This has now been corrected.			
Encount Encour	"However, SNVs from HGMD that impact minimally frustrated core residues induce stronger			
Excerpt From				
Revised Manuscript	perturbations than benign SNVs influencing minimally frustrated core residues (p-value < 2e-16			
	from two-sample Wilcoxon test)"			

-- Ref 1.6 - Clarification regarding p-value --

Reviewer	In the last paragraph of Results: Differential effects of
Comment	SNVs on oncogenes and tumor-suppressor genes, you stated
	that "We observed that SNVs affecting TSGs induce stronger
	perturbations in minimally frustrated core residues
	relative to surface residues (p-value = 8.15e-2 from two-
	sample Wilcoxon test) (Figure 6A)." It seems the
	difference was not significant (p = 0.08), so were you
	able to make this conclusion?
Author	Reviewer correctly points out that two-sided Wilcoxon test p-value is
Response	higher than 0.05. However, due to smaller sample size for the TSG and
	oncogene datasets, we also performed KS test for this comparison. KS
	test is considered to be very sensitive test, as it examines shape, range
	and median value of distribution. The two-sided KS test (p-value =
	0.004765) indicate statistically significant difference between TSG and
	Oncogene frustration change distribution. As our conclusion was based
	on KS test, we update the corresponding text to corroborate this point,
Excerpt From	"We observed that SNVs affecting TSGs induce stronger perturbations in minimally frustrated

Deleted: Considering that the Wilcoxon test is known to be an underpowered test, we feel that the KS test is justified here.

I	Revised Manuscript	core residues relative to surface residues (<i>p</i> -value = 0.004765 from two-sample KS test) (Figure	 Deleted: 4.259e-2
		6A)."	 Deleted: one-sided Wilcoxon

-- Ref 1.7 – Fixing typographical & grammatical errors --

Reviewer	There are minor misspellings or formatting errors: (a) in				
Comment	Methods: SNV Datasets, "Human Genome Mutational Database"				
	should be "Human Gene Mutation Database"; (b) in Methods:				
	Workflow to calculate frustration paragraph 2, please use				
	the full name of "PDB" when it was first present; (c) in				
	Discussion paragraph 1 first sentence and paragraph 4				
	first sentence, "have/has lead to" should be "have/has				
	led to"; (d) in Discussion paragraph 3 third sentence,				
	"have grater impact" should be "have greater impact";				
	(e) in Discussion last paragraph the next to the last				
	sentence, "the affects of" should be "the effects of".				
Author	We thank the reviewer for pointing out these formatting errors. They				
Response	have now been corrected.				
Excerpt From	"Disease-associated dataset included SNVs from the Human Gene Mutational Database				
Revised Manuscript	(HGMD) (5) and pan-cancer dataset (45) comprising of publicly available somatic SNVs from				
	The Cancer Genome Atlas (TCGA)"				
	"We then integrated VAT annotation with the biomart (53) derived human gene and transcript				
	IDs to map the SNV on to specific protein databank (PDB) structures"				
	"In the last decade, tremendous improvements in sequencing and structural biology techniques				
	have led to growth in genomic variation and three-dimensional structural data for various proteins."				
	"This observation is intuitively consistent as one would expect rare SNVs to have greater impact on protein stability."				
	"The proposed framework is a logical extension to some of the earlier studies, which primarily employed global metrics such as folding free energy changes to quantify the effects of genomic variants."				

Reviewer #2

-- Ref 2.0 - Accessibility of the method --

Reviewer Comment	How can your method be accessed / used by other scientists who want to analyse their data? I don't find a link to a website / download archive or similar.
Author Response	We would first like to thank the reviewer for taking to time to carefully read through our study, as well as providing valuable suggestions on how we may improve this work.
	With respect to source code, we have now provided this content as a public resource on github: <u>https://github.com/gersteinlab/Frustration</u>

-- Ref 2.1 – Filtering datasets for comparisons--

Reviewer	Concerning the datasets used for benign and disease-	
Comment	causing SNVs. Which variants from HGMD were included? As	
	far as I know, there are different categories of variants	
	in HGMD: DM=Disease causing (pathological) mutation, DM? =	
	Likely disease causing (likely pathological) mutation,	
	DP=Disease associated polymorphism, DFP=Disease associated	
	polymorphism with additional supporting functional	
	evidence, FTV=Frameshift or truncating variant with no	
	disease association reported yet, FP=Polymorphism	
	affecting the structure, function or expression of a gene	
	but with no disease association reported yet. In order to	
	create a testset of "disease mutations", all categories	
	except for DM should be avoided in order to make sure that	
	the test data has the highest possible quality. Variants	
	which were found in association studies are not suitable	
	to go into a test set of disease mutations, since there is	
	only an association between the variant and the disease	
	and not a proven functional link.	
	The same applies for the data taken from 1000G and ExAC:	
	Although these are generally denoted "common", there are	
	significant differences in the genotype frequencies and	
	MAFs of the variants. Especially in the ExAC data,	
	variants which are associated with a specific clinical	
	phenotype might be included. Moreover, there are also	
	variants from TCGA (which went into your disease-variant	
	set) included in ExAC.Did you chose a certain threshold	
	for genotype frequency or MAF, above which you considered	
	a 1000G / ExAC variant as common enough to be	
	harmless/benign? If yes, this should go to the	
	paper/supplement, if no, you should restrict the dataset	
	to a somewhat smaller subset of variants, according to a	
	sensible threshold. Moreover, did you cross-check if there	
	are HGMD variants, which are also present in the	
	1000G/ExAC data? This also happened in the past.	
Author	We thank the reviewer for these valuable suggestions. We have	
Response	updated our datasets such that:	
	1) we only keep HGMD variants with the status label "DM";	
	2) we have removed HGMD and TCGA variants present in	
	ExAC; and	
	3) we have removed HGMD variants in the 1000 Genomes	
	dataset.	
	When this filtering is performed a very small fraction of CNN/s	
	When this filtering is performed, a very small fraction of SNVs	
	were removed from our analysis, and we note that this filtering	
	did not heavily affect our main results. However, we have	
	updated our figures and p-values to reflect this pre-processing.	
	We describe this pre-processing scheme in the method section of	
		(
	the paper,	

I

Deleted: We describe this pre-processing scheme in the Methods section of the paper.

	We applied a MAF threshold of 0.5% to distinguish between rare and common variants. This information is now provided in our updated Methods section.	
Excerpt From Revised Manuscript	"In order to avoid redundancy and false positive call sets, we only consider HGMD SNVs annotated as pathological (labeled as "DM") in our HGMD dataset. Furthermore, we removed HGMD variants present in the 1000 Genomes and ExAC datasets. Similarly, we also removed known TCGA variants present in the original ExAC SNV datasets."	
	"Furthermore, we investigated the differential influence of common and rare mutations, where SNVs with minor allele frequency (MAF) less than or equal to 0.5% were considered to be rare mutations. SNVs were otherwise classified as common."	

-- Ref 2.2 – Usefulness of the method --

Reviewer	To underline the usefulness of your method, which is, as		
Comment	said in your manuscript, to meet a "growing and urgent		
Comment			
	need to evaluate the potential effects of low-allele-		
	frequency variants in unbiased ways using high-throughput		
	methodologies", I miss some extra calculations /		
	benchmarking. There are methods existing in order to		
	evaluate potential effects of low-allele-frequency		
	variants in unbiased ways (SIFT, PolyPhen2,		
	MutationTaster, and many others). I would like to see how		
	exactly your method adds up to this. Is the additional		
	information gained from structural analysis really an		
	advantage over existing methods? If you could show this,		
	this would surely be an argument for people to use and		
	cite your method. If they don't know if your method is		
	really helpful, they will maybe not even try it, since		
	analysis of high-throughput data is (already) time-		
	intensive. One could for example create a small set of		
	variants and analyse these with one or two of the "common"		
	tools to predict the deleteriousness of SNVs (e.g.		
	PolyPhen2 and MutationTaster2, since these are generally		
	considered the most accurate ones) and then check if there		
	are disease variants predicted as "harmless" by these		
	tools (i.e. false negative) which are then correctly seen		
	as locally maximal frustrated by your method. Or any other		
	way how it can be shown that the method is indeed useful		
	for the analysis of high-throughput data (e.g. compare		
	with other existing "structural prediction" tools, if		
	those exist).		
Author	We are thankful to the reviewer for proposing this interesting		
Response	analysis. Following the reviewer's suggestion, we ran SIFT and		
	Polyphen2 on a smaller set of HGMD variants. These smaller set		
	of variants were selected on the criterion that they map to PDE structure, which has at least one HGMD and at least one ExAC		
	non-synonymous SNVs. Subsequently, we identified instances		
where HGMD variants were predicted to be benign by poly			
			or SIFT (False negative cases) but delta frustrat
	indicates significant increase in frustration level upon mutation.		
	Frustration metric was able to rescue ~38% and ~46% of		
	polyphen2 & SIFT annotated false negative variants, as		

	described in the result and supplementary information. We also highlight few examples by plotting linear diagram for such cases in the supplementary information.		
Excerpt From	Excerpt from Results section of main text:		
Revised Manuscript	As discussed, existing structure-based methods for predicting SNV deleteriousness rely on		
	global metrics of protein stability. These approaches may incorrectly predict known disease-		
	associated SNVs to be benign (thereby producing false negatives). We address the extent to		
	which ΔF rescues such false negatives by correctly predicting their deleterious effects. We first		
	identified 626 HGMD SNVs within the semi-balanced set (see Method section), and predicted		
	the impacts of these SNVs using SIFT, PolyPhen2, and ΔF values. SIFT produces false		
negatives for 13.7% of these HGMD SNVs. We find that ΔF rescues 46% of these SIF negatives (i.e., by correctly predicting deleterious impacts). Similarly, PolyPhen2 produce negatives for 10% of the HGMD SNVs. Applying ΔF enables us to rescue 38% of these subscripts of the HGMD SNVs.			
			PolyPhen2 false negatives. Glucokinase is used as an example to demonstrate specific cases of
			rescued variants (SI Figure S7). Finally, a list of all false negatives rescued by ΔF analysis is
	provided in SI data file.		

-- Ref 2.3 - Method run time scale --

Reviewer	How long would it take to analyse let's say 10,000 SNVs?			
Comment	As this is more or less the dimension which goes along			
	with HT-sequencing.			
Author	The reviewer has raised a good question of practical interest. We			
Response	ran our pipeline on 10,000 SNVs, and it took ~2.5 hours to map			
	these variants to PDB structures. In total, we mapped 20% of			
	these SNVs onto three-dimensional structures. Further,			
	generating the mutated protein model and frustration calculations			
	for the structurally mapped variants took ~26 hours.			
Excerpt From	"This workflow is computationally tractable when evaluating ΔF for large numbers of variants.			
Revised Manuscript	Our benchmark calculations on 10,000 non-synonymous SNVs indicates that we can map, build			
-	mutated models, and calculate ΔF values in ~29 hours on an E5-2660 v3 (2.60GHz) core."			

-- Ref 2.4 - Typographical error --

Reviewer	Concerning Fig. 1: Residues are not numbered. In the text,			
Comment	you talk about ILE in pos. 31 which is exchanged to TYR.			
	In the figure legend, you say that TRP is changed to TYR.			
	In the picture, there is TRP highlighted as well as TYR,			
	but the native and mutated structure (at least the part			
	shown) differ in more than just this one residue. This			
	confuses me and should be clarified.			
Author	We thank the reviewer for pointing out this inconsistency. We			
Response	have fixed the text in our methods section to remove this			
	ambiguity.			
Excerpt From	"In Figure 1, we demonstrate an example case in which replacing tryptophan at a particular			
Revised Manuscript	locus within ubiquitin (PDB ID 1UBQ) with a tyrosine."			

Deleted: We further highlight the potential complementarity of using local frustration as a means of complementing existing methods for evaluating SNV deleteriousness. These existing methods utilize global stability/conservation to predict variant deleteriousness. For this analysis, we selected a smaller set of variants mapped to PDB structures, and selected those structures such that at least one HGMD and at least one ExAC non-synonymous SNVs map. Subsequently, we identified instances in which HGMD variants were predicted to be benign by polyphen2 or SIFT (false negatives) but ΔF suggests harmful impacts. We observed that 10% of the variants in this smaller set of variants were annotated as benign by polyphen2. Similarly, SIFT incorrectly predicted 13.7% of these HGMD variants to not be damaging. Furthermore, we analyzed the ΔF values for variants in this dataset. Applying the ΔF threshold described earlier (-1.221), we observed that 38% of the missannotated variants had significantly large ΔF values, indicating their potential deleteriousness. Furthermore, we also determined that $\sim \!\! 46\%$ of SIFT-annotated false negative variants had large ΔF values. We also highlight an example by plotting linear diagram for such a case in the supplementary Figure S7.

Formatted: Font:9 pt

Deleted: ."

-- Ref 2.5 – Violin plot description in figure legends --

Reviewer	Concerning the Fig. 2-6 (violin plots): The figure legends		
Comment	do not say what the white dots and the vertical lines		
	stand for. Mean? Median? Standard deviation? Range? This		
	should be explained. Which difference between delta F is		
	regarded significant (concerning differences in delta F		
	"core" between bening SNVs and disease-causing SNVs)?		
Author	We agree that some clarifications were needed here. In the revised manuscript,		
Response	we explain the meanings of white dots and vertical lines within the updated		
	figure legends. Comparison of ΔF distributions for the ExAC core SNVs and		
	HGMD core SNVs point to statistically significant differences (p-value < 2e-		
	16 using a two-sided Wilcoxon test). Furthermore, this observation was also		
	true for comparisons involving 1000 Genomes core SNVs and HGMD core		
	SNVs.		
Excerpt From	"The white dots, the black boxes and vertical lines represents the medians, interquartile ranges,		
Revised Manuscript	and 95% confidence intervals of ΔF distributions, respectively"		

-- Ref 2.6 - cutoff for common/rare differentiation --

Reviewer	Fig. 3: Which MAF separates "common" from "rare" SNVs?		
Comment			
Author Response	We applied a MAF threshold of 0.005 to distinguish between rare (MAF <=0.005) and common variants. This previously missing information		
	has now been incorporated into the text.		
Excerpt From Revised Manuscript	"Furthermore, we investigated the differential influence of common and rare mutations, where SNVs with minor allele frequency (MAF) less than or equal to 0.5% were considered to be rare mutations. SNVs were otherwise classified as common."		

-- Ref 2.7 – Spacing error --

Reviewer Comment	Very minor point: Sometimes, spaces are missing (e.g. p.3 1.21/1.37). Re-check for this.		
Author	We thank the reviewer for pointing this out. We have fixed this formatting		
Response	error in the updated version of the manuscript.		
Excerpt From			
Revised Manuscript			

-- Ref 3.1 - Regarding limitation of method --

Reviewer	The main rationale for the paper put forward by the		
Comment	uthors is rapidly growing number of rare variants coming		
	from individual genomes sequencing projects and the need		
	for new methods to infer potential functional associations		
	of such variants. However, the results presented in this		

	<pre>work clearly underscore main limitation of all structure- based methods: scarcity of high-resolution 3D protein structures and low PDB mapping coverage makes them less useful compared to more common sequence-based methods. In fact, the fraction of successfully PDB-mapped variants from ExAC database reported by the authors is below 2% (Supporting Information). This makes method's potential contribution to large scale interpretation of rare and unknown significance variants rather questionable. More general estimates usually agree upon less than 10% of all known human proteins covered by PDB, still too few. Unfortunately, there is no evidence that this coverage would increase significantly in the near future. Also, PDB is highly biased towards representing a subset of all known protein folds/domains and this bias keeps increasing, not diminishing. I would recommend either removing or significantly toning down all claims about potential applicability of the method towards large-scale human variant interpretation, specifically from the Abstract and Introduction.</pre>	
Author Response	We thank the reviewer for pointing out these issues. We now discuss the limitations of this approach in order to tone down and qualify its applicability. We agree that there are inherent limitations in structure-based methods as a result of relatively low coverage across the human proteome. However, there has been a persistent increase in the structural coverage due to improvements in three-dimensional structure determination. We have highlighted this gradual increase in protein structural space in a recent review (pubmedID:26658741). In addition, we anticipate further increases in the structural coverage due to cryo-Electron microscopy. The advent of cryo-EM has made it possible to resolve the three-dimensional structures of relatively large protein/protein-complexes, which were unfathomable a decade ago. Finally, the growing systems-level view of protein biology (e.g., protein-protein interaction networks) may help to broaden the relevance of the limited number of cases in which SNVs lie within known structures (discussed in excerpt below). However, the limited coverage of SNVs in structures persists as a major challenge, so we have also provided a discussion of this challenge in the	
Excerpt From Revised Manuscript	updated manuscript. Excerpt from Introduction: Though the majority of disease-causing variants lie in non-coding regions of the genome, many of them lie in protein-coding genes. Furthermore, only a limited fraction of non- synonymous SNVs may be mapped to known protein structures. However, immense progress has been made in resolving the three-dimensional structure of many proteins over the last several decades (13) Excerpt from Discussion: "Historically, the relative scarcity of genomic variation and structural data have presented challenges in variant interpretation, in that only a small pool of SNVs may be mapped to resolved structures However, limited mapping coverage persists as a major challenge, a number of recent trends may partially help to mitigate this issue. Significant improvements in crystallographic protocols have enabled near-exponential growth in deposited X-ray structures in the PDB (10). Furthermore, cryo-EM is opening entirely new avenues for revealing the architectures of many proteins which were previously elusive to crystallography, which is expected to expand the structurally-resolved proteome (59). Finally, systems-level descriptions	

of cellular phenomena provide a more complete understanding of context in which proteins
operate. Specifically, there is a growing understanding of protein-protein interaction networks
and the role of resolved structures therein (60). As such, inferring how a given SNV affects a
particular structure is by no means limited to predictions regarding that protein alone - the
protein's tight associations with other molecules may greatly broaden the scope of how that
SNV influences more global cellular phenomena. For instance, the functional consequences of
an SNV within a central hub protein of a network may effectively be propagated. "

-- Ref 3.2 - variant statistics and semi-balanced variants --

Reviewer Comment	Another known issue is strong annotation disparity between known Mendelian disease mutations (e.g. HGMD disease variants) and other variants: most of HGMD mutations are reported in a small subset of proteins, while majority of the proteins only have fewer and mostly benign or unknown significance variants reported for them. This creates bias when performing comparisons between the two functional classes of variants. In case of PDB-mapped variants, such annotation bias might have been alleviated to some extent by the PDB intrinsic bias (mentioned above, skews PDB & HGMD data towards the same proteins) but it requires further investigation. Authors should present statistics for the number of unique proteins and the distribution of variants in the unique proteins for each of their datasets. They should also attempt to perform their analysis on a (semi-)balanced set(s) of variants, using sets of proteins where both disease and neutral mutations are present. See Grimm et al. (2015) Human Mut. 36:513-523 for an example of such balanced sets and trends analysis.	
Author Response	We thank the reviewer for these observations, and we agree that some analyses and discussion should be devoted to exploring these points. As such, new analyses and text have been integrated into the Discussion and Supplementary section of the revised manuscript. We have also performed our analysis on a semi-balanced set of variants (as proposed by the reviewer), and we report the results of this analysis in the supplementary information. Overall the trends were very much consistent with our prior analyses. However, the new dataset lacks statistical significance, potentially as a result of the fact that it is considerably smaller dataset. The details of these analyses are provided in the excerpt below.	
Excerpt From Revised Manuscript	Excerpt from Method Semi-balanced SNV datasets The limited and uneven structural coverage of the human proteome primarily introduces two sources of potential bias when combined with SNV datasets: 1) some proteins may be over- represented when evaluating the effects of SNVs, and 2) the sets proteins that correspond to benign SNVs may differ considerably from those that correspond to deleterious SNVs, thereby making direct comparisons between benign and deleterious SNVs less reliable.	
	In order to address this first issue, we select a non-redundant set of proteins within	Formatted: Indent: First line: 0.5"
	each dataset. Specifically, the non-redundant set is constructed by ensuring that no protein	
	each dataset Specificany, the non-redundant set is constructed by ensuring that no brotein	Moved (insertion) [1]

[-	
	this approach, we find that there are 618, 907, and 303 distinct proteins within the set of high-		
	resolution structures impacted by 1000 Genomes, ExAC, and HGMD SNVs, respectively.		
	Distributions delineating the number of SNVs within these non-redundant protein sets are given		
	in Supp. Fig. S2-S4.		Moved (insertion) [2]
	In order to address the second issue, we analyze only those structures that fall within		
	the intersection of the different non-redundant datasets. Thus, for each SNV mapping to		
	structure within this intersection set of non-redundant proteins (which we term the "semi-		
	balanced set"), at least one residue overlap with an ExAC(1KG) and HGMD SNV. We utilize		
	this semi-balanced SNV set to elucidate utility of frustration metric with respect other methods		
	(polpyhen2 & SIFT), as described in the result section. We also perform ΔF comparison for		
	1KG, ExAC and HGMD variants on the semi-balanced SNV sets (Supp. Fig S5).		Moved (insertion) [3]
	Excerpt from Discussion	~	Formatted: Font:Not Italic, No underline
	Historically, the relative scarcity of genomic variation and structural data have		Formatted: Line spacing: 1.5 lines
	presented challenges to variant interpretation, in that only a small pool of SNVs may be mapped	X	Deleted:
	to resolved structures. Furthermore, this limited coverage may exacerbate bias in two regards: 1)		Formatted: Indent: First line: 0.5"
	certain proteins may be over-represented in any given dataset, and 2) the proteins affected by		
	disease-associated SNVs differ from those in which more benign SNVs intersect (considerable		
	annotation disparities exist between HGMD variants and variants taken from 1000 Genomes and		
	ExAC, raising the possibility of bias between the evaluated structure datasets. The sets of		
	proteins evaluated in the context of HGMD variants may thus be considerably different from		
	those of 1000 Genomes/ExAC SNVs, thereby making direct comparisons difficult.).		Moved up [1]: Specifically, the non-redundant set is
			constructed by ensuring that no protein within the set shares
L			more than 90% sequence identity with any other protein in the set.
		$\langle \rangle$	Deleted: We find that there are 618, 907, and 303 distinct
	Ref 3.3 – SNV frequency summary	111111111	proteins within the set of high-resolution structures impacted by 1000 Genomes, ExAC, and HGMD SNVs, respectively.
Reviewer	Please, provide complete breakdown for the raw numbers of		Distributions delineating the number of SNVs within these
Comment	SNVs in each subcategory analyzed for the data presented		unique (i.e., non-redundant) protein sets are given in Supp.
	in the Figures: Core/Surface, Core/Surface/Common/Rare, etc.		Moved up [2]: Fig. S2-S4.
			Deleted:

Author

Response

may be found within the main text.

We agree that these numbers are important to know, and indeed, reviewer #1	Deleted:
had the same suggestion. These statistics are now provided in Table 1, which	Moved up [3]: Fig S5).

Deleted: However, they lack statistical significance, potentially due to lower amount of SNVs included in the semi-balanced dataset."

[... [1]]

[... [2]

Revised Manuscript	Conservation	1000 Genomes			n-cancer SNVs (bottom-right). ExAC		
	measure	core		surface	сс	ore	surface
	DAF rare (common)	2267 (8	85)	1570 (106)	1797	2 (102)	11550 (83)
	GERP conserved (variable)	1552 (2	287)	1132 (212)	1216	5 (2174)	7637 (1406)
	Conservation	HGMD		SNV		PANCAN	
	measure	core	surf	face	type	core	surface
					non-CAG	2153	1848
	GERP conserved (variable)	5158 (961)	1113	8 (221)	CAG	4140	2767
					driver	877	486

-- Ref 3.4 – Typographical error --

Reviewer Comment	Supporting information, page 2: "SNVs are classified in three groups based Coin the native state (MinFNS)", possibly a typing error: Coin>on? Also, item a) is missing; enumeration starts from b).
Author	We thank reviewer for pointing out this typographical error. We have fixed
Response	this error, and note that this paragraph has been moved to the Methods section.
Excerpt From	"SNVs are classified in three groups based on the native state a) minimally frustrated in the
Revised Manuscript	native state"

To control for these two effects, we first identify a non-redundant set of unique proteins within each dataset.

Page 11: [2] Deleted	Microsoft Office User	8/6/16 3:19 PM
----------------------	-----------------------	----------------

Excerpt from Supplement:

"After identifying unique protein sets, those proteins that fall within the intersection of the different datasets were used to evaluate ΔF distributions. For instance, the intersection between unique 1000 Genomes and HGMD proteins constitutes a nonredundant set of protein structures in which at least one residue intersects with a 1000 Genomes SNV and at least one residue intersects with an HGMD SNV, thereby providing a semi-balanced set of SNVs, and thus the ability to draw more direct comparisons with respect to ΔF distributions. Using this approach, we find that the results overall trend for semi-balanced variant datasets are consistent with ΔF distributions detailed above (Supp.